Statistical Mechanics and Gaussian Integrals

David C. Brydges

March 25, 2008, Fields Institute

Abstract

A very long random walk, seen from so far away that individual steps cannot be resolved, is the continuous random path called Brownian motion. This is a rough statement of Donsker's theorem and it is an example of how models in statistical mechanics fall into equivalence classes classified by their scaling limits. One quite general way to understand scaling limits is to exploit combinatorial connections with Gaussian Integration and then to use the renormalisation group to study the resulting almost Gaussian integrals.

Random walk $\Phi: \mathbb{N} \rightarrow \mathbb{R}$

Random walk $\Phi: \mathbb{N} \rightarrow \mathbb{R}$

Random walk $\Phi: \mathbb{N} \rightarrow \mathbb{R}$

\mathbb{N} is (discrete) time

A Random walk Φ

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition:

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi
$$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}}
$$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \Phi_{2} \mid \Phi_{1}}
$$

A Random walk Φ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \phi_{2} \mid \phi_{1}} \ldots I\left(\phi_{n}-\phi_{n-1}\right)
$$

A Random walk ϕ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \Phi_{2} \mid \Phi_{1}} \ldots I\left(\phi_{n}-\phi_{n-1}\right)
$$

where $I: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

A Random walk ϕ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \Phi_{2} \mid \Phi_{1}} \ldots I\left(\phi_{n}-\phi_{n-1}\right)
$$

where $I: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

$$
\text { probability } \int I(\phi) d \phi=1
$$

A Random walk ϕ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \phi_{2} \mid \Phi_{1}} \ldots I\left(\phi_{n}-\phi_{n-1}\right)
$$

where $I: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that
probability $\int I(\phi) d \phi=1$
mean zero $\int \phi I(\phi) d \phi=0$

A Random walk ϕ

is a sequence of random positions: $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$
Think of it as a random function $\Phi: \mathbb{N} \rightarrow \mathbb{R}$ on the one dimensional lattice \mathbb{N}

Boundary Condition: $\Phi_{0}=0$
The joint distribution of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$

$$
d^{n} \phi \underbrace{I\left(\phi_{1}-\phi_{0}\right)}_{\text {density of } \Phi_{1}} \underbrace{I\left(\phi_{2}-\phi_{1}\right)}_{\text {density of } \phi_{2} \mid \Phi_{1}} \ldots I\left(\phi_{n}-\phi_{n-1}\right)
$$

where $I: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that
probability $\int I(\phi) d \phi=1$
mean zero $\int \phi I(\phi) d \phi=0$
variance $\int \phi^{2} I(\phi) d \phi=1$

What does Φ look like from far away

What does Φ look like from far away

Scaling limit

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ for $L \rightarrow \infty$

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ for $L \rightarrow \infty$
Donsker 1951

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit QFT

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT Is QFT a fundamental theory?

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT Is QFT a fundamental theory?
Stat. Mech.

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT Is QFT a fundamental theory?
Stat. Mech. Time \mathbb{N}

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT Is QFT a fundamental theory?
Stat. Mech. Time \mathbb{N} becomes (Euclidean) spacetime

What does Φ look like from far away

Scaling limit $L^{-\frac{1}{2}} \Phi_{\lfloor L t]}$ for $L \rightarrow \infty$
Donsker $1951 L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor} \rightarrow B_{t}$ (Brownian Motion)

Universality All Local Functions I give the same scaling limit
QFT This limit, Brownian motion, is a Euclidean Quantum Field Theory
CLT Is QFT a fundamental theory?
Stat. Mech. Time \mathbb{N} becomes (Euclidean) spacetime \mathbb{Z}^{d}

Recap

Recap

Local functions of ϕ

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} I_{i}$
Law for $\Phi_{i \in \Lambda}$

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} I_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} I_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit $\Lambda \rightarrow \mathbb{N}$ determines law $d P$ of Φ

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit $\Lambda \rightarrow \mathbb{N}$ determines law $d P$ of Φ
such that

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit $\Lambda \rightarrow \mathbb{N}$ determines law $d P$ of Φ
such that $\int d P f(\phi)=\lim _{\Lambda \rightarrow \mathbb{N}} \int d P_{\wedge} f(\phi)$

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit $\Lambda \rightarrow \mathbb{N}$ determines law $d P$ of Φ
such that $\int d P f(\phi)=\lim _{\Lambda \rightarrow \mathbb{N}} \int d P_{\wedge} f(\phi)$
Scaling Limit

