Surjectivity an surjunctivity of cellular automata in Besicovitch topology

Silvio Capobianco Reykjavík University

Toronto, August 29, 2007

1D cellular automata

Definition

$$\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$$
, Q finite, $\mathcal{N} = [-r, \dots, +r]$, $f: Q^{2r+1} \to Q$.

$$(F_{\mathcal{A}}(c))(x) = f(c(x-r),\ldots,c(x+r))$$

A problem

Translation: action of \mathbb{Z} on $Q^{\mathbb{Z}}$ defined by

$$c^{x}(y) = c(x+y) \; .$$

No distance on $Q^{\mathbb{Z}}$ invariant by translation can induce the product topology. (Formenti, 1998)

イロト イポト イヨト イヨト

3

1D cellular automata

Definition

$$\mathcal{A} = \langle Q, \mathcal{N}, f
angle$$
, Q finite, $\mathcal{N} = [-r, \dots, +r]$, $f: Q^{2r+1} \to Q$.

$$(F_{\mathcal{A}}(c))(x) = f(c(x-r),\ldots,c(x+r))$$

A problem

Translation: action of \mathbb{Z} on $Q^{\mathbb{Z}}$ defined by

$$c^{x}(y)=c(x+y).$$

No distance on $Q^{\mathbb{Z}}$ invariant by translation can induce the product topology. (Formenti, 1998)

The Besicovitch topology on $Q^{\mathbb{Z}}$

Definition (Formenti et al.)

For $c_1,c_2\in Q^{\mathbb{Z}}$, put

$$d_B(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x \in \{-n, \dots, n\} : c_1(x) \neq c_2(x)\}|}{2n+1}$$

|田・ (日) (日)

 d_B is a pseudodistance. $c_1 \sim_B c_2$ iff $d_B(c_1, c_2) = 0$, is an equivalence relation. d_B is a distance on the quotient space.

A possible solution to our problem

 d_B is invariant by translation.

The Besicovitch topology on $Q^{\mathbb{Z}}$

Definition (Formenti et al.)

For $c_1,c_2\in Q^{\mathbb{Z}}$, put

$$d_B(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x \in \{-n, \dots, n\} : c_1(x) \neq c_2(x)\}}{2n+1}$$

(日本) (日本) (日本)

 d_B is a pseudodistance. $c_1 \sim_B c_2$ iff $d_B(c_1, c_2) = 0$, is an equivalence relation. d_B is a distance on the quotient space.

A possible solution to our problem

d_B is invariant by translation.

The Besicovitch topology on $Q^{\mathbb{Z}}$

Definition (Formenti et al.)

For $c_1,c_2\in Q^{\mathbb{Z}}$, put

$$d_B(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x \in \{-n, \dots, n\} : c_1(x) \neq c_2(x)\}|}{2n+1}$$

- 4 周 ト - 4 日 ト - 4 日 ト

 d_B is a pseudodistance. $c_1 \sim_B c_2$ iff $d_B(c_1, c_2) = 0$, is an equivalence relation. d_B is a distance on the quotient space.

A possible solution to our problem

 d_B is invariant by translation.

Besicovitch topology and 1D CA

Comparison of topologies

$Q^{\mathbb{Z}}$	$Q^{\mathbb{Z}}/\sim_B$
uncountable	uncountable
perfect	perfect
compact	not locally compact
totally disconnected	
zero-dimensional	

CA in the new topology (Formenti et al.)

Any 1D CA \mathcal{A} induces a continuous transformation F of $Q^{\mathbb{Z}}/\sim_B$. Many properties of \mathcal{A} can be inferred from those of F. In particular, \mathcal{A} is surjective iff F is.

イロン イヨン イヨン イヨン

3

Can we generalize this? and how?

Besicovitch topology and 1D CA

Comparison of topologies

$Q^{\mathbb{Z}}$	$Q^{\mathbb{Z}}/\sim_B$
uncountable	uncountable
perfect	perfect
compact	not locally compact
totally disconnected	arcwise connected
zero-dimensional	infinite-dimensional

CA in the new topology (Formenti et al.

Any 1D CA \mathcal{A} induces a continuous transformation F of $Q^{\mathbb{Z}}/\sim_B$. Many properties of \mathcal{A} can be inferred from those of F. In particular, \mathcal{A} is surjective iff F is.

イロン イヨン イヨン イヨン

3

Can we generalize this? and how?

Besicovitch topology and 1D CA

Comparison of topologies

$Q^{\mathbb{Z}}$	$Q^{\mathbb{Z}}/\sim_B$
uncountable	uncountable
perfect	perfect
compact	not locally compact
totally disconnected	arcwise connected
zero-dimensional	infinite-dimensional

CA in the new topology (Formenti et al.)

