Span of translates in $L^p(\mathbb{R})$, and zeros of Fourier transform

Nir Lev

Tel-Aviv University

Joint work with A. Olevskii

Problem of approximation in L^p on the real line.

Problem of approximation in L^p on the real line.

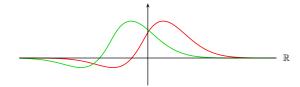
▶ Let $V \subset L^p(\mathbb{R})$, and suppose that:

Problem of approximation in L^p on the real line.

- ▶ Let $V \subset L^p(\mathbb{R})$, and suppose that:
- ▶ *V* is a linear subspace.

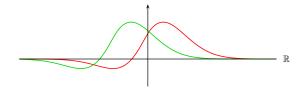
Problem of approximation in L^p on the real line.

- ▶ Let $V \subset L^p(\mathbb{R})$, and suppose that:
- V is a linear subspace.
- ▶ V is translation-invariant, i.e. if for every $f \in V$ we have $f(x \lambda) \in V$, for any $\lambda \in \mathbb{R}$.



Problem of approximation in L^p on the real line.

- ▶ Let $V \subset L^p(\mathbb{R})$, and suppose that:
- V is a linear subspace.
- ▶ V is translation-invariant, i.e. if for every $f \in V$ we have $f(x \lambda) \in V$, for any $\lambda \in \mathbb{R}$.



▶ Problem: given such V, when is it dense in $L^p(\mathbb{R})$?

Classical cases: p = 1, 2.

Classical cases: p = 1, 2.

▶ The set of common zeros of Fourier transforms:

$$Z(V) = \{ t \in \mathbb{R} : \widehat{f}(t) = 0 \quad \forall f \in V \}$$

Classical cases: p = 1, 2.

▶ The set of common zeros of Fourier transforms:

$$Z(V) = \{ t \in \mathbb{R} : \widehat{f}(t) = 0 \quad \forall f \in V \}$$

▶ p = 1: Z(V) is a well-defined, closed set.

Classical cases: p = 1, 2.

▶ The set of common zeros of Fourier transforms:

$$Z(V) = \{t \in \mathbb{R} : \widehat{f}(t) = 0 \quad \forall f \in V\}$$

- ightharpoonup p = 1: Z(V) is a well-defined, closed set.
- ho p = 2: Z(V) is defined up to a set of measure zero.

Classical cases: p = 1, 2.

▶ The set of common zeros of Fourier transforms:

$$Z(V) = \{t \in \mathbb{R} : \widehat{f}(t) = 0 \quad \forall f \in V\}$$

- ightharpoonup p = 1: Z(V) is a well-defined, closed set.
- ightharpoonup p = 2: Z(V) is defined up to a set of measure zero.

Theorem (Wiener, 1932)

V is dense in $L^1(\mathbb{R}) \iff Z(V)$ is empty.

Classical cases: p = 1, 2.

▶ The set of common zeros of Fourier transforms:

$$Z(V) = \{t \in \mathbb{R} : \widehat{f}(t) = 0 \quad \forall f \in V\}$$

- ightharpoonup p = 1: Z(V) is a well-defined, closed set.
- ightharpoonup p = 2: Z(V) is defined up to a set of measure zero.

Theorem (Wiener, 1932)

V is dense in $L^1(\mathbb{R}) \iff Z(V)$ is empty.

V is dense in $L^2(\mathbb{R}) \iff Z(V)$ is of measure zero.

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

$$\sum_{j=1}^{N} c_j \varphi(x-\lambda_j)$$

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

$$\sum_{j=1}^{N} c_j \varphi(x - \lambda_j) \quad \longmapsto \quad \widehat{\varphi}(t) \sum_{j=1}^{N} c_j e^{-i\lambda_j t}$$

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

$$\sum_{j=1}^{N} c_j \varphi(x-\lambda_j) \quad \longmapsto \quad \widehat{\varphi}(t) \sum_{j=1}^{N} c_j e^{-i\lambda_j t}$$

▶ The set of common zeros: $Z(\varphi) = \{t \in \mathbb{R} : \widehat{\varphi}(t) = 0\}$

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

$$\sum_{j=1}^{N} c_j \varphi(x - \lambda_j) \quad \longmapsto \quad \widehat{\varphi}(t) \sum_{j=1}^{N} c_j e^{-i\lambda_j t}$$

▶ The set of common zeros: $Z(\varphi) = \{t \in \mathbb{R} : \widehat{\varphi}(t) = 0\}$

Corollary

 φ is a generator in $L^1(\mathbb{R}) \iff \widehat{\varphi}(t) \neq 0$ everywhere.