Recap

Local functions of $\phi I_{i}=I\left(\phi_{i}-\phi_{i-1}\right)$
Global function $I^{\wedge}:=\prod_{i \in \Lambda} l_{i}$
Law for $\Phi_{i \in \Lambda} d P_{\wedge}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$
Infinite Volume Limit $\Lambda \rightarrow \mathbb{N}$ determines law $d P$ of Φ
such that $\int d P f(\phi)=\lim _{\wedge \rightarrow \mathbb{N}} \int d P_{\wedge} f(\phi)$
Scaling Limit Law for $L^{-\frac{1}{2}} \Phi_{\lfloor L t\rfloor}$ in limit $L \rightarrow \infty$.

Statistical Mechanics

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}
$\Lambda \subset \mathbb{Z}^{d}$

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}
$\Lambda \subset \mathbb{Z}^{d}$

Boundary Condition

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}
$\Lambda \subset \mathbb{Z}^{d}$

Boundary Condition $\Phi=0$ outside Λ

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}
$\Lambda \subset \mathbb{Z}^{d}$

Boundary Condition $\Phi=0$ outside Λ
Finite volume law

Statistical Mechanics

Think of a random surface over \mathbb{Z}^{d}
$\Lambda \subset \mathbb{Z}^{d}$

Boundary Condition $\Phi=0$ outside Λ
Finite volume law $d P_{\Lambda}=\frac{1}{\text { Normalisation }} I^{\wedge} d^{\wedge} \phi$

Example of a Local Function, anharmonic crystal

Example of a Local Function, anharmonic crystal

Local

Example of a Local Function, anharmonic crystal

$$
\text { Local } I_{x}=e^{-\sum_{y \sim x} V\left(\phi_{y}-\phi_{x}\right)}
$$

Example of a Local Function, anharmonic crystal

$$
\text { Local } I_{x}=e^{-\sum_{y \sim x} V\left(\phi_{y}-\phi_{x}\right)}
$$

Global

Example of a Local Function, anharmonic crystal

$$
\text { Local } I_{x}=e^{-\sum_{y \sim x} V\left(\phi_{y}-\phi_{x}\right)}
$$

Global $\boldsymbol{I}^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y} V\left(\phi_{x}-\phi_{y}\right)}$

Example of a Local Function, anharmonic crystal

$$
\begin{aligned}
& \text { Local } I_{x}=e^{-\sum_{y \sim x} V\left(\phi_{y}-\phi_{x}\right)} \\
& \text { Global } I^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y} V\left(\phi_{x}-\phi_{y}\right)}
\end{aligned}
$$

Think of ϕ_{x} as the displacement of an atom in a crystal from equilibrium position at $x \in \mathbb{Z}^{d}$.

Example of a Local Function, anharmonic crystal

$$
\begin{aligned}
& \text { Local } I_{x}=e^{-\sum_{y \sim x} V\left(\phi_{y}-\phi_{x}\right)} \\
& \text { Global } I^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y} V\left(\phi_{x}-\phi_{y}\right)}
\end{aligned}
$$

Think of ϕ_{x} as the displacement of an atom in a crystal from equilibrium position at $x \in \mathbb{Z}^{d}$.

Then Φ is a sound wave (phonon) in the crystal.

Massless Gaussian

Massless Gaussian

Local

Massless Gaussian

$$
\text { Local } I_{x}=e^{-\frac{1}{2} \sum_{y \sim x}\left(\phi_{y}-\phi_{x}\right)^{2}}
$$

Massless Gaussian

$$
\text { Local } I_{x}=e^{-\frac{1}{2} \sum_{y \sim x}\left(\phi_{y}-\phi_{x}\right)^{2}}
$$

Global

Massless Gaussian

$$
\begin{aligned}
& \text { Local } I_{x}=e^{-\frac{1}{2} \sum_{y \sim x}\left(\phi_{y}-\phi_{x}\right)^{2}} \\
& \text { Global } I^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y}\left(\phi_{x}-\phi_{y}\right)^{2}}
\end{aligned}
$$

Massless Gaussian

$$
\begin{aligned}
& \text { Local } I_{x}=e^{-\frac{1}{2} \sum_{y \sim x}\left(\phi_{y}-\phi_{x}\right)^{2}} \\
& \text { Global } I^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y}\left(\phi_{x}-\phi_{y}\right)^{2}}
\end{aligned}
$$

