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I. Introduction

Let 3 be a compact Riemann surface (2-dim’l orientable manifold).

Y. can be described in different ways depending on how much structure we choose

to specify:
Topological description:

As topological spaces, Riemann surfaces (orientable manifolds of dimension 2) are

formed by gluing together edges of a polygon with 4¢ sides:
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Riemann surfaces

Topological description: Riemann surfaces are classified by their fundamental

group (the equivalence classes of loops under deformation). For genus g this is

g
1,1
7r:7r1(29) =< al,bl,...,ag,bg : Hajbja,j bj =1>
J=1

The a;,b; are a basis of Hi(X), chosen so that their intersection numbers are
a;j Nb; =1
and all other intersections are zero.

Smooth description: Riemann surfaces of genus g are smooth manifolds, and all
smooth structures on a compact Riemann surface of genus g are equivalent up to

diffeomorphism.

Holomorphic description: Riemann surfaces may also be described as complex

manifolds.



Topological spaces associated to X

One may associate topological spaces (moduli spaces) which admit different
descriptions depending on the amount of structure with which we have equipped

our Riemann surface.
A prototype is the Jacobian, which can be described in several ways:

Topological description: If we view X as a topological space and retain only

the structure of its fundamental group, we may define
Jac(X) = Hom (m,U(1)) = U(1)%
Smooth description: If we view X as a smooth manifold, the Jacobian has a
gauge theory description
Jac(X) = flat U(1) connections /gauge group
A={A=Aidy; + Asdys : A1, A3 € C(X)}

( U(1) connections)



The gauge group is G = C*°(X,U(1)); its Lie algebra is Lie(G) = C*°(X).

We find that
Agat /G = R /729 = U(1).

Holomorphic description: If we endow ¥ with a complex structure, Jac() is
identified with the moduli space which classifies holomorphic line bundles over X:

this is how the Jacobian arises naturally in algebraic geometry.



What happens when we replace U(1) by a compact nonabelian group G (e.g.
G = SU(2), or more generally G = SU(n))?

Topological description:

The natural generalization of Jac(X) is
M(X) = Hom (7, G)/G

where G acts on Hom (7, G) by conjugation.

Smooth description: M (X)) has a natural gauge theory description which

generalizes the description of the Jacobian:

M (%) = flat G connections on X

up to gauge equivalence.



Holomorphic description: M (X)) also has a description in algebraic geometry:
it is the moduli space of holomorphic G€ bundles over ¥, with an appropriate
GIT stability condition .

Example: G =U(n)

M(X) is the moduli space of (semistable) holomorphic vector bundles of rank n

and degree 0 over X..



Different descriptions of moduli spaces

Moduli spaces of flat connections on Riemann surfaces arise in a number of

different contexts:

1. Gauge theory: The properties of these moduli spaces are a prototype for
properties of moduli spaces arising in gauge theory related to manifolds of
dimension higher than 2 (e.g. Donaldson or Seiberg-Witten invariants in

dimension 4; Floer homology in dimension 3...)

Their properties may be useful in understanding problems involving Riemann

surfaces embedded in manifolds of higher dimension.

2. Topology: These moduli spaces provide a natural setting for various questions

involving topology of manifolds of dimension 2 and 3.

Example: The Casson invariant is an invariant of 3-manifolds; it arises naturally
as the intersection number of two Lagrangian submanifolds in a moduli space of

flat connections.

3. Mathematical physics: These moduli spaces arise from the study of the

Yang-Mills equations on a manifold of dimension 2.

Many topics of recent interest in quantum field theory are related to them (for

example, Chern-Simons gauge theory).



4. Algebraic geometry: These moduli spaces have surprising properties in the

context of algebraic geometry.

Example: the Verlinde formula, a formula for the dimension of the space of
holomorphic sections of a line bundle £ over the moduli space. This formula is
remarkable since it is usually difficult to explicitly determine the number of

holomorphic sections of a bundle over a complex manifold.
5. Symplectic geometry:

These moduli spaces are symplectic manifolds and may be studied from that point

of view.