Any 1D CA \mathcal{A} induces a continuous transformation F of $Q^{\mathbb{Z}}/\sim_B$. Many properties of \mathcal{A} can be inferred from those of F. In particular, \mathcal{A} is surjective iff F is.

イロン イヨン イヨン イヨン

Can we generalize this? and how?

Besicovitch topology and 1D CA

Comparison of topologies

$Q^{\mathbb{Z}}$	$Q^{\mathbb{Z}}/\sim_B$
uncountable	uncountable
perfect	perfect
compact	not locally compact
totally disconnected	arcwise connected
zero-dimensional	infinite-dimensional

CA in the new topology (Formenti et al.)

Any 1D CA \mathcal{A} induces a continuous transformation F of $Q^{\mathbb{Z}}/\sim_B$. Many properties of \mathcal{A} can be inferred from those of F. In particular, \mathcal{A} is surjective iff F is.

イロン イヨン イヨン イヨン

Can we generalize this? and how?

Besicovitch topology and 1D CA

Comparison of topologies

$Q^{\mathbb{Z}}$	$Q^{\mathbb{Z}}/\sim_B$
uncountable	uncountable
perfect	perfect
compact	not locally compact
totally disconnected	arcwise connected
zero-dimensional	infinite-dimensional

CA in the new topology (Formenti et al.)

Any 1D CA \mathcal{A} induces a continuous transformation F of $Q^{\mathbb{Z}}/\sim_B$. Many properties of \mathcal{A} can be inferred from those of F. In particular, \mathcal{A} is surjective iff F is.

<ロ> <同> <同> <同> < 同> < 同>

Can we generalize this? and how?

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Finitely generated groups

Definitions

• Set of generators: S s.t. the graph (G, \mathcal{E}_S) with

$$\mathcal{E}_{\mathcal{S}} = \{(x, xz) : z \in \mathcal{S} \cup \mathcal{S}^{-1}\}$$

- Length w.r.t. (finite) S: distance $||x||_S$ from 1_G in (G, \mathcal{E}_S) .
- Disk of radius n: $D_{n,S} = \{x \in G : ||x||_S \le n\}$.
- Growth rate: the function n → |D_{n,S}|.
 Well defined for f.g. groups, up to an equivalence.
- Boundary: $\partial_E X = \{g \in G : gE \cap X \neq \emptyset \neq gE \setminus X\}$
- Translation: action of G on Q^G defined by $c^x(y) = c(xy)$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Finitely generated groups

Definitions

• Set of generators: S s.t. the graph (G, \mathcal{E}_S) with

$$\mathcal{E}_{\mathcal{S}} = \{(x, xz) : z \in \mathcal{S} \cup \mathcal{S}^{-1}\}$$

- Length w.r.t. (finite) S: distance $||x||_S$ from 1_G in (G, \mathcal{E}_S) .
- Disk of radius n: $D_{n,S} = \{x \in G : ||x||_S \le n\}$.
- Growth rate: the function n → |D_{n,S}|.
 Well defined for f.g. groups, up to an equivalence.
- Boundary: $\partial_E X = \{g \in G : gE \cap X \neq \emptyset \neq gE \setminus X\}$
- Translation: action of G on Q^G defined by $c^x(y) = c(xy)$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Finitely generated groups

Definitions

• Set of generators: S s.t. the graph (G, \mathcal{E}_S) with

$$\mathcal{E}_{\mathcal{S}} = \{(x, xz) : z \in \mathcal{S} \cup \mathcal{S}^{-1}\}$$

- Length w.r.t. (finite) S: distance $||x||_S$ from 1_G in (G, \mathcal{E}_S) .
- Disk of radius n: $D_{n,S} = \{x \in G : ||x||_S \le n\}$.
- Growth rate: the function n → |D_{n,S}|.
 Well defined for f.g. groups, up to an equivalence.
- Boundary: $\partial_E X = \{g \in G : gE \cap X \neq \emptyset \neq gE \setminus X\}$
- Translation: action of G on Q^G defined by $c^x(y) = c(xy)$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Finitely generated groups

Definitions

• Set of generators: S s.t. the graph (G, \mathcal{E}_S) with

$$\mathcal{E}_{\mathcal{S}} = \{(x, xz) : z \in \mathcal{S} \cup \mathcal{S}^{-1}\}$$

- Length w.r.t. (finite) S: distance $||x||_S$ from 1_G in (G, \mathcal{E}_S) .
- Disk of radius n: $D_{n,S} = \{x \in G : ||x||_S \le n\}$.
- Growth rate: the function n → |D_{n,S}|.
 Well defined for f.g. groups, up to an equivalence.
- Boundary: $\partial_E X = \{g \in G : gE \cap X \neq \emptyset \neq gE \setminus X\}$
- Translation: action of G on Q^G defined by $c^x(y) = c(xy)$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Exhaustive and amenable sequences

Exhaustive sequence

 $\{X_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(G)$ such that $X_n\nearrow G$. Example: disks.