Intuition

Massless Gaussian

Local $I_{x}=e^{-\frac{1}{2} \sum_{y \sim x}\left(\phi_{y}-\phi_{x}\right)^{2}}$
Global $I^{\wedge}=e^{-\frac{1}{2} \sum_{x \sim y}\left(\phi_{x}-\phi_{y}\right)^{2}}$
Intuition $I^{\wedge} \approx e^{-\frac{1}{2} \int_{\Lambda}(\nabla \phi)^{2}}$

Scaling limit of massless Gaussian

Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian

Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian
2. $\Phi(x) \underbrace{=}_{\text {in distribution }} L^{[\phi]} \Phi(L x)$

Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian
2. $\Phi(x) \underbrace{=}_{\text {in distribution }} L^{[\phi]} \Phi(L x)$
3. where $[\phi]=\frac{d-2}{2}, d \neq 2$.

Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian
2. $\Phi(x) \underbrace{=}_{\text {in distribution }} L^{[\phi]} \Phi(L x)$
3. where $[\phi]=\frac{d-2}{2}, d \neq 2$.
[ϕ] is called the canonical dimension of Φ

Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian
2. $\Phi(x) \underbrace{=}_{\text {in distribution }} L^{[\phi]} \Phi(L x)$
3. where $[\phi]=\frac{d-2}{2}, d \neq 2$.
[ϕ] is called the canonical dimension of Φ
Brownian motion is case $d=1$, for which $[\phi]=\frac{1-2}{2}=-\frac{1}{2}$

Typical Theorem

Typical Theorem

1. If the local function $I=I(\nabla \phi)$ is lattice reflection invariant and even, with derivatives bounded by $\epsilon \exp \left(\delta|\nabla \phi|^{2}\right)$ then scaling limit exists and is, up to a finite scaling, the massless Gaussian.

Typical Theorem

1. If the local function $I=I(\nabla \phi)$ is lattice reflection invariant and even, with derivatives bounded by $\epsilon \exp \left(\delta|\nabla \phi|^{2}\right)$ then scaling limit exists and is, up to a finite scaling, the massless Gaussian.
2. Gawedski-Kupiainen 84 using RG.

Typical Theorem

1. If the local function $I=I(\nabla \phi)$ is lattice reflection invariant and even, with derivatives bounded by $\epsilon \exp \left(\delta|\nabla \phi|^{2}\right)$ then scaling limit exists and is, up to a finite scaling, the massless Gaussian.
2. Gawedski-Kupiainen 84 using RG.
3. 2007 Park City Lectures on my homepage

Typical Theorem

1. If the local function $I=I(\nabla \phi)$ is lattice reflection invariant and even, with derivatives bounded by $\epsilon \exp \left(\delta|\nabla \phi|^{2}\right)$ then scaling limit exists and is, up to a finite scaling, the massless Gaussian.
2. Gawedski-Kupiainen 84 using RG.
3. 2007 Park City Lectures on my homepage
4. Log concavity, Spencer-Naddaf 97.

Typical Theorem

1. If the local function $I=I(\nabla \phi)$ is lattice reflection invariant and even, with derivatives bounded by $\epsilon \exp \left(\delta|\nabla \phi|^{2}\right)$ then scaling limit exists and is, up to a finite scaling, the massless Gaussian.
2. Gawedski-Kupiainen 84 using RG.
3. 2007 Park City Lectures on my homepage
4. Log concavity, Spencer-Naddaf 97.
5. RG cancels the $\exp (O(\Lambda))$ in numerator and denominator of

$$
\frac{1}{\text { Normalisation }} \int \phi_{x} \phi_{y} I^{\wedge} d \mu
$$

so accurately that we see the correct decay in $x-y$ after taking $\lim _{\wedge \uparrow}$.

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Moments $\quad \int e^{-\frac{\phi^{2}}{2}} \phi^{n} d \phi=$

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Moments $\quad \int e^{-\frac{\phi^{2}}{2}} \phi^{n} d \phi=\left(e^{\frac{1}{2} \Delta} \phi^{n}\right)_{\phi=0}$

