Dynamic Monopolies, Cellular Automata, and Network Decontamination

P. Flocchini
University of Ottawa

The Problem

Graph G=(V,E)

A node is either black or white.

A node (a)synchronously re-colors itself with the color held by the majority of its neighbors.

Majority Voting - Literature

In Dynamical Systems

```
[Goles et al 80,85,...]

[Agur et al 88]

[Granville 91]

[Moran 94,95 ...]

and more ...
```

Study of periodic behaviors, transients, number of fixed points in various graph structures ...

Majority Voting - Literature

In Distributed Computing

```
Catastrophic faults [Santoro et al 90,94,95] ...
```

```
Monopolies [Bermond et al. 95,96] [Peleg 96] ...
```

Dynamic Monopolies

```
[Peleg 97]
```

Tori: [Flocchini et al. 98,04]

Chordal Rings: [Flocchini et al. 98,01]

Butterfly: [Luccio et al. 99]

Trees: [Kralovic 01]

Interconnection Networks: [Flocchini et al. 03]

Motivation: Propagation of faults in majority-based distributed systems

Local Majority is employed at each site

- reliability
- fault-tolerance

e.g.

- consensus and agreement protocols
- data consistency protocols in quorum systems
- key distribution in security
- reconfiguration in system level analysis

Motivation: Propagation of faults in majority-based distributed systems

Graph = distributed system

Black node = (permanent) faulty node

A node becomes faulty when the majority of its neighbors are faulty

Dynamo = pattern of initial faults which leads the entire system to a faulty behavior

Motivation: Propagation of faults in majority-based distributed systems

MONOCHROMATIC FIXED POINT

Dynamo = pattern of initial faults which leads the entire system to a faulty behavior

Interesting Questions in this context:

What are the patterns of faults which eventually corrupt the entire system ?

What is the minimum number of faulty nodes that eventually corrupt the entire system?

Different models

[Peleg 96]

```
Asynchronous / Synchronous

Self-including / self-not-including

In case of tie:

simple/strong majority
prefer-black
prefer white
prefer change
prefer myself
```

Reversible / Irreversible / Monotone

Irreversible and Monotone Dynamos

Irreversible: An initially black node never changes (permanent faults)

Monotone: At any time the set of black nodes must include the set of the previous step.

B(t) = set of black nodes at time t

In this case asynchronous and synchronous dynamics are equivalent

Observation

The reversible Ring is a circular 1-dim CA

Observation

The reversible Ring is a circular 1-dim CA

irreversible model (self/non-self)

Example: Simple Majority Optimal Dynamos

reversible model (self/non-self)

IN TORI

(2-dim CAs)

Upper and Lower bounds on size of a dynamo (Irreversible/Monotone) for:

Various Toroidal Structures

Simple/Strong Majority

[Theoretical Computer Science: Flocchini et al. 98,04]

Toroidal Meshes

Irreversible Dynamos				
	Simple Majority		Strong Majority	
	Lower Bound	Upper Bound	Lower Bound	$Upper\ Bound$
$Toroidal \ mesh$	$\lceil \frac{m+n}{2} \rceil - 1$	$\lceil \frac{m+n}{2} \rceil - 1$	$\lceil \frac{mn+1}{3} \rceil$	$\lceil \frac{H}{3} \rceil (K+1)$
$Torus \ cordalis$	$\lceil \frac{n}{2} \rceil$	$\lfloor \frac{n}{2} \rfloor + 1$	$\lceil \frac{mn+1}{3} \rceil$	$\lceil \frac{m}{3} \rceil (n+1)$
$Torus \ serpentinus$	$\lceil \frac{N}{2} \rceil$	$\lfloor \frac{N}{2} \rfloor + 1$	$\lceil \frac{mn+1}{3} \rceil$	$\lceil \frac{H}{3} \rceil (K+1)$
Monotone Dynamos				
	Simple Majority		Strong Majority	
	Lower Bound	$Upper\ Bound$	Lower Bound	$Upper\ Bound$
$Toroidal \ mesh$	m+n-2	m+n-1	$\lceil \frac{mn+1}{2} \rceil$	$\left\lceil \frac{mn}{2} + \frac{N}{6} + \frac{2}{3} \right\rceil^*$
$Torus \ cordalis$	n+1	n+1	$\lceil \frac{mn+1}{2} \rceil$	$\left\lceil \frac{mn}{2} + \frac{N}{6} + \frac{2}{3} \right\rceil^*$
$Torus \ serpentinus$	N+1	N+1	$\lceil \frac{mn+1}{2} \rceil$	$\left\lceil \frac{mn}{2} + \frac{N}{6} + \frac{2}{3} \right\rceil^*$

Table 1: Bounds on the size of monotone dynamos, for tori of $m \times n$ vertices; $N = min\{m,n\}$, and H, K = m, n or H, K = n, m (choose the alternative that yields stricter bounds). The asterisk denotes a worst case.