Amenable sequence

Exhaustive sequence s.t. for all finite E,

$$\lim_{n\to\infty}\frac{|\partial_E X_n|}{|X_n|}=0$$

E.g., the von Neumann (or Moore) neighborhoods of range $n \ge 0$.

Growth rate and amenable sequences

- G of polynomial growth $\Rightarrow \{D_{n,S}\}$ amenable.
- 2) G of subexponential growth $\Rightarrow \{D_{n,S}\}$ has amenable $\{D_{n_k,S}\}$

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Exhaustive and amenable sequences

Exhaustive sequence

 $\{X_n\}_{n\in\mathbb{N}}\subseteq \mathcal{P}(G)$ such that $X_n\nearrow G$. Example: disks.

Amenable sequence

Exhaustive sequence s.t. for all finite E,

$$\lim_{n\to\infty}\frac{|\partial_E X_n|}{|X_n|}=0$$

E.g., the von Neumann (or Moore) neighborhoods of range $n \ge 0$.

Growth rate and amenable sequences

- G of polynomial growth $\Rightarrow \{D_{n,S}\}$ amenable.
 - 2) G of subexponential growth $\Rightarrow \{D_{n,S}\}$ has amenable $\{D_{n_k,S}\}$

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Exhaustive and amenable sequences

Exhaustive sequence

 $\{X_n\}_{n\in\mathbb{N}}\subseteq \mathcal{P}(G)$ such that $X_n\nearrow G$. Example: disks.

Amenable sequence

Exhaustive sequence s.t. for all finite E,

$$\lim_{n\to\infty}\frac{|\partial_E X_n|}{|X_n|}=0$$

E.g., the von Neumann (or Moore) neighborhoods of range $n \ge 0$.

Growth rate and amenable sequences

- G of polynomial growth $\Rightarrow \{D_{n,S}\}$ amenable.
- **2** G of subexponential growth $\Rightarrow \{D_{n,S}\}$ has amenable $\{D_{n_k,S}\}$

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Besicovitch topologies induced by exhaustive sequences

General definition

 $\{X_n\}$ exhaustive. Besicovitch distance induced by $\{X_n\}$:

$$d_{B,\{X_n\}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x : c_1(x) \neq c_2(x)\} \cap X_n|}{|X_n|}$$

 $d_{B,\{X_n\}}$ is a pseudodistance. $c_1 \sim_{B,\{X_n\}} c_2$ iff $d_{B,\{X_n\}}(c_1, c_2) = 0$, is an equivalence relation. $d_{B,\{X_n\}}$ is a distance on the quotient space. A priori, dependent on $\{X_n\}$.

Proposition 1

If $G = \mathbb{Z}^d$ and S, S' are finite set of generators, then

$d_{B,\{D_{n,S}\}}(c_1,c_2) = 0 \Leftrightarrow d_{B,\{D_{n,S'}\}}(c_1,c_2) = 0$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Besicovitch topologies induced by exhaustive sequences

General definition

 $\{X_n\}$ exhaustive. Besicovitch distance induced by $\{X_n\}$:

$$d_{B,\{X_n\}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x : c_1(x) \neq c_2(x)\} \cap X_n|}{|X_n|}$$

 $d_{B,\{X_n\}}$ is a pseudodistance. $c_1 \sim_{B,\{X_n\}} c_2$ iff $d_{B,\{X_n\}}(c_1, c_2) = 0$, is an equivalence relation. $d_{B,\{X_n\}}$ is a distance on the quotient space. A priori, dependent on $\{X_n\}$.

Proposition 1

If $G = \mathbb{Z}^d$ and S, S' are finite set of generators, then

$d_{B,\{D_{n,S}\}}(c_1,c_2) = 0 \Leftrightarrow d_{B,\{D_{n,S'}\}}(c_1,c_2) = 0$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Besicovitch topologies induced by exhaustive sequences

General definition

 $\{X_n\}$ exhaustive. Besicovitch distance induced by $\{X_n\}$:

$$d_{B,\{X_n\}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x : c_1(x) \neq c_2(x)\} \cap X_n|}{|X_n|}$$

 $d_{B,\{X_n\}}$ is a pseudodistance. $c_1 \sim_{B,\{X_n\}} c_2$ iff $d_{B,\{X_n\}}(c_1, c_2) = 0$, is an equivalence relation. $d_{B,\{X_n\}}$ is a distance on the quotient space. A priori, dependent on $\{X_n\}$.