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Moments $\quad \int e^{-\frac{\phi^{2}}{2}} \phi^{n} d \phi=\left(e^{\frac{1}{2} \Delta} \phi^{n}\right)_{\phi=0}$

$$
\Delta=\frac{\partial^{2}}{\partial \phi^{2}}
$$

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Moments $\quad \int e^{-\frac{\phi^{2}}{2}} \phi^{n} d \phi=\left(e^{\frac{1}{2} \Delta} \phi^{n}\right)_{\phi=0}$

$$
\Delta=\frac{\partial^{2}}{\partial \phi^{2}}
$$

ϕ^{n} can be replaced by any polynomial P

Part II. Wick's theorem

$$
d \phi=\frac{d \phi}{\sqrt{2 \pi}}
$$

Moments $\quad \int e^{-\frac{\phi^{2}}{2}} \phi^{n} d \phi=\left(e^{\frac{1}{2} \Delta} \phi^{n}\right)_{\phi=0}$

$$
\Delta=\frac{\partial^{2}}{\partial \phi^{2}}
$$

ϕ^{n} can be replaced by any polynomial P
Proof.
Compare two ways of solving $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u$,
(a) $u(t, \phi)=\int e^{-\frac{\left(\phi-\phi^{\prime}\right)^{2}}{2 t}} P\left(\phi^{\prime}\right) d \phi^{\prime}$,
(b) $u(t, \phi)=e^{\frac{t}{2} \Delta} P(\phi)$

Many variables

Many variables

A is a symmetric matrix

Many variables

A is a symmetric matrix

$$
\int e^{-\frac{(\phi, A \phi)}{2}} P d^{\wedge} \phi=\left(e^{\frac{1}{2} \Delta} P\right)_{\phi=0}
$$

Many variables

A is a symmetric matrix

$$
\begin{gathered}
\int e^{-\frac{(\phi, A \phi)}{2}} P d^{\wedge} \phi=\left(e^{\frac{1}{2} \Delta} P\right)_{\phi=0} \\
\Delta=\sum_{x, y \in \Lambda}\left(A^{-1}\right)_{x y} \frac{\partial^{2}}{\partial \phi_{x} \partial \phi_{y}} .
\end{gathered}
$$

Example

Example

$$
\int e^{-\frac{(\phi, A \phi)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\wedge} \phi
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{(\phi, A \phi)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\wedge} \phi \\
& =\left(e^{\frac{1}{2} \Delta} \phi_{a}^{2} \phi_{b}^{2}\right)_{\phi=0}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{(\phi \cdot A \phi)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\wedge} \phi \\
& =\left(e^{\frac{1}{2} \Delta} \phi_{a}^{2} \phi_{b}^{2}\right)_{\phi=0} \\
& \propto \quad \Delta^{2} \phi_{a}^{2} \phi_{b}^{2},
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{\left(\phi_{A} A+\right)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\Lambda} \phi \\
& =\left(e^{\frac{1}{2} \Delta} \phi_{a}^{2} \phi_{b}^{2}\right)_{\phi=0} \\
& \propto \quad \Delta^{2} \phi_{a}^{2} \phi_{b}^{2}, \quad \Delta=\sum_{x, y \in \Lambda}\left(A^{-1}\right)_{x y} \frac{\partial^{2}}{\partial \phi \partial_{x} \phi_{y}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{(\phi, A \phi)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\Lambda} \phi \\
& =\left(e^{\frac{1}{2} \Delta \phi_{a}^{2} \phi_{b}^{2}}\right)_{\phi=0} \\
& \propto \quad \Delta^{2} \phi_{a}^{2} \phi_{b}^{2}, \quad \Delta=\sum_{x, y \in \Lambda}\left(A^{-1}\right)_{x \gamma} \frac{\partial^{2}}{\partial \phi_{x} \phi_{y}} \\
& \propto
\end{aligned} \quad\left(A^{-1}\right)_{\partial, a}\left(A^{-1}\right)_{b, b}+\quad .
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{(\phi, A \Delta)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\Lambda} \phi \\
& =\left(e^{\frac{1}{2} \Delta} \phi_{a}^{2} \phi_{b}^{2}\right)_{\phi=0} \\
& \propto \quad \Delta^{2} \phi_{a}^{2} \phi_{b}^{2} \quad \Delta=\sum_{x, y \in \Lambda}\left(A^{-1}\right)_{x y} \frac{\partial^{2}}{\partial \phi \not \partial \phi \phi_{y}} \\
& \propto \quad\left(A^{-1}\right)_{a, a}\left(A^{-1}\right)_{b, b}+ \\
& + \\
& +\left(A^{-1}\right)_{a, b}\left(A^{-1}\right)_{b, a}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int e^{-\frac{(\phi, A \phi)}{2}} \phi_{a}^{2} \phi_{b}^{2} d^{\wedge} \phi \\
& =\left(e^{\frac{1}{2} \Delta} \phi_{a}^{2} \phi_{b}^{2}\right)_{\phi=0} \\
& \propto \Delta^{2} \phi_{a}^{2} \phi_{b}^{2}, \quad \Delta=\sum_{x, y \in \Lambda}\left(A^{-1}\right)_{x y} \frac{\partial^{2}}{\partial \phi_{x} \partial \phi_{y}} \\
& \propto
\end{aligned}
$$

