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Beurling Theorem

The famous Beurling theorem classifies the invariant subspaces of
the multiplication operator by the coordinate function z on the
Hardy space of the unit disk, the unilateral shift S :

Sen = en+1

for en = zn.

Theorem (Beurling Theorem)

Let M be in Lat S.
M = θH2,

for some inner function θ. This is equivalent to
(1)

M	 S(M) = Cθ;

(2)
M = [M	 S(M)].

Here [A] = spann≥0z
nA for a subset A of H2.
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Bergman shift

Let D be the open unit disk in C.

Let dA denote normalized Lebesgue area measure on the unit
disk D.

The Bergman space

L2
a = {f ∈ L2(D, dA) : f is analytic in D}

Let en =
√

n + 1zn. Then {en}∞n=0 form an orthonormal basis
of L2

a.

Mz is the Bergman shift

Mzen =

√
n + 1

n + 2
en+1.
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Dimension of the wandering subspace

Theorem (Apostol-Bercovici-Foias-Pearcy Theorem)

Let M be in LatMz .

dim{M	Mz(M)} ≤ ∞.

• Hedenmalm, Hedenmalm-Richter-Seip
• Borichev, Borichev-Hedenmalm-Volberg
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Beurling type Theorem

Theorem (Aleman-Richter-Sundberg Theorem)

Let M be in LatMz .

M = [M	Mz(M)],

where [M	Mz(M)] = spank≥0M
k
z (M	Mz(M)).

This result is a breakthrough in understanding of the invariant
subspaces of the Bergman space and becomes a fundamental
theorem in the function theory on the Bergman space.

Different proofs of the Beurling type theorem were given by
• Shimorin (2001),
• McCullough-Richter (2002) and
• Olofsson (2005).
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Outline of the proof of the Aleman, Richter
and Sundberg Theorem via the Hardy space of
the bidisk

• Lift the Bergman shift Mz as the compression B of the isometry
Tz on a nice subspace H of the Hardy space of the bidisk.

• Lift an invariant subspace M of B to be an invariant subspace
M̃ of the isometry Tz .

• Do Wold decomposition and identify wandering subspaces.

• Establish an identity.
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a(D) Hardy Space H2(T2)

L2
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f (z)

Mz

M
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f (z), f (w)

B
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H2(T2) and Toeplitz operators

T denotes the unit circle.

The torus T2 is the Cartesian product T× T.

The Hardy space H2(T2) is the subspace of L2(T2, dσ), each
function in H2(T2) can be identified with the boundary value
of the function holomorphic in D2 with the square summable
Fourier coefficients.

Let P be the orthogonal projection from L2(T2, dσ) onto
H2(T2).

The Toeplitz operator on H2(T2) with
symbol f in L∞(T2, dσ) is defined by

Tf (h) = P(fh),

for h ∈ H2(T2).
Clearly, Tz and Tw are a pair of doubly commuting pure
isometries on H2(T2).
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Lift the Bergman shift to the compression of the isometry Tz on a
nice subspace of the Hardy space of the bidisk.

For each integer n ≥ 0, let

pn(z ,w) =
n∑

i=0

z iwn−i =
zn+1 − wn+1

z − w
.

Let H be the subspace of H2(T2) spanned by functions
{pn}∞n=0.
Then

H2(T2) = H⊕ cl{(z − w)H2(T2)}.
Let PH be the orthogonal projection from L2(T2, dσ) onto H.

B def
= PHTz |H = PHTw |H.

The Bergman shift Mz
∼= B via the following unitary operator

U : L2
a(D)→ H,

Uzn =
pn(z ,w)

n + 1
.
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Uzn =
pn(z ,w)

n + 1
.

• Douglas, Paulsen and Yang
• Richter
• Sun and Yu.

Uf (z ,w) =

∫
D

f (λ)

(1− λ̄z)(1− λ̄w)
dA(λ)

• Ahern-Youssfi

The extension of U∗ to H2(T2) is the restriction of functions
of the Hardy spaces to the diagonal and maps the Hardy
spaces to the Bergman spaces. This phenomenon was
discovered by Rudin in 60s and further was explored by
Duren-Shields and Horowitz-Oberlin in 70s.

U∗F (z) = F (z , z)

for F (z ,w) ∈ H2(T2).
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Indeed, B was called to be super-isometrically dilatable, i.e.,

Bn+m = PHT n
z Tm

w |H,

and
B∗ = T ∗z |H = T ∗w |H,

for the pair of doubly commuting pure isometries Tz and Tw on
the Hardy space H2(T2).
Advantage:

• Functions in H2(T2) behave better than those in the Bergman
space.

Disadvantage:

• PH
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The Dirichlet space D consists of analytic functions on the unit
disk whose derivative is in the Bergman space L2

a.

Theorem

For each f (z ,w) in H2(T2), f is in H if and only if there is a
function f̃ (z) in D such that

f (z ,w) =
f̃ (z)− f̃ (w)

z − w
,

for two distinct points z, w in the unit disk.

Suppose that e(z ,w) is in H.
• If e(z , z) = 0 for each z in the unit disk, then e(z ,w) = 0 for
(z ,w) on the torus.
• e(z ,w) = e(w , z).
• Let E (z) = e(z , 0). Then

e(λ, λ) = λE ′(λ) + E (λ),

for each λ ∈ D.
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lift each invariant subspace of B as an
invariant subspace of Tz

For an invariant subspace M of B, define the lifting M̃ to be the
direct sum

M⊕ [z − w ]

where [z − w ] = cl{(z − w)H2(T2)}.