Proposition 1

If $G = \mathbb{Z}^d$ and S, S' are finite set of generators, then

 $d_{B,\{D_{n,S}\}}(c_1,c_2) = 0 \Leftrightarrow d_{B,\{D_{n,S'}\}}(c_1,c_2) = 0$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Besicovitch topologies induced by exhaustive sequences

General definition

 $\{X_n\}$ exhaustive. Besicovitch distance induced by $\{X_n\}$:

$$d_{B,\{X_n\}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x : c_1(x) \neq c_2(x)\} \cap X_n|}{|X_n|}$$

 $d_{B,\{X_n\}}$ is a pseudodistance. $c_1 \sim_{B,\{X_n\}} c_2$ iff $d_{B,\{X_n\}}(c_1, c_2) = 0$, is an equivalence relation. $d_{B,\{X_n\}}$ is a distance on the quotient space. A priori, dependent on $\{X_n\}$.

Proposition 1

If $G = \mathbb{Z}^d$ and S, S' are finite set of generators, then

 $d_{B,\{D_{n,S}\}}(c_1,c_2) = 0 \Leftrightarrow d_{B,\{D_{n,S'}\}}(c_1,c_2) = 0$.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Besicovitch topologies induced by exhaustive sequences

General definition

 $\{X_n\}$ exhaustive. Besicovitch distance induced by $\{X_n\}$:

$$d_{B,\{X_n\}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x : c_1(x) \neq c_2(x)\} \cap X_n|}{|X_n|}$$

 $d_{B,\{X_n\}}$ is a pseudodistance. $c_1 \sim_{B,\{X_n\}} c_2$ iff $d_{B,\{X_n\}}(c_1, c_2) = 0$, is an equivalence relation. $d_{B,\{X_n\}}$ is a distance on the quotient space. A priori, dependent on $\{X_n\}$.

Proposition 1

If $G = \mathbb{Z}^d$ and S, S' are finite set of generators, then

$$d_{B,\{D_{n,S}\}}(c_1,c_2) = 0 \Leftrightarrow d_{B,\{D_{n,S'}\}}(c_1,c_2) = 0$$
.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Invariant by translation?

Not always!

Let G be the free group on $S = \{a, b\}$. The graph (G, \mathcal{E}_S) is the joining of 4 infinite 3-ary trees. Let c(x) = 1 iff x is in the right subtree, 0 otherwise. Then $c^a(x) = 0$ iff x is in the left subtree, 1 otherwise. Thus

$$d_{B,\{D_{n,S}\}}(\mathbf{0},c) = \frac{1}{4}$$
 but $d_{B,\{D_{n,S}\}}(\mathbf{0}^{a},c^{a}) = \frac{3}{4}$

Proposition 2

- $\{X_n^{-1}\}$ amenable $\Rightarrow d_{B,\{X_n\}}$ translation invariant.
- In particular, $\{D_{n,S}\}$ amenable $\Rightarrow d_{B,\{D_{n,S}\}}$ translation invariant.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イポト イヨト イヨト

Invariant by translation?

Not always!

Let G be the free group on $S = \{a, b\}$. The graph (G, \mathcal{E}_S) is the joining of 4 infinite 3-ary trees. Let c(x) = 1 iff x is in the right subtree, 0 otherwise. Then $c^a(x) = 0$ iff x is in the left subtree, 1 otherwise. Thus

$$d_{B,\{D_{n,S}\}}(\mathbf{0},c) = \frac{1}{4}$$
 but $d_{B,\{D_{n,S}\}}(\mathbf{0}^{a},c^{a}) = \frac{3}{4}$.

Proposition 2

- $\{X_n^{-1}\}$ amenable $\Rightarrow d_{B,\{X_n\}}$ translation invariant.
- In particular, $\{D_{n,S}\}$ amenable $\Rightarrow d_{B,\{D_{n,S}\}}$ translation invariant.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イヨト イヨト イヨト

Invariant by translation?

Not always!

Let G be the free group on $S = \{a, b\}$. The graph (G, \mathcal{E}_S) is the joining of 4 infinite 3-ary trees. Let c(x) = 1 iff x is in the right subtree, 0 otherwise. Then $c^a(x) = 0$ iff x is in the left subtree, 1 otherwise. Thus

$$d_{B,\{D_{n,S}\}}(\mathbf{0},c) = \frac{1}{4}$$
 but $d_{B,\{D_{n,S}\}}(\mathbf{0}^{a},c^{a}) = \frac{3}{4}$.

