Calculating preimages via de Bruijn networks in cellular automata

Juan Carlos Seck Tuoh Mora, Manuel González Hernández, Genaro Juárez Martínez and Harold V. McIntosh

> Universidad Autónoma del Estado de Hidalgo, México University of the West of England, United Kingdom Universidad Autónoma del Estado de Puebla, México

Abstract

This work describes some advances in calculating preimages for several generations in one-dimensional cellular automata. Based on results obtained by Jeras and Dobnika, de Bruijn networks are used for this task. Examples using Rule 110 (k = 2; r = 1) are presented.

Index

- Problem description
- De Bruijn networks
- Computational implementation
- Results in Rule 110
- Discussion

Statement of the problem

Given a one-dimensional cellular automaton, calculate the preimages of a finite configuration in several steps.

Statement of the problem

- Graphical and matrix approaches have been used for treating the problem (Jen, Wolfram, McIntosh, Voorhees, Wuensche, Jeras, Gómez-Soto).
- Most of the efforts have used the properties and extensions of de Bruijn graphs.

Iztok Jeras and Andrej Dobnikar (Algorithms for computing preimages of cellular automata configurations, http://www.rattus.info/al/al.html).

$$\varphi:K^3\to K$$

$$\varphi: K^3 \to K \quad \Rightarrow \quad \varphi: K^4 \to K^2$$

$$\varphi: K^3 \to K \quad \Rightarrow \quad \varphi: K^4 \to K^2 \quad \Rightarrow \quad \varphi: (K^2 \times K^2) \to K^2$$

$$\varphi: K^3 \to K \qquad \Rightarrow \quad \varphi: K^4 \to K^2 \qquad \Rightarrow \quad \varphi: (K^2 \times K^2) \to K^2$$

$$\downarrow \downarrow \qquad \qquad \qquad \\ \tau: (S^2) \to S \ \text{ where } \ |S| = k^2$$

$$\varphi: K^3 \to K \qquad \Rightarrow \quad \varphi: K^4 \to K^2 \qquad \Rightarrow \quad \varphi: (K^2 \times K^2) \to K^2$$

$$\downarrow \downarrow \qquad \qquad \qquad \\ \tau: (S^2) \to S \ \text{ where } \ |S| = k^2$$

$$\varphi: K^3 \to K \qquad \Rightarrow \quad \varphi: K^4 \to K^2 \qquad \Rightarrow \quad \varphi: (K^2 \times K^2) \to K^2$$

$$\downarrow \downarrow \qquad \qquad \qquad \\ \tau: (S^2) \to S \ \text{ where } \ |S| = k^2$$

$$\varphi: K^3 \to K \qquad \Rightarrow \qquad \varphi: K^4 \to K^2 \qquad \Rightarrow \qquad \varphi: (K^2 \times K^2) \to K^2$$

$$\downarrow \downarrow \qquad \qquad \qquad \\ \tau: (S^2) \to S \ \, \text{where} \ \, |S| = k^2$$

$$\varphi: K^3 \to K \qquad \Rightarrow \quad \varphi: K^4 \to K^2 \qquad \Rightarrow \quad \varphi: (K^2 \times K^2) \to K^2$$

$$\downarrow \downarrow \qquad \qquad \qquad \\ \tau: (S^2) \to S \ \text{ where } \ |S| = k^2$$

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

1) Take every $v \in K^{n+1}$ and calculate its evolution in n steps.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

2) Arrange all sequences in |K|=k networks, one for each state.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

3) Overlap networks to obtain the preimages.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

3) Overlap networks to obtain the preimages.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

3) Overlap networks to obtain the preimages.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

3) Overlap networks to obtain the preimages.

Sequence 02

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

4) Delete non-overlapping edges.

Sequence 02

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

5) Delete incomplete paths.

Problem: Obtaining the preimages of $w \in K^*$ for n steps.

Proposed algorithm:

5) Delete incomplete paths.

Relevant considerations for basic networks

1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.

Relevant considerations for basic networks

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

- 1) For n steps the original de Bruijn diagram has k^n vertices and all de Bruijn networks has $k^2(n+1)$.
- 2) Paths in a basic de Bruijn network must be carefully aggregated.

1) Every preimage is enumerated and a list of preimages is kept in the initial edges of a basic de Bruijn network.

2) A general list of preimages is composed indicating for each the corresponding de Bruijn network.

Path	Network
p_1	0
p_2	0
• • •	• • •
$p_{(k^n-1)}$	3

- 3) To overlap networks of states a, b:
 - Take network a:

- 3) To overlap networks of states a, b:
 - Take $p' = p_1/k$:

- 3) To overlap networks of states a, b:
 - For $0 \le i \le k-1$, take p' = p' + i:

- 3) To overlap networks for states a, b:
 - If p'.Network = b:

4) Listing preimages:

4) Listing preimages:

1) Calculate networks for sequences of n_1 states.

2) Take $n_3 \ge n_1$ and calculate Garden-of-Eden sequences of n_2 states for $n_1 \le n_2 \le n_3$.

3) Simplify the de Bruijn networks deleting all Garden-of-Eden paths with length n_1 .

3) Simplify the de Bruijn networks deleting all Garden-of-Eden paths with length n_1 .

Path	Network	Garden of Eden
p_1	0	*
p_2	0	
• • •	• • •	• • •
p_{181}	0	*
• • •	• • •	• • •
$p_{(k^n-1)}$	3	

4) For a desired $w \in K^*$, calculate the de Bruijn network of preimages by overlapping basic networks; checking that no Garden-of-Eden paths are added.

5) Take a path in the de Bruijn network previously calculated and repeat step 4. Repeat the process n_4 times for obtaining preimages of $(n_1 - 1) * n_4$ generations.

Results in Rule 110

Parameters to find preimages for T_{18} , T_{20} , T_{22} , T_{26} ^a.

 Sequences of length 7 for generating the de Bruijn networks.

^aRunning in an iMac Intel Core 2 Duo, 2.16 GHz, 1 GB RAM

Results in Rule 110

Parameters to find preimages for T_{18} , T_{20} , T_{22} , T_{26} ^a.

- Sequences of length 7 for generating the de Bruijn networks.
- Sequences from length 7 to 10 to avoid Garden-of-Eden subsequences.

^aRunning in an iMac Intel Core 2 Duo, 2.16 GHz, 1 GB RAM

Results in Rule 110

Parameters to find preimages for T_{18} , T_{20} , T_{22} , T_{26} ^a.

- Sequences of length 7 for generating the de Bruijn networks.
- Sequences from length 7 to 10 to avoid Garden-of-Eden subsequences.
- 8 iterations to return 48 generations.

^aRunning in an iMac Intel Core 2 Duo, 2.16 GHz, 1 GB RAM

Results in Rule 110, T_{18}

Results in Rule 110, T_{20}

Results in Rule 110, T_{22}

Results in Rule 110, T_{26}

Discussion

• De Bruijn networks may reduce time and space in order to calculate preimages in several generations.

Discussion

- De Bruijn networks may reduce time and space in order to calculate preimages in several generations.
- This procedure is practical up to a few tens of steps backwards.

Discussion

- De Bruijn networks may reduce time and space in order to calculate preimages in several generations.
- This procedure is practical up to a few tens of steps backwards.
- More efforts are necessary for the study and applications of de Bruijn diagrams.

Internet references

- http://en.wikibooks.org/wiki/Cellular_Automata/Listing_Preimages
- http://www.rattus.info/al/al.html
- http://cellular.ci.ulsa.mx/
- http://uncomp.uwe.ac.uk/genaro/index.html
- http://www.ci.ulsa.mx/~jmgomez/