
Capacity, Carleson Measures, and Exceptional Sets

Nicola Arcozzi (Bologna)
Richard Rochberg (St. Louis)
Eric Sawyer (Hamilton)

January 2008

Rochberg () Carleson Measures January 2008 1 / 31



The Dirichlet Space

The Dirichlet space, D:

f 2 Hol (D) , kf k2D = jf (0)j
2 +

Z
D

��f 0��2 < ∞.
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The Dyadic Dirichlet Space
The Tree

The tree, T , a rooted loopless graph, every point other than the root has
three nearest neighbors.

α � β means α 2 [o, β] the geodesic from the root o to β.
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The Dyadic Dirichlet Space
The Tree Boundary

A point of ∂T is an equivalence class of geodesics in�nite in one direction;
a a path to the abstract boundary,
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The Dyadic Dirichlet Space
The Tree in the Disk

Think of T as sitting inside D with the root o at 0.
Think of ∂T as being the same as T.
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The Dyadic Dirichlet Space

Operations on functions and measures on T

"Integration": sum the function along the geodesic from o.
If (α) = ∑

o�β�α
f (β).

Its adjoint: I �f (α) = ∑
β�α

f (β).

"di¤erentiation": Df (α) = f (α)� f (α�).
A measure µ on D induces a measure µT on T = T [ ∂T by......
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The Dyadic Dirichlet Space

Dd is the Dyadic Dirichlet space:

kf k2Dd = jf (o)j
2 + ∑

T nfog
jDf (α)j2 < ∞.

Dd is a simple but useful model for D.
More generally, function spaces on T model function spaces on D;
Besov spaces, spaces of p�harmonic functions,...
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Tents
Tents in the Disk

The tent over J, the shadow region below zJ .

and set ∂S(α) = S(α) \ ∂T
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Tents
Tents in the Tree

In particular, I �f (y) = ∑S (y ) f (x).Rochberg () Carleson Measures January 2008 9 / 31



Carleson Measures

A Carleson measure for D is a measure µ on D such that 9C > 0 so
that 8f 2 D Z

D
jf j2 dµ � C 2 kf k2 .

A Carleson measure for Dd is a measure µ on T such that 9C > 0 so
that 8f 2 Dd Z

T
jf j2 dµ � C 2 kf k2 .

In either case kµk is de�ned to be the smallest C such that works.
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Capacity

To make the discussion of capacity slightly simpler we will just
consider sets in the boundary T = ∂D � ∂T ,

For E � ∂D,Cap(E ) = inf
n
kf k2D : Re f � 1 on E

o
.

For E � ∂T ,CapT (E ) = inf
n
kf k2Dd : f � 1 on E

o
.

In fact Cap(E ) = 0 i¤ CapT (E ) = 0 which is one of the tools in
pulling results on Dd back to results on D.
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Characterization of Carleson Measures

Theorem (Stegenga 1980, ARS 2003)

For a positive measure µ on D the following are equivalent

1 µ is a Carleson measure for D

2 µT is a Carleson measure for Dd
3 µT satis�es a tree capacity condition. There is a constant C so that
for all sets E = [j∂S(xj ) in ∂T,

µT

�
[jS(xj )

�
� C CapT ([j∂S(xj )).

4 µT satis�es the tree condition. There is a constant C so that 8α 2 T

I �(I �µT )
2(α) � CI �µT (α)
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Two New Things Today

1 Quantitative relation between capacity of a set and properties of
Carleson measures supported on the set.

2 This establishes equivalence of two classes of null sets and gives an
alternative approach to exceptional sets for boundary convergence.
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Carleson Measures and Capacity

Theorem (ARS �07)

For E , a compact subset of ∂T ,

CapT (E ) = sup
Supp (µ)�E

µ(E )
kµkCM (T )

.

Corollary
E has capacity zero if and only if E is µ�null set for every Carleson
measure µ.

It is sometimes easier to show a set carries no nontrivial Carleson measures
than to estimate its capacity directly.
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The Idea at the Center of the Proof

The tree condition: I �(I �µT )
2(α) � CI �µT (α)

There are various ways to measure the capacity of a set; one involves
"energy integrals".

For µ a measure on the boundary, the quantity I �(I �µ)2(α) which
shows up in the tree condition is a quadratic expression in µ.

When you multiply it out, rearrange, and analyze, I �(I �µ)2(α) is
ROUGHLY the energy integral for the part of µ in S(α).

I �µ(α) is the mass of that part of µ.

Hence, roughly, the tree condition compares the energy of the
measure with its mass.
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Boundary Values and Exceptional Sets
For the Dirichlet Space�ahistoric

Fatou (1906)

Radial boundary values a.e. dθ.

Beurling (1940)

Finite radial variation with an exceptional set of directions of capacity
zero.
Hence �nite radial limits with an exceptional set of capacity zero.