Proposition 2

- $\{X_n^{-1}\}$ amenable $\Rightarrow d_{B,\{X_n\}}$ translation invariant.
- In particular, $\{D_{n,S}\}$ amenable $\Rightarrow d_{B,\{D_{n,S}\}}$ translation invariant.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロン イヨン イヨン イヨン

CA over finitely generated groups

Definitions

$$\mathcal{A} = \langle Q, \mathcal{N}, f \rangle, \ Q \text{ finite, } \mathcal{N} = \{n_0, \dots, n_{|\mathcal{N}|-1}\} \subseteq G, \ f : Q^{|\mathcal{N}|} \to Q.$$
$$(F_{\mathcal{A}}(c))(x) = f\left(c(x \cdot n_0), \dots, c(x \cdot n_{|\mathcal{N}|-1})\right).$$

Some basic facts remain true

- \mathcal{A} surjective \Leftrightarrow no Garden-of-Eden patterns. (Fiorenzi 2000)
- A preinjective ⇔ no mutually erasable patterns. (Fiorenzi 2000)
- ∃{X_n} amenable ⇒ A surjective iff A preinjective (Ceccherini–Silberstein, Machì, Scarabotti 1999)

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

<ロ> <同> <同> < 同> < 同><< 同>

CA over finitely generated groups

Definitions

$$\mathcal{A} = \langle Q, \mathcal{N}, f \rangle, \ Q \text{ finite, } \mathcal{N} = \{n_0, \dots, n_{|\mathcal{N}|-1}\} \subseteq G, \ f: Q^{|\mathcal{N}|} \to Q.$$

$$(F_{\mathcal{A}}(c))(x) = f\left(c(x \cdot n_0), \ldots, c(x \cdot n_{|\mathcal{N}|-1})\right)$$

Some basic facts remain true

- \mathcal{A} surjective \Leftrightarrow no Garden-of-Eden patterns. (Fiorenzi 2000)
- A preinjective ⇔ no mutually erasable patterns. (Fiorenzi 2000)
- ∃{X_n} amenable ⇒ A surjective iff A preinjective (Ceccherini–Silberstein, Machì, Scarabotti 1999)

A more general framework Main results Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Induced maps

Induced map

Let
$$F: Q^G \to Q^G$$
.
If $d_{B,\{X_n\}}(c_1, c_2) = 0$ implies $d_{B,\{X_n\}}(F(c_1), F(c_2)) = 0$, then

$$F([c]_{\sim_{B,\{X_n\}}}) = [F(c)]_{\sim_{B,\{X_n\}}}$$

is well defined.

Proposition 3

Let \mathcal{A} be a CA. If either

- $\{X_n\}$ is amenable, or
- $X_n = D_{n,S}$ for all *n* and some *S*,

then $d_{B,\{X_n\}}(c_1, c_2) = 0$ implies $d_{B,\{X_n\}}(F_A(c_1), F_A(c_2)) = 0$. Moreover, the induced map is Lipschitz continuous. A more general framework Main results Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

Induced maps

Induced map

Let
$$F : Q^G \to Q^G$$
.
If $d_{B,\{X_n\}}(c_1, c_2) = 0$ implies $d_{B,\{X_n\}}(F(c_1), F(c_2)) = 0$, then
 $F([c]_{\sim_{B,\{X_n\}}}) = [F(c)]_{\sim_{B,\{X_n\}}}$

Proposition 3

Let \mathcal{A} be a CA. If either

• $\{X_n\}$ is amenable, or

•
$$X_n = D_{n,S}$$
 for all *n* and some *S*,

then $d_{B,\{X_n\}}(c_1, c_2) = 0$ implies $d_{B,\{X_n\}}(F_{\mathcal{A}}(c_1), F_{\mathcal{A}}(c_2)) = 0$. Moreover, the induced map is Lipschitz continuous.

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロト イヨト イヨト イヨト

[In | Sur]jectivity, up to $\sim_{B,\{X_n\}}$

Definitions

For $F: Q^G \to Q^G$, we define

- $(B, \{X_n\})$ -surjectivity: $\forall c \exists c' : d_{B, \{X_n\}}(c, F(c')) = 0;$
- $(B, \{X_n\})$ -injectivity:

 $d_{B,\{X_n\}}(c_1, c_2) > 0 \Rightarrow d_{B,\{X_n\}}(F(c_1), F(c_2)) > 0.$

Observe that

- Not required F well defined modulo $\sim_{B,\{X_n\}}$.
- $F_{\mathcal{A}}(c') \neq c \ \forall c' \ \Rightarrow \ d_{B,\{X_n\}}(c, F_{\mathcal{A}}(c')) > 0 \ \forall c'.$ (Take any c'; replace one part of $c = F_{\mathcal{A}}(c')$ with GoE.)