6. Relation to symplectic and geometric invariant theory quotients:

Atiyah and Bott (1982) exhibited these moduli spaces as symplectic quotients (an
infinite dimensional construction): the space of all connections A on ¥ is acted on

by the gauge group ¢ with moment map the curvature
A Fy
so the symplectic quotient is the moduli space of flat connections up to

equivalence under the action of the gauge group.

These moduli spaces are interesting examples of quotient constructions in

symplectic geometry and geometric invariant theory.

Atiyah-Bott; Guillemin-Sternberg; Kirwan; Mumford — The symplectic quotient
by a (compact) group G is equivalent to the geometric invariant theory quotient

by the complexification G©.
(Mumford, Fogarty, Kirwan, GIT)



II. Moduli spaces of flat connections on Riemann surfaces

I1.1 General properties
The objects of interest are the flat connections on ..

A connection specifies a way to do parallel transport in a principal bundle over X
with structure group G. If the bundle can be trivialized, it is equivalent to the
product bundle > x G.

There are many different ways to specify the trivialization: the choice of a

trivialization is given by an element of the gauge group
G = Maps(%, G),

the (smooth) maps from ¥ to GG. The Lie algebra of G is the smooth maps from %

to Lie(G). The gauge group acts on the space of connections:

A g tAg+ g dg



For any closed loop ~ in XJ, a connection determines a holonomy, which is the
group element g such that the image of parallel transport around ~ starting at a

point 4(0) in the fiber above 7(0) is obtained by multiplying 7(0) by g.

If the connection is flat (the curvature F'4 is zero), then the parallel transport is
not changed by continuous deformations of the loop (as long as these deformations
keep the beginning point of the loop fixed). It depends only on the class of the
loop as an element of the fundamental group ™ (equivalence classes of loops under

deformation).

In fact the action of the gauge group takes the subspace of flat connections to
itself.



It is not hard to see that the space of gauge equivalence classes of flat connections

is identified with the representations of 7 into G (mod conjugation).

This space is called the moduli space M of flat connections mod gauge

transformations.

Via the holonomy, a flat connection determines a representation of the
fundamental group. In fact all representations arise in this way and the

correspondence makes the two sets equivalent.



Representations of the fundamental group of X

Ex. 1 2-sphere S?

The fundamental group of the 2-sphere is trivial (any closed loop can be shrunk to

a point)
Ex. 2 Torus St x St

The fundamental group of the torus is generated by two loops a and b and they
commute with each other (the diagram shows that ab = ba). Thus the

fundamental group is commutative.



Ex. 3: Higher genus

More generally, a Riemann surface of genus g (g-holed torus) is formed by taking a
polygon with 4¢g sides and gluing the sides together. The sides of the polygon

become the generators of the group.

Now, however, the group is not commutative: from the information that the loop
around the outside of the polygon can be shrunk to a point we learn only that the

generators satisfy the relation
arbi(a1) T (b1) T agbg(ag) T (b)) TH = 1

In order to specify a representation p of m into a compact Lie group G we must
specify the elements A;, B; in G to which p sends each loop a;, b;. In order that it

should be a representation we insist that the relation is preserved:

AlBl<A1)_1(Bl)_1 " -Ang(Ag)_l(Bg)_l =1 (D)

We must also quotient out the action of G by conjugation on the space of

representations:

g€G: A — g 'Ajg;Bi— g 'Big.



Ex. 4 G = U(1), the circle group. Note that this group is commutative, so the

conjugation action is the identity map
Aj— Ai, Bi — B;

for any g € G. Also, any elements A;, B; of G automatically satisfy the relation (I)
because A;B;(A;)"1(B;)"! =1 for any A; and B;.

So for this group the space M is simply U(1)%9.

Ex. 5 X =S!x S!, G =U(n) (not commutative)

In this case if we choose elements A and B in G to represent the two loops a and b

in ST x S!, we need to insist that
AB = BA

(because ab = ba in 7). Every element of G is conjugate to a diagonal matrix with

unit complex numbers e along the diagonal (i.e. it can be diagonalized).



