# Capacity, Carleson Measures, and Exceptional Sets

Nicola Arcozzi (Bologna) Richard Rochberg (St. Louis) Eric Sawyer (Hamilton)

January 2008

1 / 31

# The Dirichlet Space

The Dirichlet space,  $\mathcal{D}$ :

$$f \in \operatorname{Hol}(\mathbb{D}), \quad \|f\|_{\mathcal{D}}^2 = |f(0)|^2 + \int_{\mathbb{D}} |f'|^2 < \infty.$$

Rochberg () Carleson Measures January 2008 2 / 31

#### The Tree

The tree, T, a rooted loopless graph, every point other than the root has three nearest neighbors.



3 / 31

The Tree Boundary

A point of  $\partial T$  is an equivalence class of geodesics infinite in one direction; a a path to the abstract boundary,

The Tree in the Disk

Think of T as sitting inside  $\mathbb D$  with the root o at 0.

Think of  $\partial T$  as being the same as  $\mathbb{T}$ .





#### Operations on functions and measures on T

• "Integration": sum the function along the geodesic from o. If  $(\alpha) = \sum_{o \prec \beta \prec \alpha} f(\beta)$ .

Rochberg () Carleson Measures

6 / 31

#### Operations on functions and measures on T

- "Integration": sum the function along the geodesic from o. If  $(\alpha) = \sum_{o \prec \beta \prec \alpha} f(\beta)$ .
- Its adjoint:  $I^*f(\alpha) = \sum_{\beta \succ \alpha} f(\beta)$ .

January 2008

6 / 31

Rochberg () Carleson Measures

#### Operations on functions and measures on T

- "Integration": sum the function along the geodesic from o. If  $(\alpha) = \sum_{\alpha \in \mathcal{C}} f(\beta)$ .
- Its adjoint:  $I^*f(\alpha) = \sum_{\beta \succeq \alpha} f(\beta)$ .
- "differentiation":  $Df(\alpha) = f(\alpha) f(\alpha^{-})$ .

6 / 31

#### Operations on functions and measures on T

- "Integration": sum the function along the geodesic from o. If  $(\alpha) = \sum_{\alpha \prec \beta \prec \alpha} f(\beta)$ .
- Its adjoint:  $I^*f(\alpha) = \sum_{\beta \succeq \alpha} f(\beta)$ .
- "differentiation":  $Df(\alpha) = f(\alpha) f(\alpha^{-})$ .
- ullet A measure  $\mu$  on  $\overline{\mathbb{D}}$  induces a measure  $\mu_T$  on  $\overline{T}=T\cup\partial T$  by.....

6 / 31

•  $\mathcal{D}_d$  is the Dyadic Dirichlet space:

$$\|f\|_{\mathcal{D}_d}^2 = |f(o)|^2 + \sum_{T\setminus\{o\}} |Df(\alpha)|^2 < \infty.$$

Rochberg () Carleson Measures January 2008 7 / 31

•  $\mathcal{D}_d$  is the Dyadic Dirichlet space:

$$||f||_{\mathcal{D}_d}^2 = |f(o)|^2 + \sum_{T\setminus\{o\}} |Df(\alpha)|^2 < \infty.$$

•  $\mathcal{D}_d$  is a simple but useful model for  $\mathcal{D}$ .

7 / 31

•  $\mathcal{D}_d$  is the Dyadic Dirichlet space:

$$||f||_{\mathcal{D}_d}^2 = |f(o)|^2 + \sum_{T\setminus\{o\}} |Df(\alpha)|^2 < \infty.$$

- $\mathcal{D}_d$  is a simple but useful model for  $\mathcal{D}$ .
- More generally, function spaces on T model function spaces on  $\mathbb{D}$ ; Besov spaces, spaces of p-harmonic functions,...

Rochberg () Carleson Measures January 2008 7 / 31

#### **Tents**

#### Tents in the Disk

The tent over J, the shadow region below  $z_J$ .



$$S(z) = S(J)$$



# Tents in the Tree

Here S(y) is the shadow region under y, etc.