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

イロン イ団ン イヨン イヨン 三日

[In | Sur]jectivity, up to $\sim_{B,\{X_n\}}$

Definitions

For $F: Q^G \to Q^G$, we define

- $(B, \{X_n\})$ -surjectivity: $\forall c \exists c' : d_{B, \{X_n\}}(c, F(c')) = 0;$
- $(B, \{X_n\})$ -injectivity: $d_{B, \{X_n\}}(c_1, c_2) > 0 \Rightarrow d_{B, \{X_n\}}(F(c_1), F(c_2)) > 0.$

Observe that

- Not required F well defined modulo $\sim_{B,\{X_n\}}$.
- $F_{\mathcal{A}}(c') \neq c \ \forall c' \Rightarrow d_{B,\{X_n\}}(c, F_{\mathcal{A}}(c')) > 0 \ \forall c'.$ (Take any c'; replace one part of $c = F_{\mathcal{A}}(c')$ with GoE.)

Group-theoretic background Besicovitch topology, generalized Cellular automata, generalized Properties under Besicovitch topology

・ロン ・四と ・日と ・日と

3

[In | Sur]jectivity, up to $\sim_{B,\{X_n\}}$

Definitions

For $F: Q^G \to Q^G$, we define

- $(B, \{X_n\})$ -surjectivity: $\forall c \exists c' : d_{B, \{X_n\}}(c, F(c')) = 0;$
- $(B, \{X_n\})$ -injectivity:

 $d_{B,\{X_n\}}(c_1,c_2) > 0 \Rightarrow d_{B,\{X_n\}}(F(c_1),F(c_2)) > 0.$

Observe that

• Not required F well defined modulo $\sim_{B,\{X_n\}}$.

•
$$F_{\mathcal{A}}(c') \neq c \ \forall c' \ \Rightarrow \ d_{B,\{X_n\}}(c, F_{\mathcal{A}}(c')) > 0 \ \forall c'.$$

(Take any c'; replace one part of $c = F_{\mathcal{A}}(c')$ with GoE.)

Surjectivity Surjunctivity Proof of Theorem 2

イロト イポト イヨト イヨト

Surjectivity

Theorem 1

Suppose that $\{X_n\}$ contains an amenable subsequence. Then \mathcal{A} is surjective iff it is $(B, \{X_n\})$ -surjective.

Corollary 1

If G has subexponential growth, the following are equivalent:

- \mathcal{A} is $(B, \{D_{n,S}\})$ -surjective for some S;
- ② A is $(B, \{D_{n,S}\})$ -surjective for every S;
- \bigcirc \mathcal{A} is surjective.

Surjectivity Surjunctivity Proof of Theorem 2

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Surjectivity

Theorem 1

Suppose that $\{X_n\}$ contains an amenable subsequence. Then \mathcal{A} is surjective iff it is $(B, \{X_n\})$ -surjective.

Corollary 1

If G has subexponential growth, the following are equivalent:

- \mathcal{A} is $(B, \{D_{n,S}\})$ -surjective for some S;
- 2 \mathcal{A} is $(B, \{D_{n,S}\})$ -surjective for every S;
- \bigcirc \mathcal{A} is surjective.

Surjectivity Surjunctivity Proof of Theorem 2

・ロン ・四と ・日と ・日と

2

Surjunctivity

Theorem 2

Suppose that $\{X_n\}$ contains an amenable subsequence. If \mathcal{A} is $(B, \{X_n\})$ -injective, then it is preinjective.

Corollary 2

If G has subexponential growth, and A is $(B, \{D_{n,S}\})$ -injective, then A is $(B, \{D_{n,S}\})$ -surjective.

Surjectivity Surjunctivity Proof of Theorem 2

Surjunctivity

Theorem 2

Suppose that $\{X_n\}$ contains an amenable subsequence. If \mathcal{A} is $(B, \{X_n\})$ -injective, then it is preinjective.

Corollary 2

If G has subexponential growth, and A is $(B, \{D_{n,S}\})$ -injective, then A is $(B, \{D_{n,S}\})$ -surjective.

Surjectivity Surjunctivity Proof of Theorem 2

(U, W)-nets

Definition

 $N \subseteq G$ is a (U, W)-net $(U, W \subseteq G)$ if

 $\ \, {\bf O} \ \, xU\cap yU=\emptyset \ \, {\rm for} \ \, x,y\in N, \ x\neq y, \ \, {\rm and} \ \ \,$

$$\bigcirc \bigcup_{x\in N} xW = G.$$

For every $U \neq \emptyset$, an (U, UU^{-1}) -net exists by Zorn's lemma. In particular, for every $R \ge 0$ and S set of generators, a $(D_{R,S}, D_{2R,S})$ -net exists.