If we have diagonalized A, in general the only elements B which commute with it
are the diagonal matrices with unit complex number entries. Call the space of

such matrices T'.

If A and B are both in T', what is left over of the conjugation action (i.e. what

elements of G will conjugate T into itself)?

In general the elements of G that will do this act via a finite group isomorphic to
the permutation group .5,, on n letters, which acts by permuting the diagonal

entries.
(Note: this is the Weyl group W = N(T)/T)

So we find that
M=TxT/W



Ex. 6: The general case

G = U(n), Riemann surface with g > 1: In the case when G is a noncommutative

group (such as U(n)) the moduli space is more complicated, since:

1. The relation between the images of the generators (imposed by the fact that
the loop around the boundary of the polyhedron can be shrunk to a point) is

no longer automatically satisfied
2. The action of the group by conjugation is now nontrivial

In fact in this case the moduli space M is not smooth; we replace it by a smooth
analogue obtained by cutting out a small disc in > and requiring that the
representation send the loop around the boundary of the disc not to 1 but to the

2mid/n which generates the n-th

product of the identity matrix and a root of unity e
roots of unity. This moduli space (denoted M (n,d)) is in fact smooth, and shares

many properties with the more natural space M.



I1.2 Connections

The space A of all connections is simply the vector space of 1-forms tensored with

Lie(G).
What about the tangent space to the space of flat connections?

The curvature is the following quantity
1
Fp=dA+ 5[14,14]

Infinitesimally, if F'l4 = 0 the condition that F4., = 0 translates to
da+ [A,a] =0

We write this as
daa =0

d 4 is an operator taking Lie(G)-valued differential forms of degree p to
Lie(G)-valued differential forms of degree p + 1 and satisfying

dyody = 0.



Tangent space

At the infinitesimal level, the image of 0-forms under d4 is the tangent space to
the orbits of the group of gauge transformations. Thus the tangent space to the

moduli space M is the space

{a € Q' ® Lie(G) | daa =0}

1 _
H(X,ds) = {dad | ¢ € Q0 @ Lie(G)}

We can see from this that M has a symplectic form, a nondegenerate

skew-symmetric pairing on the tangent space.

At the level of the vector space A of all connections, this just comes from the

wedge product on differential forms, combined with an inner product <, > on

Lie(G).

One can see (using Stokes’ theorem) that the wedge product descends to a
skew-symmetric pairing on H'(X, d4); in fact this pairing is nondegenerate. (If G

is abelian, this pairing is just the cup product on de Rham cohomology.)

It follows that M has a symplectic structure.



I1.3 Cohomology of U(1) moduli spaces

Let us revisit the space M regarded as flat connections modulo gauge

transformations in the case when G = U(1).
A connection A is simply a 1-form 222:1 A;dx* on .
The holonomy of A around a cycle ~(t) in X is

il A

Y

since the parallel transport satisfies the equation

Y iAW),

The connection A is flat <= dA = 0 in terms of the exterior differential d.



The image of an infinitesimal gauge transformation expi¢ (where ¢ is a function

on ) is the connection d¢.

Thus when we take the quotient of the flat connections by those that arise as the
image of infinitesimal gauge transformations we get
{A|dA = 0}
{do}
In de Rham cohomology this give the first cohomology H!(X; R) of U(1)?%9, which
is the direct sum of 2¢g copies of the first cohomology group of U(1):

H'(Z;R) = R%

If we want to take the quotient of the space of flat connections not only by those
gauge transformations which arise as images of infinitesimal gauge transformations
under the exponential map, but rather by the full gauge group, we must divide by

an additional Z?29:
Ap/G = RQQ/ZQQ o~ (51)29.

We recover our previous description of the moduli space.



The generators of the cohomology come from the generators of the cohomology for

U(l):

S'=U(1) ={e}
so the cohomology is generated by the 1-form df.

There is one relation df A df = 0 (since there are no nonzero 2-forms on the

1-dimensional manifold U(1)).

Thus the cohomology of the moduli space U(1)%9 has 2g generators db;,

1 =1,...,2¢g and the only relations are that
do; N\ db; = —do; N do;

(and in particular df; A df; = 0).