Example

 $\varphi \in L^p(\mathbb{R})$ is a generator if the translates of φ span $L^p(\mathbb{R})$.

• $V = V(\varphi)$ the invariant subspace generated by φ .

$$\sum_{j=1}^{N} c_j \varphi(x - \lambda_j) \quad \longmapsto \quad \widehat{\varphi}(t) \sum_{j=1}^{N} c_j e^{-i\lambda_j t}$$

▶ The set of common zeros: $Z(\varphi) = \{t \in \mathbb{R} : \widehat{\varphi}(t) = 0\}$

Corollary

 φ is a generator in $L^1(\mathbb{R}) \iff \widehat{\varphi}(t) \neq 0$ everywhere. φ is a generator in $L^2(\mathbb{R}) \iff \widehat{\varphi}(t) \neq 0$ a.e.

$$V \subset L^p(\mathbb{R}), \quad 1$$

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ V dense in $L^p(\mathbb{R})$ \Rightarrow dense in $L^{p'}(\mathbb{R})$ $\forall p' > p$.

$$p$$
 2

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ V dense in $L^p(\mathbb{R})$ \Rightarrow dense in $L^{p'}(\mathbb{R})$ $\forall p' > p$.

No canonical definition of Z(V).

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ V dense in $L^p(\mathbb{R})$ \Rightarrow dense in $L^{p'}(\mathbb{R})$ $\forall p' > p$.

▶ No canonical definition of Z(V).

$$f \in L^p(\mathbb{R}) \Rightarrow \widehat{f} \in L^q(\mathbb{R}) \quad (q > 2, \ \frac{1}{p} + \frac{1}{q} = 1)$$

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ V dense in $L^p(\mathbb{R})$ \Rightarrow dense in $L^{p'}(\mathbb{R})$ $\forall p' > p$.

$$p$$
 2

▶ No canonical definition of Z(V).

$$f \in L^p(\mathbb{R}) \Rightarrow \widehat{f} \in L^q(\mathbb{R}) \quad (q > 2, \ \frac{1}{p} + \frac{1}{q} = 1)$$

Partial results due to Beurling, Edwards, Herz, Kinukawa, Newman, Segal.

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ V dense in $L^p(\mathbb{R})$ \Rightarrow dense in $L^{p'}(\mathbb{R})$ $\forall p' > p$.

$$p$$
 2

▶ No canonical definition of Z(V).

$$f \in L^p(\mathbb{R}) \Rightarrow \widehat{f} \in L^q(\mathbb{R}) \quad (q > 2, \ \frac{1}{p} + \frac{1}{q} = 1)$$

- Partial results due to Beurling, Edwards, Herz, Kinukawa, Newman, Segal.
- ▶ Beurling (1951): Let $V \subset (L^1 \cap L^p)(\mathbb{R})$. dim $Z(V) < 2 - \frac{2}{p} \implies V$ is dense in $L^p(\mathbb{R})$.

$$V \subset L^p(\mathbb{R}), \quad 1$$

$$V \subset L^p(\mathbb{R}), \quad 1$$

▶ Is it possible at all to describe when V is dense, in terms of the set Z(V) ?

$$V \subset L^p(\mathbb{R}), \quad 1$$

- ▶ Is it possible at all to describe when V is dense, in terms of the set Z(V) ?
- ▶ Suppose that for every $f \in V$, \hat{f} is continuous.

$$V \subset L^p(\mathbb{R}), \quad 1$$

- ▶ Is it possible at all to describe when V is dense, in terms of the set Z(V)?
- ▶ Suppose that for every $f \in V$, \hat{f} is continuous.
- ▶ Then Z(V) is a well-defined, closed set.

$$V \subset L^p(\mathbb{R}), \quad 1$$

- ▶ Is it possible at all to describe when V is dense, in terms of the set Z(V)?
- ▶ Suppose that for every $f \in V$, \hat{f} is continuous.
- ▶ Then Z(V) is a well-defined, closed set.

Main Result

For 1 it is impossible to characterize the translation invariant subspaces <math>V which are dense in $L^p(\mathbb{R})$ in terms of Z(V).

$$V \subset L^p(\mathbb{R}), \quad 1$$

- ▶ Is it possible at all to describe when V is dense, in terms of the set Z(V) ?
- ▶ Suppose that for every $f \in V$, \hat{f} is continuous.
- ▶ Then Z(V) is a well-defined, closed set.

Main Result

For 1 it is impossible to characterize the translation invariant subspaces <math>V which are dense in $L^p(\mathbb{R})$ in terms of Z(V).