#### Carleson Measures

• A Carleson measure for  $\mathcal D$  is a measure  $\mu$  on  $\overline{\mathbb D}$  such that  $\exists \, C>0$  so that  $\forall f\in \mathcal D$ 

$$\int_{\overline{\mathbb{D}}} |f|^2 d\mu \le C^2 \|f\|^2.$$

#### Carleson Measures

• A Carleson measure for  $\mathcal D$  is a measure  $\mu$  on  $\overline{\mathbb D}$  such that  $\exists \, C>0$  so that  $\forall f\in \mathcal D$ 

$$\int_{\overline{\mathbb{D}}} |f|^2 d\mu \le C^2 \|f\|^2.$$

• A Carleson measure for  $\mathcal{D}_d$  is a measure  $\mu$  on  $\overline{T}$  such that  $\exists C>0$  so that  $\forall f\in\mathcal{D}_d$ 

$$\int_{\overline{T}} |f|^2 d\mu \le C^2 \|f\|^2.$$

#### Carleson Measures

• A Carleson measure for  $\mathcal D$  is a measure  $\mu$  on  $\overline{\mathbb D}$  such that  $\exists \, C>0$  so that  $\forall f\in \mathcal D$ 

$$\int_{\overline{\mathbb{D}}} |f|^2 d\mu \le C^2 \|f\|^2.$$

• A Carleson measure for  $\mathcal{D}_d$  is a measure  $\mu$  on  $\overline{T}$  such that  $\exists C>0$  so that  $\forall f\in\mathcal{D}_d$ 

$$\int_{\overline{T}} |f|^2 d\mu \le C^2 \|f\|^2.$$

• In either case  $\|\mu\|$  is defined to be the smallest C such that works.



• To make the discussion of capacity slightly simpler we will just consider sets in the boundary  $\mathbb{T}=\partial\overline{\mathbb{D}}\sim\partial\overline{\mathcal{T}},$ 

11 / 31

- To make the discussion of capacity slightly simpler we will just consider sets in the boundary  $\mathbb{T} = \partial \overline{\mathbb{D}} \sim \partial \overline{\mathcal{T}}$ ,
- For  $E \subset \partial \overline{\mathbb{D}}$ ,  $\operatorname{Cap}(E) = \inf \left\{ \|f\|_{\mathcal{D}}^2 : \operatorname{Re} f \geq 1 \text{ on } E \right\}$ .

11 / 31

- To make the discussion of capacity slightly simpler we will just consider sets in the boundary  $\mathbb{T} = \partial \overline{\mathbb{D}} \sim \partial \overline{\mathcal{T}}$ ,
- For  $E \subset \partial \overline{\mathbb{D}}$ ,  $\operatorname{Cap}(E) = \inf \left\{ \|f\|_{\mathcal{D}}^2 : \operatorname{Re} f \geq 1 \text{ on } E \right\}$ .
- $\bullet \ \, \text{For} \,\, E\subset \partial \overline{T}, {\rm Cap}_T(E)=\inf \Big\{ \|f\|_{\mathcal{D}_d}^2: f\geq 1 \,\, \text{on} \,\, E \Big\}.$



Rochberg ()

- To make the discussion of capacity slightly simpler we will just consider sets in the boundary  $\mathbb{T} = \partial \overline{\mathbb{D}} \sim \partial \overline{\mathcal{T}}$ ,
- For  $E \subset \partial \overline{\mathbb{D}}$ ,  $\operatorname{Cap}(E) = \inf \left\{ \|f\|_{\mathcal{D}}^2 : \operatorname{Re} f \geq 1 \text{ on } E \right\}$ .
- $\bullet \ \, \text{For} \,\, E\subset \partial \overline{T}, \mathrm{Cap}_{T}(E)=\inf \Big\{ \|f\|_{\mathcal{D}_{d}}^{2}: f\geq 1 \,\, \text{on} \,\, E \Big\}.$
- In fact  $\operatorname{Cap}(E) = 0$  iff  $\operatorname{Cap}_{\mathcal{T}}(E) = 0$  which is one of the tools in pulling results on  $\mathcal{D}_d$  back to results on  $\mathcal{D}$ .