So the cohomology is an exterior algebra on 2g generators of degree 1.



II.4 Cohomology: the general case

We would like to find the analogues of these generators and relations for the case

of M when G is a noncommutative group such as U(n) or SU(n).

Here the generators of the cohomology ring are obtained as follows. There is a
vector bundle U (the “universal bundle”) over M x ¥, so for each point x in M
the restriction to x x X is a vector bundle over . We take a connection A on U/
and decompose polynomials in its curvature F4 (for example Trace(F)) into the

product of closed forms on X and closed forms on M.



We then integrate these forms over cycles in 3 (a point or 0-cycle, the 1-cycles a;
and b;, or the 2-cycle given by the entire Riemann surface ) to produce closed

forms on M, which represent the generators of the cohomology ring of M.

These classes generate the cohomology of M (if we are allowed to multiply them

as well as to add them).

Ex. 1 One important cohomology class is the cohomology class of the symplectic

form on M.

Ex. 2 Another important family of classes are those obtained by evaluating the

classes on M x X at a point in X.



ITI. Witten’s formulas

Witten (1991-2) obtained formulas for intersection numbers in the cohomology of

moduli spaces.

In particular, he obtained formulas for the symplectic volume of the moduli spaces.
For SU(2) these formulas are as follows.

Example: n =2,d =1 (Donaldson 1992; Thaddeus 1991)

The structure of the cohomology ring can be reduced to knowing the intersection

numbers of all powers of the two even dimensional generators
eac H*(M(2,1))
o feH*(M(2,1))

These are as follows



(where a is the class arising from the inner product
Q(B) = Trace(B?)

evaluated at a point in 3, and f is the cohomology class of the symplectic form on
M(2,1)):

/ o’ exp f

M(2,1)

(—1y (-1
Z N

- 99—2.2(9—1—7) n29—2—2j
n>0

—1) o .
- gy (1= 2 -2 2)

Here we have used

and we use the fact that [ 1o =0



(where the integral denotes evaluation on the fundamental class of M (2,1)) unless

the degree of o equals the dimension of M (2,1).

We note that the formulas for intersection numbers can be written in terms of a

sum over irreducible representations of G.

Ex.: The symplectic volume of the moduli space M of flat G connections is given
by the “Witten zeta function”:

1
/M exp(f) ~ zR: (dim R)QQ_Q

where we sum over irreducible representations R of GG. In the special case of

SU(2) we have
[ e~ S
< ~N A
M(2,1) P n29—2

n
where we sum over the irreducible representations of SU(2), which are

parametrized by their dimension n.



IV. Mathematical proof of Witten’s formulas

The moduli space is a symplectic quotient

n=1(0)/6.

where p is the moment map (collection of Hamiltonian functions whose

Hamiltonian flow generates the action of a group G on a symplectic manifold M):

1. Infinite-dimensional symplectic quotient of the space of all connections A by

the gauge group G: the moment map of a connection A is its curvature F'y, so
1~ 1(0)/G is the moduli space M.

2. Finite-dimensional symplectic quotient of a (finite dimensional) space of flat
connections on a punctured Riemann surface, by the action of the

finite-dimensional group G



We use formulas (Jeffrey-Kirwan) for intersection numbers in a symplectic
quotient, in terms of the restriction to the fixed points of the action of a maximal
commutative subgroup of G (for G = U(n) this subgroup is the diagonal matrices

U(1)™): the answer is given in terms of
1. The action of GG on the tangent space at the fixed points
2. The values of the moment map at the fixed points
3. The restriction of differential forms to the fixed point set of the U(1)" action

Using these methods we recover Witten’s formulas.



Dictionary between physics and mathematics

Mathematics Physics

e connections Q' (X) ® g Fields: A

e flat connections o Extrema: L4 =0
M (Euler-Lagrange)
e cenerators of the e Observables
ring H*(M) (BRST cohomology
classes)
e exterior e BRST differential

differential d 4

e symplectic volume e Partition function
of M
e intersection nos. e Correlation functions

in M
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