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The Dirichlet Space

The Dirichlet space, D:

FeHol(D), [[fl=FO)f + [ |F <o
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The Dyadic Dirichlet Space

The Tree

The tree, T, a rooted loopless graph, every point other than the root has
three nearest neighbors.
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The Dyadic Dirichlet Space

The Tree Boundary

A point of 9T is an equivalence class of geodesics infinite in one direction;
a a path to the abstract boundary,
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The Dyadic Dirichlet Space

The Tree in the Disk

Think of T as sitting inside ID with the root o at 0.
Think of T as being the same as T.
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The Dyadic Dirichlet Space

Operations on functions and measures on T

@ "Integration": sum the function along the geodesic from o.

lf(a) = Y f(B)

o<p=<u
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The Dyadic Dirichlet Space

Operations on functions and measures on T

@ "Integration": sum the function along the geodesic from o.
If(a) = ¥ f(B).
o<p=<u
e Its adjoint: I*f(a) = Y f(B).

B
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The Dyadic Dirichlet Space

Operations on functions and measures on T

@ "Integration": sum the function along the geodesic from o.
If(a) = ¥ f(B).
o<p=<u
e Its adjoint: I*f(a) = Y f(B).

B

o "differentiation": Df (a) = f(a) — f(a™).
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The Dyadic Dirichlet Space

Operations on functions and measures on T

@ "Integration": sum the function along the geodesic from o.

lf(a) = Y f(B)

o<p=<u

e Its adjoint: I*f(a) = Y f(B).

B-a
o "differentiation": Df (a) = f(a) — f(a™).
o A measure i on D induces a measure iy on T = T UJT by......
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The Dyadic Dirichlet Space

@ D, is the Dyadic Dirichlet space:

113, = If ()" + ) |Df()]* < co.
T\{o}
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The Dyadic Dirichlet Space

@ D, is the Dyadic Dirichlet space:

2 2 2
Ifllp, = [F(0)|"+ Y. [Df(a)]” < oo.
T\{o}
@ D, is a simple but useful model for D.

@ More generally, function spaces on T model function spaces on DD;
Besov spaces, spaces of p—harmonic functions,...
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Tents

Tents in the Disk

The tent over J, the shadow region below z;.

8(z) = §()

and set 9S(a) = S(a) NOT
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Tents
Tents in the Tree

Here S(y) is the shadow region under y, etc.

@0 = oot




Carleson Measures

o A Carleson measure for D is a measure y on ID such that 3C > 0 so
that Vf € D

GRS
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Carleson Measures

o A Carleson measure for D is a measure y on ID such that 3C > 0 so
that Vf € D

GRS

o A Carleson measure for D, is a measure p on T such that 3C > 0 so
that Vf € Dy

JRURTEY i
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Carleson Measures

o A Carleson measure for D is a measure y on ID such that 3C > 0 so
that Vf € D

GRS

o A Carleson measure for D, is a measure p on T such that 3C > 0 so
that Vf € Dy

JRURTEY i

o In either case ||j|| is defined to be the smallest C such that works.
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e To make the discussion of capacity slightly simpler we will just
consider sets in the boundary T =0ID ~ 9T,
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e To make the discussion of capacity slightly simpler we will just
consider sets in the boundary T =0ID ~ 9T,

e For E C dD, Cap(E) = inf{||f||%:Ref >1lon E}.
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e To make the discussion of capacity slightly simpler we will just
consider sets in the boundary T =0ID ~ 9T,

e For E C dD, Cap(E) = inf{||f||%:Ref >1lon E}.
o For £C 9T, Cap,(E) = inf{||f||2Dd . f>1on E}.

o In fact Cap(E) = 0 iff Cap,(E) = 0 which is one of the tools in
pulling results on Dy back to results on D.
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Characterization of Carleson Measures

Theorem (Stegenga 1980, ARS 2003)

For a positive measure y on D the following are equivalent

Q 1 is a Carleson measure for D

v

Rochberg () Carleson Measures January 2008 12 /31



Characterization of Carleson Measures
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Q 1 is a Carleson measure for D
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Characterization of Carleson Measures

Theorem (Stegenga 1980, ARS 2003)