#### Theorem (Stegenga 1980, ARS 2003)

For a positive measure  $\mu$  on  $\overline{\mathbb{D}}$  the following are equivalent

ullet  $\mu$  is a Carleson measure for  ${\mathcal D}$ 

Rochberg () Carleson Measures January 2008 12 / 31

#### Theorem (Stegenga 1980, ARS 2003)

For a positive measure  $\mu$  on  $\mathbb D$  the following are equivalent

- lacktriangledown  $\mu$  is a Carleson measure for  $\mathcal D$
- $oldsymbol{2} \mu_T$  is a Carleson measure for  $\mathcal{D}_d$

Rochberg () Carleson Measures January 2008 12 / 31

#### Theorem (Stegenga 1980, ARS 2003)

For a positive measure  $\mu$  on  $\overline{\mathbb{D}}$  the following are equivalent

- $oldsymbol{0}$   $\mu$  is a Carleson measure for  $\mathcal D$
- $oldsymbol{2}$   $\mu_T$  is a Carleson measure for  $\mathcal{D}_d$
- **1**  $\mu_T$  satisfies a tree capacity condition. There is a constant C so that for all sets  $E = \cup_j \partial S(x_j)$  in  $\partial T$ ,

$$\mu_T\left(\cup_j \overline{S(x_j)}\right) \leq C \operatorname{Cap}_T(\cup_j \partial S(x_j)).$$

Rochberg () Carleson Measures January 2008 12 / 31

#### Theorem (Stegenga 1980, ARS 2003)

For a positive measure  $\mu$  on  $\overline{\mathbb{D}}$  the following are equivalent

- $oldsymbol{0}$   $\mu$  is a Carleson measure for  $\mathcal D$
- $oldsymbol{2}$   $\mu_T$  is a Carleson measure for  $\mathcal{D}_d$
- **1**  $\mu_T$  satisfies a tree capacity condition. There is a constant C so that for all sets  $E = \bigcup_i \partial S(x_i)$  in  $\partial T$ ,

$$\mu_T\left(\cup_j \overline{S(x_j)}\right) \leq C \operatorname{Cap}_T(\cup_j \partial S(x_j)).$$

**1**  $\mu_T$  satisfies the tree condition. There is a constant C so that  $\forall \alpha \in T$ 

$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

12 / 31

### Two New Things Today

 Quantitative relation between capacity of a set and properties of Carleson measures supported on the set.

13 / 31

### Two New Things Today

- Quantitative relation between capacity of a set and properties of Carleson measures supported on the set.
- This establishes equivalence of two classes of null sets and gives an alternative approach to exceptional sets for boundary convergence.

13 / 31

# Carleson Measures and Capacity

#### Theorem (ARS '07)

For E, a compact subset of  $\partial \overline{T}$ ,

$$\operatorname{Cap}_{T}(E) = \sup_{\operatorname{Supp}(\mu) \subset E} \frac{\mu(E)}{\|\mu\|_{CM(T)}}.$$

#### Corollary

E has capacity zero if and only if E is  $\mu$ -null set for every Carleson measure  $\mu$ .

It is sometimes easier to show a set carries no nontrivial Carleson measures than to estimate its capacity directly.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からぐ

The tree condition: 
$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

• There are various ways to measure the capacity of a set; one involves "energy integrals".



15 / 31

The tree condition: 
$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

- There are various ways to measure the capacity of a set; one involves "energy integrals".
- For  $\mu$  a measure on the boundary, the quantity  $I^*(I^*\mu)^2(\alpha)$  which shows up in the tree condition is a quadratic expression in  $\mu$ .

