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Outline

e Chaos is related to the exponential amplification of a small
difference between two initially close trajectories, and therefore
to unpredictability.

o Mathematically, it is related to the positivity of the largest
Lyapunov exponent (LLE).

e The synchronization threshold of two replicas (Pecora-Carroll) is
related to the LLE.

e High-dimensional systems are different. In the evolution of
“chaotic” CA for instance, a finite difference may propagate to
the whole system (unpredictability). This happens also in
continous systems (coupled map lattices).

e |tis possible to define discrete (Boolean) derivatives and
Jacobian, and therefore finite-distance Lyapunov exponents.

e These exponents are related to the replica synchronization
threshold (while normal LLE are not).



Low-dimensional chaos

X,V: replicas

x(t+1) = f(x(1)), 5
y(t+1) = f(y(t)),
d=x-y[ — 0

S(t+1) ~ [f(x(t)|o(t)
o(t) =~ Jdpexp(At)

Sensitivity to infinitesimal perturbations

Exponential amplification of distances

Lyapunov exponent A > 0
Unpredictability



Replica synchronization
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X
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X(t+1) = f(x(1)), y I\’
yt+1) = (1-p)f(y(t))+pf(x(t)),

d=x-y|] — O
S(t+1) ~ (1-p)f(x(t))s
ot - o00) — 0 for pc=1—exp(—A\)
e The “force” p needed to achieve synchronization is related
to Lyapunov exponent for vanishing distances
e But one may “push” from large distances..



High-dimensional systems

expansion

Coupled “oscillators” (coupled maps, cellular automata)

Xi(t+1) =f(g(xi—1(t), xi(t), Xi+1(t)))
g is the coupling: linear (diffusive) or nonlinear

f is the map: chaotic or stable (periodic, fixed point)

A perturbation may amplify exponentially in time by the
action of f, but only linearly through the coupling



Lyapunov spectrum

AN
o x(t+1)=F(x(t)) @

o ot +1) =J(x(1)a(t)
° Jj = ( ®) is the Jacobian
2

¢ For one-dimensional systems with nearest neighbors
coupling, the Jacobian is three-diagonal

e The eigenvalues of the time product of Jacobians J (x(t))
constitue the Lyapunov spectrum Ag > A; ...

¢ Diffusive coupling generally reduces the Largest Lyapunov
Exponent (LLE)



Replica synchronization for extended systems

There are many ways of “pushing” together two extended
replicas. For instance

e Uniform:
yi(t+1) = (1= p)Fi(y (1)) + pFi(x(t))
e Pinching:
Fi(y(t with probability 1 —
Vit +1) = ((y (1)) with probability 1 —p
Fi(x(t)) with probability p
Uniform synchronization of chaotic maps gives results similar to
low-dimensional systems: p. = 1 — exp(—\p)
Pinching synchronization depends on coupling: uncoupled

chaotic maps synchronizes for p. = 0. In general p¢ is larger for
Iarger couplings [Bagnoli Cecconi, PLA 260, 9-17 (2001)]



Cellular automata as discrete dynamical systems

Let us consider Boolean deterministic CA

X(t+1)=F(x(t)) '
Xi(t+1)="Ff(x_1(t),x(t),xi+1(t)) (elementary CA)
The coupling is nonlinear

The map f, if considered as a continuous system, is
superstable

All Lyapunov exponents are —oo



CA classes (Wolfram like)

@ Few attractors, short cycles, short transients. Example:
rule 0. Insensitivity to perturbations

@® Many attractors, short cycles, short transients. Example:
majority rule 232. Indifference to perturbations

® Few attractors, long cycles, short transients (chaotic
patterns). Example: rule 150 (XOR)

@ Long transients (universal computation?), ending in class 1

or 2. Complex, long-lived structures. Examples: rule 110,
Life in 2D.



Chaotic CA (class 3)




Boolean derivatives

IFi(x)
Ji’j - an
:Fi(Xo, sy X ®1,... 7XN—l) D Fi(Xo, S ST yXN—l)
] 1 Fjchanges when x; changes
~ |0 F does not change when x; changes.

The concept may be extended to discrete systems, with a
suitable metric and modular operations.



Boolean calculus

Many results from calculus can be extended to Boolean

derivatives, for instance the McLaurin expansion

f(x,y) = o X @® o @ il
Y=\ ox x=0 oy xfgy OxX0y ) x

y y y

[Bagnoli, IIMPC 3, 307(1992)]
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Boolean derivatives of R150
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Boolean derivatives of R22
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Elementary cellular automata

af(Xi_]_,Xi,XiJ,_l) || _J| < 1
Jij = ox;
0 li—j|>r.
\31,1 3172 0 0 s 0 Jl,N
Jo1 J22 J23 O .- 0 0
0 Jso J33z J3zg - 0 0
J = : : : : :
NNERY 0 0 - JIn-in INnN

where J;; =0, 1.




Damage spreading and tangent space

damage spreading paths in tangent space
ul® =3 (u(tfl)) ® u(t=1) ul® =3 (u(tfl)) ut=1
220 s AN
/|><|><|\ /|><|><|\
/I\ /I\ /I\ /|><|><|><|><|\

In damage spreading the scalar product is computed modulo
two (©)



Largest Lyapunov exponent of CA

The definition of tangent space is similar to that of
continuous systems

u(t+1)=J(x(t))u(t)
u;(t) is the number of possible different paths in tangent
space ending at site i at time t

The tangent space is formed by all possible ways of
propagating a perturbation of vanishing size (1 site).
A path joins “ones” in the product of Jacobians
lu(t)] = [uol exp(At)

A is the largest Lyapunov exponent

A > 0 if there are “percolating” paths (time-directed
percolation in tangent space)



Random matrix approximation

w: average number of ones in the product of Jacobians

1 with probability . if [i —j| <
M(t) =< 0 with probability 1 — pif |i —j| <r
0 otherwise

u(t+1)=M@u(t); Ju(t)] ~exp(At) A >O0if u> e

Mean field approximation:

Moo= Jr TTli=ilsr
" 0 otherwise

AME = Iog(2r + 1) > A



LLE of elementary and totalistic CA
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[Bagnoli Rechtman Ruffo, PLA 172, 34 (1992)]



Pinching synchronization of CA
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[Bagnoli Rechtman, PRE 59, R1307 (1999)]



Conclusions

¢ Boolean (finite-distance) Lyapunov exponents characterize
unstable trajectories in CA

e Under perturbation in the function or in the connectivity
(like in Kauffman networks) A characterizes chaotic CA

e Pinching synchronization and Boolean Lyapunov
exponents are related in CA

e Pinching synchronization is not related to standard
Lyapunov exponents [Bagnoli Rechtman, PRE 73 026202 (2006)]

¢ Finite-distance Lyapunov exponents: indicators of
“physical” unpredictability?
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