For a positive measure y on D the following are equivalent

Q 1 is a Carleson measure for D
@ . is a Carleson measure for Dy

© 1 satisfies a tree capacity condition. There is a constant C so that
for all sets E = U;0S(x;) indT,

ur (USCy)) < CCapr(UAS(x)).

v
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Characterization of Carleson Measures

Theorem (Stegenga 1980, ARS 2003)

For a positive measure y on ID the following are equivalent

Q 1 is a Carleson measure for D
@ . is a Carleson measure for Dy

© 1 satisfies a tree capacity condition. There is a constant C so that
for all sets E = U;0S(x;) indT,

ur (US(9)) < CCapr(UAS(x)).
Q 1 satisfies the tree condition. There is a constant C so that Va € T

P (FMur)?(a) < Clpp(a)

v
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Two New Things Today

@ Quantitative relation between capacity of a set and properties of
Carleson measures supported on the set.
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Two New Things Today

@ Quantitative relation between capacity of a set and properties of
Carleson measures supported on the set.

@ This establishes equivalence of two classes of null sets and gives an
alternative approach to exceptional sets for boundary convergence.
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Carleson Measures and Capacity

Theorem (ARS '07)

For E, a compact subset of 9T,

E
Cap(E) = sup ML
Supp (u)CE H CM(T)

Corollary

E has capacity zero if and only if E is u—null set for every Carleson
measure .

It is sometimes easier to show a set carries no nontrivial Carleson measures
than to estimate its capacity directly.

Rochberg () Carleson Measures January 2008 14 / 31



The Idea at the Center of the Proof

The tree condition: 1*(I*p;)?(a) < Cl*uq(w)

@ There are various ways to measure the capacity of a set; one involves
"energy integrals".
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The Idea at the Center of the Proof

The tree condition: 1*(I*p;)?(a) < Cl*uq(w)

@ There are various ways to measure the capacity of a set; one involves
"energy integrals".

o For i a measure on the boundary, the quantity /*(/*u)?(a) which
shows up in the tree condition is a quadratic expression in y.
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The Idea at the Center of the Proof

The tree condition: 1*(I*p;)?(a) < Cl*uq(w)

@ There are various ways to measure the capacity of a set; one involves
"energy integrals".

o For i a measure on the boundary, the quantity /*(/*u)?(a) which
shows up in the tree condition is a quadratic expression in y.

e When you multiply it out, rearrange, and analyze, I*(1*u)?(a) is
ROUGHLY the energy integral for the part of u in S(«).
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The Idea at the Center of the Proof

The tree condition: 1*(I*p;)?(a) < Cl*uq(w)

@ There are various ways to measure the capacity of a set; one involves
"energy integrals".

o For i a measure on the boundary, the quantity /*(/*u)?(a) which
shows up in the tree condition is a quadratic expression in y.

e When you multiply it out, rearrange, and analyze, I*(1*u)?(a) is
ROUGHLY the energy integral for the part of u in S(«).

o /*u(a) is the mass of that part of p.

@ Hence, roughly, the tree condition compares the energy of the
measure with its mass.
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Boundary Values and Exceptional Sets

For the Dirichlet Space—ahistoric

e Fatou (1906)
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Boundary Values and Exceptional Sets

For the Dirichlet Space—ahistoric

e Fatou (1906)
e Radial boundary values a.e. df.
@ Beurling (1940)

e Finite radial variation with an exceptional set of directions of capacity
zero.
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Boundary Values and Exceptional Sets

For the Dirichlet Space—ahistoric

e Fatou (1906)
e Radial boundary values a.e. df.
@ Beurling (1940)

e Finite radial variation with an exceptional set of directions of capacity
zero.
e Hence finite radial limits with an exceptional set of capacity zero.

e Kinney (1963)
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Boundary Values and Exceptional Sets

For the Dirichlet Space—ahistoric

e Fatou (1906)

e Radial boundary values a.e. df.

@ Beurling (1940)
e Finite radial variation with an exceptional set of directions of capacity
zero.
e Hence finite radial limits with an exceptional set of capacity zero.
e Kinney (1963)

e Have limits through approach regions which are tangent to the
boundary to finite order, except for a set of capacity zero.
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e Radial boundary values a.e. df.
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e Kinney (1963)
e Have limits through approach regions which are tangent to the
boundary to finite order, except for a set of capacity zero.
@ Nagel Rudin Shapiro (1982)

e For approach regions making exponential contact still have
convergence a.e. db.
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e Fatou (1906)

e Radial boundary values a.e. df.