15 / 31

The tree condition: 
$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

- There are various ways to measure the capacity of a set; one involves "energy integrals".
- For  $\mu$  a measure on the boundary, the quantity  $I^*(I^*\mu)^2(\alpha)$  which shows up in the tree condition is a quadratic expression in  $\mu$ .
- When you multiply it out, rearrange, and analyze,  $I^*(I^*\mu)^2(\alpha)$  is ROUGHLY the energy integral for the part of  $\mu$  in  $S(\alpha)$ .

4□ > 4□ > 4 = > 4 = > = 90

15 / 31

The tree condition: 
$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

- There are various ways to measure the capacity of a set; one involves "energy integrals".
- For  $\mu$  a measure on the boundary, the quantity  $I^*(I^*\mu)^2(\alpha)$  which shows up in the tree condition is a quadratic expression in  $\mu$ .
- When you multiply it out, rearrange, and analyze,  $I^*(I^*\mu)^2(\alpha)$  is ROUGHLY the energy integral for the part of  $\mu$  in  $S(\alpha)$ .
- $I^*\mu(\alpha)$  is the mass of that part of  $\mu$ .



15 / 31

The tree condition: 
$$I^*(I^*\mu_T)^2(\alpha) \leq CI^*\mu_T(\alpha)$$

- There are various ways to measure the capacity of a set; one involves "energy integrals".
- For  $\mu$  a measure on the boundary, the quantity  $I^*(I^*\mu)^2(\alpha)$  which shows up in the tree condition is a quadratic expression in  $\mu$ .
- When you multiply it out, rearrange, and analyze,  $I^*(I^*\mu)^2(\alpha)$  is ROUGHLY the energy integral for the part of  $\mu$  in  $S(\alpha)$ .
- $I^*\mu(\alpha)$  is the mass of that part of  $\mu$ .
- Hence, roughly, the tree condition compares the energy of the measure with its mass.



Rochberg ()

### Boundary Values and Exceptional Sets

For the Dirichlet Space-ahistoric

• Fatou (1906)



Rochberg () Carleson Measures January 2008 16 / 31

# Boundary Values and Exceptional Sets

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .

Rochberg () Carleson Measures January 2008 16 / 31

# Boundary Values and Exceptional Sets

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)
  - Have limits through approach regions which are tangent to the boundary to finite order, except for a set of capacity zero.

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)
  - Have limits through approach regions which are tangent to the boundary to finite order, except for a set of capacity zero.
- Nagel Rudin Shapiro (1982)

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)
  - Have limits through approach regions which are tangent to the boundary to finite order, except for a set of capacity zero.
- Nagel Rudin Shapiro (1982)
  - For approach regions making exponential contact still have convergence a.e.  $d\theta$ .

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)
  - Have limits through approach regions which are tangent to the boundary to finite order, except for a set of capacity zero.
- Nagel Rudin Shapiro (1982)
  - For approach regions making exponential contact still have convergence a.e.  $d\theta$ .
- Aikawa, Mizuta, Twomey, others (1990's—)

16 / 31

For the Dirichlet Space-ahistoric

- Fatou (1906)
  - Radial boundary values a.e.  $d\theta$ .
- Beurling (1940)
  - Finite radial variation with an exceptional set of directions of capacity zero.
  - Hence finite radial limits with an exceptional set of capacity zero.
- Kinney (1963)
  - Have limits through approach regions which are tangent to the boundary to finite order, except for a set of capacity zero.
- Nagel Rudin Shapiro (1982)
  - For approach regions making exponential contact still have convergence a.e.  $d\theta$ .
- Aikawa, Mizuta, Twomey, others (1990's—)
  - For approach regions with contact between algebraic and fully exponential there is convergence with an exceptional set of capacity\* zero; capacity\* is defined with respect to a different space.