Theorem (Richter )

The mapping
η :M→ M̃

is a one-to-one correspondence between invariant subspaces of B
and invariant subspaces of Tz containing [z − w ].
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To see that M̃ is an invariant subspace of Tz , for each f in M̃, we
write

f = f1 + f2

for f1 inM and f2 in [z −w ].

Since [z −w ] is an invariant subspace
of Tz , Tz f2 = zf2 is in [z − w ]. An easy computation gives

Tz f1 = Bf1 + P[z−w ](zf1)

∈ M⊕ [z − w ] = M̃.

Thus we have

Tz f = Bf1 + Tz f2

∈ M⊕ [z − w ] = M̃,

to get that M̃ is an invariant subspace of the isometry Tz .
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For an invariant subspace M of B, let the operator B∗M on M
denote the compression of T ∗z on M, i.e.,

B∗Mq = PMT ∗z q = PMB∗q

for q in M.

Since the Bergman shift is bounded below, we have the following
lemma.

Lemma

Let M be an invariant subspace of B. Then B∗MB is invertible on
M.
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Let M0 be the wandering space of B on M. Let

M00 = {−hg + zPHg − wg(w) : (hg , g) ∈ BM× H2(T),

hg = B[B∗MB]−1PMg}.

Theorem

Let M be an invariant subspace of B. Let M̃ be the lifting ofM.
Then M̃ is an invariant subspace of the isometry Tz and has the
following decomposition:

M̃ = ⊕∞n=0z
nLM̃

where LM̃ is the wandering space of Tz on M̃ given by

LM̃ =M0 ⊕M00.



Theorem (Aleman-Richter-Sundberg Theorem)

Let M be in Lat B.

M = [M	B(M)],

where [M	B(M)] = spank≥0Bk(M	B(M)).

Let M0 denote the wandering subspace M	BM of B on M.

Let N be the orthogonal complement of [M0] in M.

We will show that N = {0}.



Step 1.

First we show

N ⊂ {
∞∑

n=0

znun : un = −hn + zPHgn − wgn(w) ∈M00}.

Recall

M00 = {−hg + zPHg − wg(w) : (hg , g) ∈ BM× H2(T),

hg = B[B∗MB]−1PMg}.

Thus each function q in N has the following form

q =
∞∑

n=0

znun. (1)



Step 2.

For a function q in N with the above representation, let

q1 =
∞∑

n=1

zn−1un. (2)

Next we show that for each q in N ,

q1 = B∗Mq

and q1 is still in N .



q =
∑∞

n=0 znun, q1 =
∑∞

n=1 zn−1un

Step 3. We show
q = B(B∗MB)−1q1.

Use

q = zq1 + [−h0 + zPHg0 − wg0(w)]

= Bq1 − h0 + [(z − B)q1 + zPHg0 − wg0(w)],

to get
q = Bq1 − h0

and
h0 = −B(B∗MB)−1(1− B∗MB)q1.

Hence

q = Bq1 − h0

= Bq1 + B(B∗MB)−1(1− B∗MB)q1

= B(B∗MB)−1q1.



Step 4.

We show that B(B∗MB)−1q is in N for each q in N . By Step 3,
hence B(B∗MB)−1|N is the inverse of B∗M|N .



Step 5.

For each q =
∑∞

n=0 znun in N as in Step 1, let qk = (B∗M)kq.
Then

‖uk−1‖2 − ‖uk‖2 = ‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2.

To prove the above equality, by Step 2 we have that
qk =

∑∞
n=k zn−kun, and hence

‖qk‖2 =
∞∑

n=k

‖un‖2.
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Step 6.

For each q in N , let qk = (B∗M)kq. Then

‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2

= 〈(B∗MB)−1qk , qk〉+ 〈(BB∗M)qk , qk〉 − 2〈qk , qk〉. (3)

This follows from Step 4.



Step 6.

For each q in N , let qk = (B∗M)kq. Then

‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2

= 〈(B∗MB)−1qk , qk〉+ 〈(BB∗M)qk , qk〉 − 2〈qk , qk〉. (3)

This follows from Step 4.



Step 7.

The Dirichlet space D consists of analytic functions on the unit
disk whose derivatives are in the Bergman space L2

a. We will get a
representation of functions in M.
For each f in M, there is a function g(z) in H2(T) ∩ D such that

f (z ,w) = −PHg − zg(z)− wg(w)

z − w
. (4)



Step 8. Key identity

For a function q in the invariant subspace M of B, let
f = (B∗MB)−1q. By (4) in Step 7, there is a function g in
H2(T) ∩ D such that

f (z ,w) = −PHg − zg(z)− wg(w)

z − w
.

Let M⊥ denote the orthogonal complement of M in H. Then

〈(B∗MB)−1q, q〉+ 〈(BB∗M)q, q〉 − 2〈q, q〉

=
1

2
‖PM⊥BPM⊥ [

g(z)− g(w)

z − w
]‖2 − ‖PM⊥ [

g(z)− g(w)

z − w
]‖2.



Step 9.

Finally we show that N = {0}.

For each q in N , by Step 1, we write q =
∑

n=0 znun with
‖q‖2 =

∑∞
n=0 ‖un‖2, for un in M00. Let qk = (B∗M)kq. Step 8

gives that

〈(B∗MB)−1qk , qk〉+ 〈(BB∗M)qk , qk〉 − 2〈qk , qk〉 ≤ 0.

By Steps 5 and 6, we have

‖uk−1‖2 − ‖uk‖2 ≤ 0,

to get that the sequence {‖uk‖2} of nonnegative numbers
increases, but is summable. Hence ‖uk‖2 = 0 for k ≥ 0. This
implies that q = 0, to complete the proof.
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