@ Beurling (1940)
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o Hence finite radial limits with an exceptional set of capacity zero.
e Kinney (1963)
e Have limits through approach regions which are tangent to the
boundary to finite order, except for a set of capacity zero.
@ Nagel Rudin Shapiro (1982)
e For approach regions making exponential contact still have
convergence a.e. df.
e Aikawa, Mizuta, Twomey, others (1990's—)
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Boundary Values and Exceptional Sets

For the Dirichlet Space—ahistoric

e Fatou (1906)

e Radial boundary values a.e. df.

@ Beurling (1940)
e Finite radial variation with an exceptional set of directions of capacity
zero.
o Hence finite radial limits with an exceptional set of capacity zero.
e Kinney (1963)
e Have limits through approach regions which are tangent to the
boundary to finite order, except for a set of capacity zero.
@ Nagel Rudin Shapiro (1982)
e For approach regions making exponential contact still have
convergence a.e. df.
e Aikawa, Mizuta, Twomey, others (1990's—)

e For approach regions with contact between algebraic and fully
exponential there is convergence with an exceptional set of capacity*
zero; capacity™ is defined with respect to a different space.
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Boundary Values and Exceptional Sets

For the Dyadic Dirichlet Space

@ We prove analogous results for the Dyadic Dirichlet space. The basic
argument is
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Boundary Values and Exceptional Sets

For the Dyadic Dirichlet Space

@ We prove analogous results for the Dyadic Dirichlet space. The basic
argument is
e Find an auxiliary function F which controls the quantity of interest and
isin Dy.
o Hence, essentially by definition, the set of boundary points where F has
an infinite limit is a null set for all Carleson measures.
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Boundary Values and Exceptional Sets

For the Dyadic Dirichlet Space

@ We prove analogous results for the Dyadic Dirichlet space. The basic
argument is

e Find an auxiliary function F which controls the quantity of interest and
isin Dy.

o Hence, essentially by definition, the set of boundary points where F has
an infinite limit is a null set for all Carleson measures.

e Hence, by the theorem, this set has capacity zero.

@ The Dyadic Dirichlet space is a model case. The approach is rather
general and we think it extends to other tree models, non-Hilbert
spaces, and spaces of continuous functions (harmonic, holomorphic,
p-harmonic,....). "Work in progress."
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Boundary Values and Exceptional Sets

For the Dyadic Dirichlet Space

@ We prove analogous results for the Dyadic Dirichlet space. The basic
argument is

e Find an auxiliary function F which controls the quantity of interest and
isin Dy.

o Hence, essentially by definition, the set of boundary points where F has
an infinite limit is a null set for all Carleson measures.

e Hence, by the theorem, this set has capacity zero.

@ The Dyadic Dirichlet space is a model case. The approach is rather
general and we think it extends to other tree models, non-Hilbert
spaces, and spaces of continuous functions (harmonic, holomorphic,
p-harmonic,....). "Work in progress."

@ The approach focuses on tree geometry and tree combinatorics; in
terms of the boundary values the approach is doing bookkeeping
according to scale and position.
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Boundary Values and Exceptional Sets

Beurling’s Theorem for the Dyadic Dirichlet Space

O Pick F € D.
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Boundary Values and Exceptional Sets

Beurling’s Theorem for the Dyadic Dirichlet Space

Pick F € Dy,
By definition of the norm, DF € I° (T).
Hence G = I(|DF|) € Dy.

The boundary values of G are the radial variation of F so, by the
argument just outlined, F has finite radial variation off a set of
capacity zero,

©0 00
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Boundary Values and Exceptional Sets

Beurling’s Theorem for the Dyadic Dirichlet Space

©0 00

Pick F € Dy.

By definition of the norm, DF € I° (T).

Hence G = I(|DF|) € Dy.

The boundary values of G are the radial variation of F so, by the
argument just outlined, F has finite radial variation off a set of
capacity zero,

and thus finite radial limits off a set of capacity zero.
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18 / 31



Extending this analysis to more complicated geometries.
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Radial Approach

We control F on the radius using |DF| at the nodes.