Rochberg () Carleson Measures January 2008 16 / 31

For the Dyadic Dirichlet Space

 We prove analogous results for the Dyadic Dirichlet space. The basic argument is

For the Dyadic Dirichlet Space

- We prove analogous results for the Dyadic Dirichlet space. The basic argument is
  - Find an auxiliary function F which controls the quantity of interest and is in  $\mathcal{D}_d$ .

17 / 31

#### For the Dyadic Dirichlet Space

- We prove analogous results for the Dyadic Dirichlet space. The basic argument is
  - Find an auxiliary function F which controls the quantity of interest and is in  $\mathcal{D}_d$ .
  - Hence, essentially by definition, the set of boundary points where F has an infinite limit is a null set for all Carleson measures.

Rochberg () Carleson Measures January 2008 17 / 31

#### For the Dyadic Dirichlet Space

- We prove analogous results for the Dyadic Dirichlet space. The basic argument is
  - Find an auxiliary function F which controls the quantity of interest and is in  $\mathcal{D}_d$ .
  - Hence, essentially by definition, the set of boundary points where F has an infinite limit is a null set for all Carleson measures.
  - Hence, by the theorem, this set has capacity zero.

17 / 31

#### For the Dyadic Dirichlet Space

- We prove analogous results for the Dyadic Dirichlet space. The basic argument is
  - Find an auxiliary function F which controls the quantity of interest and is in  $\mathcal{D}_d$ .
  - Hence, essentially by definition, the set of boundary points where F has an infinite limit is a null set for all Carleson measures.
  - Hence, by the theorem, this set has capacity zero.
- The Dyadic Dirichlet space is a model case. The approach is rather general and we think it extends to other tree models, non-Hilbert spaces, and spaces of continuous functions (harmonic, holomorphic, p-harmonic,....). "Work in progress."

Rochberg () Carleson Measures January 2008 17 / 31,

For the Dyadic Dirichlet Space

- We prove analogous results for the Dyadic Dirichlet space. The basic argument is
  - Find an auxiliary function F which controls the quantity of interest and is in  $\mathcal{D}_d$ .
  - Hence, essentially by definition, the set of boundary points where F has an infinite limit is a null set for all Carleson measures.
  - Hence, by the theorem, this set has capacity zero.
- The Dyadic Dirichlet space is a model case. The approach is rather general and we think it extends to other tree models, non-Hilbert spaces, and spaces of continuous functions (harmonic, holomorphic, p-harmonic,....). "Work in progress."
- The approach focuses on tree geometry and tree combinatorics; in terms of the boundary values the approach is doing bookkeeping according to scale and position.

Beurling's Theorem for the Dyadic Dirichlet Space

#### Proof.

 $\bullet \ \mathsf{Pick} \ F \in \mathcal{D}_d.$ 

Beurling's Theorem for the Dyadic Dirichlet Space

- Pick  $F \in \mathcal{D}_d$ .
- ② By definition of the norm,  $DF \in I^{2}(T)$ .

Beurling's Theorem for the Dyadic Dirichlet Space

- Pick  $F \in \mathcal{D}_d$ .
- ② By definition of the norm,  $DF \in I^{2}(T)$ .

Beurling's Theorem for the Dyadic Dirichlet Space

- Pick  $F \in \mathcal{D}_d$ .
- ② By definition of the norm,  $DF \in I^{2}(T)$ .
- The boundary values of G are the radial variation of F so, by the argument just outlined, F has finite radial variation off a set of capacity zero,

Beurling's Theorem for the Dyadic Dirichlet Space

- **1** Pick  $F \in \mathcal{D}_d$ .
- ② By definition of the norm,  $DF \in I^2(T)$ .
- The boundary values of G are the radial variation of F so, by the argument just outlined, F has finite radial variation off a set of capacity zero,
- and thus finite radial limits off a set of capacity zero.



Extending this analysis to more complicated geometries.

# Radial Approach



We control F on the radius using |DF| at the nodes.