Moreover: characterization of generators φ in $L^p(\mathbb{R})$ is impossible in terms of the zeros of $\widehat{\varphi}$.

Theorem

Theorem

For any $1 there exist <math>\varphi, \psi \in L^p(\mathbb{R})$ such that

i. $\widehat{\varphi}$ and $\widehat{\psi}$ are continuous, and have the same set of zeros.

Theorem

- i. $\widehat{\varphi}$ and $\widehat{\psi}$ are continuous, and have the same set of zeros.
- ii. φ is a generator in $L^p(\mathbb{R})$, but ψ is not.

Theorem

- i. $\widehat{\varphi}$ and $\widehat{\psi}$ are continuous, and have the same set of zeros.
- ii. φ is a generator in $L^p(\mathbb{R})$, but ψ is not.
- ▶ The same for $\ell_p(\mathbb{Z})$.

Theorem

- i. $\widehat{\varphi}$ and $\widehat{\psi}$ are continuous, and have the same set of zeros.
- ii. φ is a generator in $L^p(\mathbb{R})$, but ψ is not.
- ▶ The same for $\ell_p(\mathbb{Z})$.
- Probably for more general non-compact groups.

6. Result

Theorem

For any $1 there exist <math>\varphi, \psi \in L^p(\mathbb{R})$ such that

- i. $\widehat{\varphi}$ and $\widehat{\psi}$ are continuous, and have the same set of zeros.
- ii. φ is a generator in $L^p(\mathbb{R})$, but ψ is not.
- ▶ The same for $\ell_p(\mathbb{Z})$.
- Probably for more general non-compact groups.
- ▶ $\frac{4}{3}$ = conjugate of 4, uses a special property of the ℓ_4 norm:

$$\|\{c_n\}\|_4 = \left(\sum |c_n|^4\right)^{1/4}$$

How to construct a non-generator ψ ?

How to construct a non-generator ψ ?

▶ Let $E \subset \mathbb{R}$ be a closed set.

How to construct a non-generator ψ ?

- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If E supports a distribution S with $\widehat{S} \in L^q(\mathbb{R})$

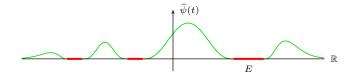
How to construct a non-generator ψ ?

- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If E supports a distribution S with $\widehat{S} \in L^q(\mathbb{R})$
- ▶ Then $\exists \psi \in L^p(\mathbb{R})$, $Z(\psi) = E$ which is not a generator.

How to construct a non-generator ψ ?

- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If E supports a distribution S with $\widehat{S} \in L^q(\mathbb{R})$
- ▶ Then $\exists \psi \in L^p(\mathbb{R})$, $Z(\psi) = E$ which is **not** a generator.

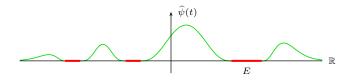
Proof. Let ψ be a Schwartz function, $Z(\psi) = E$.



How to construct a non-generator ψ ?

- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If E supports a distribution S with $\widehat{S} \in L^q(\mathbb{R})$
- ▶ Then $\exists \psi \in L^p(\mathbb{R})$, $Z(\psi) = E$ which is **not** a generator.

Proof. Let ψ be a Schwartz function, $Z(\psi) = E$.



$$\int_{\mathbb{R}} \psi(x-\lambda) \, \widehat{S}(x) \, dx = \langle \widehat{\psi}(t) \, e^{-i\lambda t}, S \rangle = 0.$$

Caution!

S supported by E, f(t) = 0 on $E \implies \langle f, S \rangle = 0$

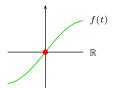
Caution!

S supported by E, f(t) = 0 on $E \Rightarrow \langle f, S \rangle = 0$

Example

The support of δ' is $\{0\}$.

$$\langle f,\delta'\rangle=-f'(0)$$



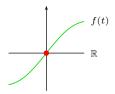
Caution!

S supported by E, f(t) = 0 on $E \implies \langle f, S \rangle = 0$

Example

The support of δ' is $\{0\}$.

$$\langle f,\delta'\rangle=-f'(0)$$



▶ If $\widehat{S} \in L^q(\mathbb{R})$ and f is smooth, then $\langle f, S \rangle = 0$.

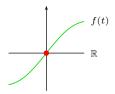
Caution!

S supported by E, f(t) = 0 on $E \implies \langle f, S \rangle = 0$

Example

The support of δ' is $\{0\}$.

$$\langle f, \delta' \rangle = -f'(0)$$

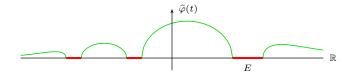


- ▶ If $\widehat{S} \in L^q(\mathbb{R})$ and f is smooth, then $\langle f, S \rangle = 0$.
- Related to theory of spectral synthesis.