_emma 🛾

If W is finite and $\{X_n\}$ is amenable, then

$$\liminf_{n\to\infty}\frac{|N\cap X_n|}{|X_n|}\geq\frac{1}{|W|}$$

Surjectivity Surjunctivity Proof of Theorem 2

(U, W)-nets

Definition

 $N \subseteq G$ is a (U, W)-net $(U, W \subseteq G)$ if $xU \cap yU = \emptyset$ for $x, y \in N, x \neq y$, and $\bigcup_{x \in N} xW = G$. For every $U \neq \emptyset$, an (U, UU^{-1}) -net exists by Zorn's lemma. In particular, for every $R \ge 0$ and S set of generators, a $(D_{R,S}, D_{2R,S})$ -net exists.

_emma 🛾

If W is finite and $\{X_n\}$ is amenable, then

$$\liminf_{n\to\infty}\frac{|N\cap X_n|}{|X_n|}\geq\frac{1}{|W|}$$

Surjectivity Surjunctivity Proof of Theorem 2

(U, W)-nets

Definition

 $N \subseteq G$ is a (U, W)-net $(U, W \subseteq G)$ if $xU \cap yU = \emptyset$ for $x, y \in N, x \neq y$, and $\bigcup_{x \in N} xW = G$. For every $U \neq \emptyset$, an (U, UU^{-1}) -net exists by Zorn's lemma. In particular, for every $R \ge 0$ and S set of generators, a $(D_{R,S}, D_{2R,S})$ -net exists.

Lemma 1

If W is finite and $\{X_n\}$ is amenable, then

$$\liminf_{n\to\infty}\frac{|N\cap X_n|}{|X_n|}\geq\frac{1}{|W|}$$

Surjectivity Surjunctivity Proof of Theorem 2

イロト イポト イヨト イヨト

æ

Proof of Theorem 2

Suppose A is not preinjective...

Let $p_1, p_2 : D_M \to Q$ be m.e. patterns with $p_1(1_G) \neq p_2(1_G)$. Let $\{X_{n_k}\}$ be amenable. Let $R \ge M + r$ where $\mathcal{N} \subseteq D_r$. Let N be a (D_R, D_{2R}) -net.

Let c_j coincide with p_j on xD_M for all $x \in N$, and have fixed value q otherwise.

$$d_{B,\{X_n\}}(c_1, c_2) \ge \limsup_{n \to \infty} \frac{|N \cap X_n|}{|X_n|} \ge \liminf_{k \to \infty} \frac{|N \cap X_{n_k}|}{|X_{n_k}|} \ge \frac{1}{|D_{2R}|}$$

イロト イポト イヨト イヨト

3

Proof of Theorem 2

Suppose A is not preinjective...

Let $p_1, p_2 : D_M \to Q$ be m.e. patterns with $p_1(1_G) \neq p_2(1_G)$. Let $\{X_{n_k}\}$ be amenable. Let $R \ge M + r$ where $\mathcal{N} \subseteq D_r$. Let M be a (D_P, D_{PP}) -net

Let
$$c_j$$
 coincide with p_j on xD_M for all $x \in N$, and have fixed value a otherwise.

$$d_{B,\{X_n\}}(c_1, c_2) \geq \limsup_{n \to \infty} \frac{|N \cap X_n|}{|X_n|} \geq \liminf_{k \to \infty} \frac{|N \cap X_{n_k}|}{|X_{n_k}|} \geq \frac{1}{|D_{2R}|}$$

イロト イポト イヨト イヨト

æ

Proof of Theorem 2

Suppose A is not preinjective...

Let $p_1, p_2 : D_M \to Q$ be m.e. patterns with $p_1(1_G) \neq p_2(1_G)$. Let $\{X_{n_k}\}$ be amenable. Let $R \ge M + r$ where $\mathcal{N} \subseteq D_r$.

Let
$$N$$
 be a (D_R, D_{2R}) -net.

Let c_j coincide with p_j on xD_M for all $x \in N$, and have fixed value q otherwise.

$$d_{B,\{X_n\}}(c_1,c_2) \geq \limsup_{n \to \infty} \frac{|N \cap X_n|}{|X_n|} \geq \liminf_{k \to \infty} \frac{|N \cap X_{n_k}|}{|X_{n_k}|} \geq \frac{1}{|D_2|}$$

<ロ> <同> <同> <同> < 同> < 同>

æ

Proof of Theorem 2

Suppose A is not preinjective...

Let $p_1, p_2 : D_M \to Q$ be m.e. patterns with $p_1(1_G) \neq p_2(1_G)$. Let $\{X_{n_k}\}$ be amenable. Let $R \ge M + r$ where $\mathcal{N} \subseteq D_r$.

Let
$$N$$
 be a (D_R, D_{2R}) -net.