Rochberg () Carleson Measures January 2008 20 / 31

# NonTangential Approach



Figure: For control in a wedge we need to use |DF| at more points.

# NonTangential Approach—Constructing a Majorant



Figure: Each point on the radius looks after finitely many other points.and then the previous proof works.

Rochberg () Carleson Measures January 2008 22 / 31

# Approach with Algebraic Contact



Figure: With algebraic contact there are more loci of variation to control. We use one point to control several long rows.

# Approach with Algebraic Contact



Figure: Use  $\sum \max\{|DF| \text{ on a row}\}$ .

Rochberg () Carleson Measures January 2008 24 / 31

# Approach with Algebraic Contact

The values of the majorant at the circled point controls the variation down two the green rows.



#### In Terms of Euclidean Geometry

Think of the upper halfplane and a contact region that touches the boundary at the origin. The coordinates of an index point n steps from o are  $\sim (0, 2^{-n})$ . The rows being majorized are kn steps further so their y coordinates are  $\sim 2^{-n-kn}$ . At that height the horizontal step size is  $2^{-n-kn}$ . These rows are kn steps below the index point so the width of the row is

number of steps 
$$\times$$
 step size  $= 2^{kn}2^{-n-kn} = 2^{-n}$ 

Hence the coordinates of the edge of the row are  $(2^{-n}, 2^{-n-kn})$ ; we are on the curve  $y = |x|^{k+1}$ .



Rochberg () Carleson Measures January 2008

26 / 31

# Semi-exponential Contacts-Constructing a Majorant



Figure: Now there are more rows to deal with.

 The same idea is used but now the base point has to take responsibility for a number of later rows which grows.

28 / 31

- The same idea is used but now the base point has to take responsibility for a number of later rows which grows.
- Cauchy Schwarz is used to estimate the sum of the squares of DG and a factor  $\sqrt{\text{number of terms}}$  shows up.

28 / 31

- The same idea is used but now the base point has to take responsibility for a number of later rows which grows.
- Cauchy Schwarz is used to estimate the sum of the squares of DG and a factor  $\sqrt{\text{number of terms}}$  shows up.
- The conclusion is that DG is not in  $I^{2}(T)$  but is in  $I^{2}(T, 2^{\alpha d(o, \cdot)})$  for some  $\alpha, 0 < \alpha < 1$ .

January 2008

Rochberg ()

- The same idea is used but now the base point has to take responsibility for a number of later rows which grows.
- Cauchy Schwarz is used to estimate the sum of the squares of DG and a factor  $\sqrt{\text{number of terms}}$  shows up.
- The conclusion is that DG is not in  $I^{2}(T)$  but is in  $I^{2}(T, 2^{\alpha d(o, \cdot)})$  for some  $\alpha$ ,  $0 < \alpha < 1$ .
- Hence the previous proof goes through but now it shows that the set on which G is infinite—and hence F has boundary limits—will have null capacity but for the capacity associated to  $I^2(T, 2^{\alpha d(o, \cdot)})$ .

28 / 31

• The same pattern of analysis for exponential contact leads to  $I^2(T, 2^{\alpha d(o, \cdot)})$  with  $\alpha = 1$ .

29 / 31

- The same pattern of analysis for exponential contact leads to  $l^2(T, 2^{\alpha d(o, \cdot)})$  with  $\alpha = 1$ .
- The null sets for that capacity are not the sets of Lebesgue measure zero so we argue differently.

29 / 31

- The same pattern of analysis for exponential contact leads to  $l^2(T, 2^{\alpha d(o, \cdot)})$  with  $\alpha = 1$ .
- The null sets for that capacity are not the sets of Lebesgue measure zero so we argue differently.
- $\bullet$  We construct a comparison function G which is a dyadic martingale.

29 / 31

- The same pattern of analysis for exponential contact leads to  $l^2(T, 2^{\alpha d(o, \cdot)})$  with  $\alpha = 1$ .
- The null sets for that capacity are not the sets of Lebesgue measure zero so we argue differently.
- ullet We construct a comparison function G which is a dyadic martingale.
- Use the fact that such a G has limits on a set of full measure.

