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1. Translation invariant subspaces

Problem of approximation in Lp on the real line.

I Let V ⊂ Lp(R), and suppose that:

I V is a linear subspace.

I V is translation-invariant, i.e. if for every f ∈ V we have
f (x − λ) ∈ V , for any λ ∈ R.

R

I Problem: given such V , when is it dense in Lp(R) ?
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2. Wiener’s theorems

Classical cases: p = 1, 2.

I The set of common zeros of Fourier transforms:

Z (V ) = {t ∈ R : f̂ (t) = 0 ∀f ∈ V }

I p = 1: Z (V ) is a well-defined, closed set.

I p = 2: Z (V ) is defined up to a set of measure zero.

Theorem (Wiener, 1932)

V is dense in L1(R) ⇐⇒ Z (V ) is empty.

V is dense in L2(R) ⇐⇒ Z (V ) is of measure zero.
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3. Generators

Example

ϕ ∈ Lp(R) is a generator if the translates of ϕ span Lp(R).

I V = V (ϕ) the invariant subspace generated by ϕ.

N∑

j=1

cj ϕ(x − λj) 7−→ ϕ̂(t)
N∑

j=1

cj e−iλj t

I The set of common zeros: Z (ϕ) = {t ∈ R : ϕ̂(t) = 0}

Corollary

ϕ is a generator in L1(R) ⇐⇒ ϕ̂(t) 6= 0 everywhere.

ϕ is a generator in L2(R) ⇐⇒ ϕ̂(t) 6= 0 a.e.
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4. Other values of p

V ⊂ Lp(R), 1 < p < 2.

I V dense in Lp(R) ⇒ dense in Lp′
(R) ∀p′ > p.

1 p 2

I No canonical definition of Z (V ).

f ∈ Lp(R) ⇒ f̂ ∈ Lq(R) (q > 2, 1
p + 1

q = 1)

I Partial results due to Beurling, Edwards, Herz, Kinukawa,
Newman, Segal.

I Beurling (1951): Let V ⊂ (L1 ∩ Lp)(R).

dim Z (V ) < 2− 2
p ⇒ V is dense in Lp(R).
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5. The characterization problem

V ⊂ Lp(R), 1 < p < 2.

I Is it possible at all to describe when V is dense,
in terms of the set Z (V ) ?

I Suppose that for every f ∈ V , f̂ is continuous.

I Then Z (V ) is a well-defined, closed set.

Main Result
For 1 < p < 4

3 it is impossible to characterize the translation
invariant subspaces V which are dense in Lp(R) in terms of Z (V ).

I Moreover: characterization of generators ϕ in Lp(R) is
impossible in terms of the zeros of ϕ̂.
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6. Result

Theorem
For any 1 < p < 4

3 there exist ϕ,ψ ∈ Lp(R) such that

i. ϕ̂ and ψ̂ are continuous, and have the same set of zeros.

ii. ϕ is a generator in Lp(R), but ψ is not.

I The same for `p(Z).

I Probably for more general non-compact groups.

I 4
3 = conjugate of 4, uses a special property of the `4 norm:

‖{cn}‖4 =
(∑
|cn|4

)1/4
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7. A non-generator

How to construct a non-generator ψ ?

I Let E ⊂ R be a closed set.

I If E supports a distribution S with Ŝ ∈ Lq(R)

I Then ∃ψ ∈ Lp(R), Z (ψ) = E which is not a generator.

Proof. Let ψ be a Schwartz function, Z (ψ) = E .

R
E

∫

R
ψ(x − λ) Ŝ(x) dx = 〈ψ̂(t) e−iλt ,S〉 = 0. �
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I Then ∃ψ ∈ Lp(R), Z (ψ) = E which is not a generator.

Proof. Let ψ be a Schwartz function, Z (ψ) = E .

R
E

∫

R
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8. Remark

Caution!

S supported by E , f (t) = 0 on E 6⇒ 〈f , S〉 = 0

Example

The support of δ′ is {0}.
〈f , δ′〉 = −f ′(0)

R

f(t)

I If Ŝ ∈ Lq(R) and f is smooth, then 〈f ,S〉 = 0.

I Related to theory of spectral synthesis.
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9. A uniqueness property

How to construct a generator ϕ ?

I Let E ⊂ R be a closed set.

I If a generator ϕ ∈ Lp(R) exists, Z (ϕ) = E

I Then E supports NO measure µ with µ̂ ∈ Lq(R).

R
E

Proof. Let µ be such a measure.

∫

R
ϕ(x − λ) µ̂(x) dx =

∫

R
ϕ̂(t) e−iλt dµ(t) = 0. �
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10. Piatetski-Shapiro’s phenomenon

Theorem (Piatetski-Shapiro, 1954)

There exists a compact E ⊂ R such that

i. E supports a distribution S with Ŝ(t)→ 0, |t| → ∞.

ii. E supports NO measure µ with this property.

Theorem (L. and Olevskii, 2005)

For any q > 2, there exists a compact E ⊂ R such that

i. E supports a distribution S with Ŝ ∈ Lq.

ii. E supports NO measure µ with µ̂ ∈ Lq.

I The arithmetic structure of E plays a crucial role.

Nir Lev Span of translates in Lp(R), and zeros of Fourier transform



10. Piatetski-Shapiro’s phenomenon

Theorem (Piatetski-Shapiro, 1954)

There exists a compact E ⊂ R such that

i. E supports a distribution S with Ŝ(t)→ 0, |t| → ∞.
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ii. E supports NO measure µ with this property.

Theorem (L. and Olevskii, 2005)

For any q > 2, there exists a compact E ⊂ R such that

i. E supports a distribution S with Ŝ ∈ Lq.
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ii. E supports NO measure µ with this property.

Theorem (L. and Olevskii, 2005)

For any q > 2, there exists a compact E ⊂ R such that

i. E supports a distribution S with Ŝ ∈ Lq.
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11. Remarks

Some ingredients of the proof:

I Construction of set E , distribution S and generator ϕ.

I Riesz-type products
N∏

j=1

(
1 + f (ν j t)

)
.

I Probabilistic concentration estimates.

I Special property of the `4 norm: ‖{cn}‖4 =
(∑
|cn|4

)1/4
.

Thank you
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