White Blocks

White patterns that CANNOT appear in a dynamo

strong white block for toroidal mesh

- simple white block for toroidal mesh & cordalis

- strong for serpentinus

strong white block in any tori

Black Compacts

Black patterns that MUST appear in a dynamo

In a torus cordalis

In any tori

In the case of Monotone Dynamos

T = nodes of the torus

S = nodes of a simple (strong) monotone dynamo

S is a monotone dynamo under the simple(strong) majority rule iff:

S is a collection of black compacts guarantees monotonicity

T- S does not contain any simple (strong) white block guarantees convergence

All Tori - Strong Majority - Monotone:

Lower Bound

Subset of initial white must be a forest

Black compacts = cycles

A monotone dynamo S for a torus $m \times n$ has size $\geq \lceil (mn+1)/2 \rceil$

All Tori: Upper Bound

m and/or n even

In any $m \times n$ toroidal mesh there exists a monotone dynamo of size (mn)/2 + 1

 $N = \min\{m,n\}$ $M = \max\{m,n\}$

Evolution time:

N + M/2 - 2 (m, n even) n + m/2 - 2 (m even n odd) steps.

CHORDAL RINGS

Optimal Dynamos and characterization of the optimal patterns

- Irreversible
- Simple Majority (= self-not, prefer black)

[Discrete Applied Mathematica: Flocchini et al. 98,01]

Chordal Rings

 $C(1, d_2, ..., d_h)$

[particular cases: double loop C(1,k) triple loop C(1, 2, k)]

Double Loop C<1,k>

An optimal dynamo has size (k+1)/2

k odd: only one pattern

Ex. for C<1,9>

k even: optimal dynamo of the form

$$(\bullet \circ)^a (\bullet) (\bullet \circ)^b (\bullet)$$
 with $a+b=(k-2)/2$

Ex. for C <1,10>

Triple Loop C<1,2,k>

An optimal dynamo has size (k+4)/3

A configuration of size k is an optimal dynamo iff:

it contains two consecutive black nodes

it does not contain three consecutive white nodes

k-window

Ex. C<1,2,11>

All and Only Optimal Dynamos for Triple Loops

Other Topologies

Trees, hypercubes, CCCs, butteflies, DeBrujin ...

[Journal of Discrete Algorithms: Flocchini et al. 03]

Network Decontamination

Mobile Agents System

Agents

Sites

SECURITY PROBLEM

Security Problems

· Harmful Mobile Agent - Virus

Security Problems

· Harmful Mobile Agent - Virus

Network is CONTAMINATED

· Team of System Agents - Cleaners

Network is DECONTAMINATED

- Team Size
- Cleaning Strategy
- Number of Moves

(how many agents?)
(the algorithm)

· PROBLEM:

· PROBLEM:

· PROBLEM:

STRATEGY

Must terminate after a finite number of moves
Must avoid RECONTAMINATION

(monotone)

Dynamics described by two concurrent processes:

Contamination

local, static (like for DYNAMOS)

A clean but unguarded site is contaminated if a certain number of its neighbours (threshold) are contaminated

Decontamination movement

A contaminated node becomes clean if an agent moves on it

Goal

Contamination dynamics

Decontamination and dynamics

Monocromatic fixed point (like for dynamos): all nodes must be clean

The minimum size of the team Depends on the topology and on the

RECONTAMINATION RULE

CONTIGUOUS SEARCH problem

-Trees

Barriere, Flocchini, Fraignaud, Santoro (SPAA'02)

- Hypercubes Flocchini, Huang, F.L. Luccio (Networks 07)
- Meshes
 Flocchini, F.L. Luccio, Song (CIC'05)
- Chordal Rings and Tori Flocchini, Huang, F.L. Luccio (Int. J. of Foundation of Computer Science, 07)
- Outerplanar Graphs
 Fomin, Thilikos, Todineau (ICGT'05)
 -Other

Barriere, Fraignaud, Santoro, Thilikos (WG'03 for recontamination Nisse (SIROCCO 07)

A single contaminated neighbour suffices for recontamination

Example:

How many agents can clean it ?

From a different starting point

From a different starting point

From a different starting point

From a different starting point two agents are not sufficient

Very few results exist and only for Toroidal Mesh (2-dimensional torus) and k-Trees

[Int. J. of Foundation of Computer Science: Luccio et al 2006]

(not the optimal algorithm)

Observations

In Meshes

Size of Team when 1 contaminated neighbour suffices for recontamination: O(m+n)

Size of Team when majority of contaminated neighbours is necessary for recontamination: O(1)

Size of Dynamos: O(m+n)

In Trees

The recontamination rule does not seem to matter much in the W.C. $O(\log n)$

Research Directions

Dynamos:

- Reversible, non-monotone models
- Opposite problem: What are the self-healing configurations in various topologies?
- Partial disruption (e.g., guarantee that the majority of sites are operational)

•••

Research Directions

Decontamination

- ALMOST NOTHING IS KNOWN

Research Directions

Randomized solutions?

Other recontamination rules? (unanimity, other thresholds)

Find minimum team for a given initial configuration

THANK YOU

Observation

The Ring is a circular 1-dim CA

Simple Majority

Strong Majority