Let c_j coincide with p_j on xD_M for all $x \in N$, and have fixed value q otherwise.

$$d_{B,\{X_n\}}(c_1,c_2) \geq \limsup_{n \to \infty} \frac{|N \cap X_n|}{|X_n|} \geq \liminf_{k \to \infty} \frac{|N \cap X_{n_k}|}{|X_{n_k}|} \geq \frac{|X_n|}{|X_n|}$$

Proof of Theorem 2

Suppose \mathcal{A} is not preinjective...

Let $p_1, p_2 : D_M \to Q$ be m.e. patterns with $p_1(1_G) \neq p_2(1_G)$. Let $\{X_{n_k}\}$ be amenable. Let $R \ge M + r$ where $\mathcal{N} \subseteq D_r$.

Let
$$N$$
 be a (D_R, D_{2R}) -net.

Let c_j coincide with p_j on xD_M for all $x \in N$, and have fixed value q otherwise.

Then $F_{\mathcal{A}}(c_1) = F_{\mathcal{A}}(c_2)$, and $d_{B,\{X_n\}}(F_{\mathcal{A}}(c_1), F_{\mathcal{A}}(c_2)) = 0$. But by construction, $c_1(x) \neq c_2(x)$ for all $x \in N$. Then, by Lemma 1,

$$d_{B,\{X_n\}}(c_1,c_2) \geq \limsup_{n \to \infty} \frac{|N \cap X_n|}{|X_n|} \geq \liminf_{k \to \infty} \frac{|N \cap X_{n_k}|}{|X_{n_k}|} \geq \frac{1}{|D_{2R}|}$$

<ロ> <同> <同> <同> < 同> < 同>

æ

Surjectivity Surjunctivity Proof of Theorem 2

Conclusions

Let \mathcal{A} be a CA on a group G of subexponential growth. Let S be a finite set of generators for G.

- \mathcal{A} induces a continuous transformation F of $Q^G / \sim_{B, \{D_{n,s}\}}$.
- F is surjective iff A is surjective.
- If F is injective, then F is surjective.

Amenable sequences seems to play a key role in all this **Conjecture:** In the hypotheses of Theorems 1 and 2, $(B, \{X_n\})$ -injectivity is equivalent to preinjectivity.

Thank you for attention!

Any questions?

- 4 回 ト - 4 回 ト

Surjectivity Surjunctivity Proof of Theorem 2

Conclusions

Let \mathcal{A} be a CA on a group G of subexponential growth. Let S be a finite set of generators for G.

- \mathcal{A} induces a continuous transformation F of $Q^G / \sim_{B, \{D_{n,S}\}}$.
- F is surjective iff A is surjective.
- If F is injective, then F is surjective.

Amenable sequences seems to play a key role in all this. **Conjecture:** In the hypotheses of Theorems 1 and 2, $(B, \{X_n\})$ -injectivity is equivalent to preinjectivity.

Thank you for attention!

Any questions?

Surjectivity Surjunctivity Proof of Theorem 2

Conclusions

Let \mathcal{A} be a CA on a group G of subexponential growth. Let S be a finite set of generators for G.

- \mathcal{A} induces a continuous transformation F of $Q^G / \sim_{B, \{D_n, s\}}$.
- F is surjective iff A is surjective.
- If F is injective, then F is surjective.

Amenable sequences seems to play a key role in all this. **Conjecture:** In the hypotheses of Theorems 1 and 2, $(B, \{X_n\})$ -injectivity is equivalent to preinjectivity.

Thank you for attention!

Any questions?

Surjectivity Surjunctivity Proof of Theorem 2

Conclusions

Let A be a CA on a group G of subexponential growth. Let S be a finite set of generators for G.

- \mathcal{A} induces a continuous transformation F of $Q^G / \sim_{B, \{D_n, s\}}$.
- F is surjective iff A is surjective.
- If F is injective, then F is surjective.

Amenable sequences seems to play a key role in all this. **Conjecture:** In the hypotheses of Theorems 1 and 2, $(B, \{X_n\})$ -injectivity is equivalent to preinjectivity.

Thank you for attention!

Any questions?

イロト イポト イヨト イヨト

Surjectivity Surjunctivity Proof of Theorem 2

Conclusions

Let A be a CA on a group G of subexponential growth. Let S be a finite set of generators for G.

- \mathcal{A} induces a continuous transformation F of $Q^G / \sim_{B, \{D_n, s\}}$.
- F is surjective iff A is surjective.
- If F is injective, then F is surjective.

Amenable sequences seems to play a key role in all this. **Conjecture:** In the hypotheses of Theorems 1 and 2, $(B, \{X_n\})$ -injectivity is equivalent to preinjectivity.

Thank you for attention!

Any questions?

イロト イヨト イヨト イヨト