Kinney (1963)

Have limits through approach regions which are tangent to the
boundary to �nite order, except for a set of capacity zero.

Nagel Rudin Shapiro (1982)

For approach regions making exponential contact still have
convergence a.e. dθ.

Aikawa, Mizuta, Twomey, others (1990�s� )

For approach regions with contact between algebraic and fully
exponential there is convergence with an exceptional set of capacity�

zero; capacity� is de�ned with respect to a di¤erent space.
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Boundary Values and Exceptional Sets
For the Dyadic Dirichlet Space

We prove analogous results for the Dyadic Dirichlet space. The basic
argument is

Find an auxiliary function F which controls the quantity of interest and
is in Dd .
Hence, essentially by de�nition, the set of boundary points where F has
an in�nite limit is a null set for all Carleson measures.
Hence, by the theorem, this set has capacity zero.

The Dyadic Dirichlet space is a model case. The approach is rather
general and we think it extends to other tree models, non-Hilbert
spaces, and spaces of continuous functions (harmonic, holomorphic,
p-harmonic,....). "Work in progress."

The approach focuses on tree geometry and tree combinatorics; in
terms of the boundary values the approach is doing bookkeeping
according to scale and position.
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Boundary Values and Exceptional Sets

Beurling�s Theorem for the Dyadic Dirichlet Space

Proof.
1 Pick F 2 Dd .

2 By de�nition of the norm, DF 2 l2 (T ) .
3 Hence G = I (jDF j) 2 Dd .
4 The boundary values of G are the radial variation of F so, by the
argument just outlined, F has �nite radial variation o¤ a set of
capacity zero,

5 and thus �nite radial limits o¤ a set of capacity zero.
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Extending this analysis to more complicated geometries.
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Radial Approach

Figure: We control F on the radius using jDF j at the nodes.
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NonTangential Approach

Figure: For control in a wedge we need to use jDF j at more points.
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NonTangential Approach� Constructing a Majorant

Figure: Each point on the radius looks after �nitely many other points.and then
the previous proof works.
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Approach with Algebraic Contact

Figure: With algebraic contact there are more loci of variation to control. We use
one point to control several long rows.
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Approach with Algebraic Contact

Figure: Use ∑max fjDF j on a rowg .
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Approach with Algebraic Contact

The values of the majorant at the circled point controls the variation down
two the green rows.

Figure: Now the earlier proof works.
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In Terms of Euclidean Geometry

Think of the upper halfplane and a contact region that touches the
boundary at the origin. The coordinates of an index point n steps from o
are � (0, 2�n) . The rows being majorized are kn steps further so their y
coordinates are � 2�n�kn. At that height the horizontal step size is
2�n�kn. These rows are kn steps below the index point so the width of the
row is

number of steps � step size = 2kn2�n�kn = 2�n

Hence the coordinates of the edge of the row are
�
2�n, 2�n�kn

�
; we are

on the curve y = jx jk+1 .

­0.1 0.0 0.1

0.05

0.10
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Semi-exponential Contacts�Constructing a Majorant

Figure: Now there are more rows to deal with.
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Semi-exponential Contact

The same idea is used but now the base point has to take
responsibility for a number of later rows which grows.

Cauchy Schwarz is used to estimate the sum of the squares of DG
and a factor

p
number of terms shows up.

The conclusion is that DG is not in l2 (T ) but is in l2(T , 2αd (o ,�) ) for
some α, 0 < α < 1.

Hence the previous proof goes through but now it shows that the set
on which G is in�nite�and hence F has boundary limits�will have null
capacity but for the capacity associated to l2(T , 2αd (o ,�)).
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Exponential Contact

The same pattern of analysis for exponential contact leads to
l2(T , 2αd (o ,�)) with α = 1.

The null sets for that capacity are not the sets of Lebesgue measure
zero so we argue di¤erently.

We construct a comparison function G which is a dyadic martingale.

Use the fact that such a G has limits on a set of full measure.

And hence on a set of full measure Osc (G )! 0

Use this to get the a.e. dθ convergence for F .
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How General is this Approach?

Other Hilbert spaces on the tree

p 6= 2, need to establish

Carleson measure () capacity

in world of nonlinear potential theory.

Discrete vs. Continuous; would like to know discrete capacity(E ) = 0
if and only if continuous capacity(E ) = 0, compare both to a graph
capacity.

In general when a tree model captures the geometry and there is
summability information for the local oscillation these ideas can be
used; for instance p�harmonic functions.
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Example with a Di¤erent Function Space on the Tree

Suppose F = If is in Dd and that jDF j2 is a Carleson measure for
Dd (i.e. F is in a BMO type space).

Thus I �(I �f 2)2 � CI �f 2.
Using that estimate and extending the previous techniques slightly
one can show:

F has boundary limits through sets making exponential contact except
of a set of capacity zero.
F has boundary limits through sets making doubly exponential contact
except of a set of measure zero.
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