29 / 31

- The same pattern of analysis for exponential contact leads to  $I^2(T, 2^{\alpha d(o, \cdot)})$  with  $\alpha = 1$ .
- The null sets for that capacity are not the sets of Lebesgue measure zero so we argue differently.
- ullet We construct a comparison function G which is a dyadic martingale.
- Use the fact that such a G has limits on a set of full measure.
- ullet And hence on a set of full measure  $Osc\left( \mathcal{G}
  ight) 
  ightarrow 0$

Rochberg ()

- The same pattern of analysis for exponential contact leads to  $l^2(T,2^{\alpha d(o,\cdot)})$  with  $\alpha=1$ .
- The null sets for that capacity are not the sets of Lebesgue measure zero so we argue differently.
- ullet We construct a comparison function G which is a dyadic martingale.
- Use the fact that such a G has limits on a set of full measure.
- ullet And hence on a set of full measure  $Osc\left( \mathcal{G}
  ight) 
  ightarrow 0$
- Use this to get the a.e.  $d\theta$  convergence for F.

Rochberg ()

• Other Hilbert spaces on the tree

30 / 31

- Other Hilbert spaces on the tree
- $p \neq 2$ , need to establish

Carleson measure ←⇒ capacity

in world of nonlinear potential theory.

30 / 31

- Other Hilbert spaces on the tree
- $p \neq 2$ , need to establish

Carleson measure ← capacity

in world of nonlinear potential theory.

• Discrete vs. Continuous; would like to know discrete capacity (E) = 0 if and only if continuous capacity (E) = 0, compare both to a graph capacity.

30 / 31

- Other Hilbert spaces on the tree
- $p \neq 2$ , need to establish

Carleson measure ← capacity

in world of nonlinear potential theory.

- Discrete vs. Continuous; would like to know discrete capacity (E) = 0 if and only if continuous capacity (E) = 0, compare both to a graph capacity.
- In general when a tree model captures the geometry and there is summability information for the local oscillation these ideas can be used; for instance p—harmonic functions.

• Suppose F = If is in  $\mathcal{D}_d$  and that  $|DF|^2$  is a Carleson measure for  $\mathcal{D}_d$  (i.e. F is in a BMO type space).

- Suppose F = If is in  $\mathcal{D}_d$  and that  $|DF|^2$  is a Carleson measure for  $\mathcal{D}_d$  (i.e. F is in a BMO type space).
- Thus  $I^*(I^*f^2)^2 \le CI^*f^2$ .

- Suppose F = If is in  $\mathcal{D}_d$  and that  $|DF|^2$  is a Carleson measure for  $\mathcal{D}_d$  (i.e. F is in a BMO type space).
- Thus  $I^*(I^*f^2)^2 \le CI^*f^2$ .
- Using that estimate and extending the previous techniques slightly one can show:

- Suppose F = If is in  $\mathcal{D}_d$  and that  $|DF|^2$  is a Carleson measure for  $\mathcal{D}_d$  (i.e. F is in a BMO type space).
- Thus  $I^*(I^*f^2)^2 \le CI^*f^2$ .
- Using that estimate and extending the previous techniques slightly one can show:
  - F has boundary limits through sets making exponential contact except of a set of capacity zero.

31 / 31

- Suppose F = If is in  $\mathcal{D}_d$  and that  $|DF|^2$  is a Carleson measure for  $\mathcal{D}_d$  (i.e. F is in a BMO type space).
- Thus  $I^*(I^*f^2)^2 \le CI^*f^2$ .
- Using that estimate and extending the previous techniques slightly one can show:
  - F has boundary limits through sets making exponential contact except of a set of capacity zero.
  - F has boundary limits through sets making doubly exponential contact except of a set of measure zero.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

31 / 31