Rochberg () Carleson Measures January 2008 20 / 31



NonTangential Approach

Figure: For control in a wedge we need to use |DF| at more points.
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NonTangential Approach—Constructing a Majorant

Figure: Each point on the radius looks after finitely many other points.and then
the previous proof works.
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Approach with Algebraic Contact
P

Figure: With algebraic contact there are more loci of variation to control. We use
one point to control several long rows.
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Approach with Algebraic Contact
)

Figure: Use Y_max{|DF| on a row} .
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Approach with Algebraic Contact

The values of the majorant at the circled point controls the variation down
two the green rows.
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In Terms of Euclidean Geometry

Think of the upper halfplane and a contact region that touches the
boundary at the origin. The coordinates of an index point n steps from o
are ~ (0,27"). The rows being majorized are kn steps further so their y
coordinates are ~ 27"7k" At that height the horizontal step size is
27"=kn These rows are kn steps below the index point so the width of the
row is

number of steps X step size = 2K127"k1 — ="

Hence the coordinates of the edge of the row are (277,27"7%") ; we are

on the curve y = x|

0.10

0.05

-0.1 0.0 0.1
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Semi-exponential Contacts—Constructing a Majorant

Figure: Now there are more rows to deal with.
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Semi-exponential Contact

@ The same idea is used but now the base point has to take
responsibility for a number of later rows which grows.
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and a factor v/number of terms shows up.
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@ Cauchy Schwarz is used to estimate the sum of the squares of DG
and a factor v/number of terms shows up.

o The conclusion is that DG is not in /2 (T) but is in /2(T,2%4() ) for
some &, 0 < & < 1.
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Semi-exponential Contact

@ The same idea is used but now the base point has to take
responsibility for a number of later rows which grows.

@ Cauchy Schwarz is used to estimate the sum of the squares of DG
and a factor v/number of terms shows up.

o The conclusion is that DG is not in /2 (T) but is in /2(T,2%4() ) for
some &, 0 < & < 1.

@ Hence the previous proof goes through but now it shows that the set
on which G is infinite—and hence F has boundary limits—will have null
capacity but for the capacity associated to />( T, 2"“’(0")).
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Exponential Contact

@ The same pattern of analysis for exponential contact leads to
12(T,2%(0)) with & = 1.
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zero so we argue differently.
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Exponential Contact

The same pattern of analysis for exponential contact leads to
12(T,2%(0)) with & = 1.

The null sets for that capacity are not the sets of Lebesgue measure
zero so we argue differently.

We construct a comparison function G which is a dyadic martingale.
Use the fact that such a G has limits on a set of full measure.

And hence on a set of full measure Osc (G) — 0

Use this to get the a.e. df convergence for F.
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How General is this Approach?

@ Other Hilbert spaces on the tree
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in world of nonlinear potential theory.

@ Discrete vs. Continuous; would like to know discrete capacity(E) =0
if and only if continuous capacity(E) = 0, compare both to a graph
capacity.
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How General is this Approach?

Other Hilbert spaces on the tree
p # 2, need to establish

Carleson measure <= capacity

in world of nonlinear potential theory.

@ Discrete vs. Continuous; would like to know discrete capacity(E) =0
if and only if continuous capacity(E) = 0, compare both to a graph
capacity.

@ In general when a tree model captures the geometry and there is
summability information for the local oscillation these ideas can be
used; for instance p—harmonic functions.
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Example with a Different Function Space on the Tree

@ Suppose F = If is in Dy and that |DF|2 is a Carleson measure for
Dy (i.e. Fisin a BMO type space).
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Example with a Different Function Space on the Tree
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o Thus I*(I*f2)2 < CI*f2.
@ Using that estimate and extending the previous techniques slightly
one can show:
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Dy (i.e. Fisin a BMO type space).

o Thus I*(I*f2)2 < CI*f2.
@ Using that estimate and extending the previous techniques slightly

one can show:

e F has boundary limits through sets making exponential contact except
of a set of capacity zero.
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Example with a Different Function Space on the Tree

@ Suppose F = If is in Dy and that |DF|2 is a Carleson measure for
Dy (i.e. Fisin a BMO type space).
o Thus I*(I*f2)2 < CI*f2.
@ Using that estimate and extending the previous techniques slightly
one can show:
e F has boundary limits through sets making exponential contact except
of a set of capacity zero.

e F has boundary limits through sets making doubly exponential contact
except of a set of measure zero.
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