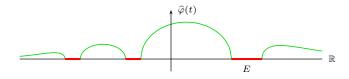
How to construct a generator φ ?

▶ Let $E \subset \mathbb{R}$ be a closed set.

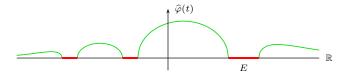
- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If a generator $\varphi \in L^p(\mathbb{R})$ exists, $Z(\varphi) = E$



- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If a generator $\varphi \in L^p(\mathbb{R})$ exists, $Z(\varphi) = E$
- ▶ Then E supports NO measure μ with $\widehat{\mu} \in L^q(\mathbb{R})$.



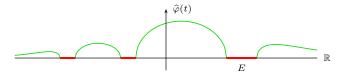
- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If a generator $\varphi \in L^p(\mathbb{R})$ exists, $Z(\varphi) = E$
- ▶ Then E supports NO measure μ with $\widehat{\mu} \in L^q(\mathbb{R})$.



Proof. Let μ be such a measure.

How to construct a generator φ ?

- ▶ Let $E \subset \mathbb{R}$ be a closed set.
- ▶ If a generator $\varphi \in L^p(\mathbb{R})$ exists, $Z(\varphi) = E$
- ▶ Then E supports NO measure μ with $\widehat{\mu} \in L^q(\mathbb{R})$.



Proof. Let μ be such a measure.

$$\int_{\mathbb{R}} \varphi(x-\lambda)\,\widehat{\mu}(x)\,dx = \int_{\mathbb{R}} \widehat{\varphi}(t)\,e^{-i\lambda t}\,d\mu(t) = 0.$$

Theorem (Piatetski-Shapiro, 1954) There exists a compact $E \subset \mathbb{R}$ such that

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

i. E supports a distribution S with $\widehat{S}(t) \to 0$, $|t| \to \infty$.

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S}(t) o 0$, $|t| o \infty$.
- ii. E supports NO measure μ with this property.

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S}(t) \to 0$, $|t| \to \infty$.
- ii. E supports NO measure μ with this property.

Theorem (L. and Olevskii, 2005)

For any q>2, there exists a compact $E\subset\mathbb{R}$ such that

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S}(t) \to 0$, $|t| \to \infty$.
- ii. E supports NO measure μ with this property.

Theorem (L. and Olevskii, 2005)

For any q>2, there exists a compact $E\subset\mathbb{R}$ such that

i. E supports a distribution S with $\widehat{S} \in L^q$.

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S}(t) \to 0$, $|t| \to \infty$.
- ii. E supports NO measure μ with this property.

Theorem (L. and Olevskii, 2005)

For any q > 2, there exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S} \in L^q$.
- ii. E supports NO measure μ with $\widehat{\mu} \in L^q$.

Theorem (Piatetski-Shapiro, 1954)

There exists a compact $E \subset \mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S}(t) \to 0$, $|t| \to \infty$.
- ii. E supports NO measure μ with this property.

Theorem (L. and Olevskii, 2005)

For any q>2, there exists a compact $E\subset\mathbb{R}$ such that

- i. E supports a distribution S with $\widehat{S} \in L^q$.
- ii. E supports NO measure μ with $\widehat{\mu} \in L^q$.
- ▶ The arithmetic structure of *E* plays a crucial role.

Some ingredients of the proof:

▶ Construction of set E, distribution S and generator φ .

- ▶ Construction of set E, distribution S and generator φ .
- ▶ Riesz-type products $\prod_{j=1}^{N} (1 + f(\nu^{j}t))$.

- ▶ Construction of set E, distribution S and generator φ .
- ► Riesz-type products $\prod_{j=1}^{N} (1 + f(\nu^{j}t))$.
- ▶ Probabilistic concentration estimates.

- ▶ Construction of set E, distribution S and generator φ .
- ► Riesz-type products $\prod_{j=1}^{N} (1 + f(\nu^{j}t)).$
- Probabilistic concentration estimates.
- ▶ Special property of the ℓ_4 norm: $\|\{c_n\}\|_4 = \left(\sum |c_n|^4\right)^{1/4}$.

Some ingredients of the proof:

- ▶ Construction of set E, distribution S and generator φ .
- ► Riesz-type products $\prod_{j=1}^{N} (1 + f(\nu^{j}t)).$
- Probabilistic concentration estimates.
- ▶ Special property of the ℓ_4 norm: $\|\{c_n\}\|_4 = \left(\sum |c_n|^4\right)^{1/4}$.

Thank you