Self-Avoiding Loops

Self-Avoiding Loops

Self-Avoiding Loops

Let

$$
I_{x}=\frac{1}{2} \phi_{x}^{2},
$$

Self-Avoiding Loops

Let

$$
I_{x}=\frac{1}{2} \phi_{x}^{2}, \quad \text { respectively } \quad 1+\frac{1}{2} \phi_{x}^{2} .
$$

Self-Avoiding Loops

Let

$$
I_{x}=\frac{1}{2} \phi_{x}^{2}, \quad \text { respectively } \quad 1+\frac{1}{2} \phi_{x}^{2} .
$$

(Thanks to John Imbrie) Evaluate

$$
\int e^{-\frac{1}{2}(\phi, A \phi)} l^{\wedge} d^{\wedge} \phi
$$

Oriented Loops

Oriented Loops

Oriented Loops

Let

$$
I_{x}=c+\phi_{x} \bar{\phi}_{x}
$$

Oriented Loops

Let

$$
I_{x}=c+\phi_{x} \bar{\phi}_{x}
$$

Evaluate

$$
\int e^{-(\phi, A \bar{\phi})} l^{\wedge} d^{2 \Lambda} \phi
$$

Particle finding its way through a sea of loops

Particle finding its way through a sea of loops

$$
\int e^{-(\phi, A \bar{\phi})} I^{\wedge \backslash\{a, b\}} \bar{\phi}_{a} \phi_{b} d^{\wedge} \phi
$$

Self-Avoiding Walk, No Loops, Cohomology and Cosmology

Self-Avoiding Walk, No Loops, Cohomology and Cosmology

Self-Avoiding Walk, No Loops, Cohomology and Cosmology

Let

$$
I_{x}=1+\phi_{x} \bar{\phi}_{x}+d \phi_{x} \wedge d \bar{\phi}_{x}
$$

Self-Avoiding Walk, No Loops, Cohomology and Cosmology

Let

$$
I_{x}=1+\phi_{x} \bar{\phi}_{x}+d \phi_{x} \wedge d \bar{\phi}_{x}
$$

$$
e^{-(d \phi, A d \bar{\phi})} \stackrel{\text { def }}{=}
$$

Self-Avoiding Walk, No Loops, Cohomology and Cosmology

Let

$$
\begin{gathered}
I_{x}=1+\phi_{x} \bar{\phi}_{x}+d \phi_{x} \wedge d \bar{\phi}_{x} \\
e^{-(d \phi, A d \bar{\phi})} \stackrel{\text { def }}{=} \sum \frac{1}{n!}\left(\sum_{x, y} A_{x, y} d \phi_{x} \wedge d \bar{\phi}_{y}\right)^{\wedge n}
\end{gathered}
$$

Self-Avoiding Walk, No Loops, Cohomology and

 Cosmology

Let

$$
\begin{gathered}
I_{x}=1+\phi_{x} \bar{\phi}_{x}+d \phi_{x} \wedge d \bar{\phi}_{x} \\
e^{-(d \phi, A d \bar{\phi})} \stackrel{\text { def }}{=} \sum \frac{1}{n!}\left(\sum_{x, y} A_{x, y} d \phi_{x} \wedge d \bar{\phi}_{y}\right)^{\wedge n}
\end{gathered}
$$

Evaluate

$$
\int e^{-(\phi, A \bar{\phi})-(d \phi, A d \bar{\phi})} I^{\wedge \backslash\{a, b\}} \bar{\phi}_{a} \phi_{b}
$$

Self-Avoiding Walk, No Loops, Cohomology and

 Cosmology

Let

$$
\begin{gathered}
I_{x}=1+\phi_{x} \bar{\phi}_{x}+d \phi_{x} \wedge d \bar{\phi}_{x} \\
e^{-(d \phi, A d \bar{\phi})} \stackrel{\text { def }}{=} \sum \frac{1}{n!}\left(\sum_{x, y} A_{x, y} d \phi_{x} \wedge d \bar{\phi}_{y}\right)^{\wedge n}
\end{gathered}
$$

Evaluate

$$
\int e^{-(\phi, A \bar{\phi})-(d \phi, A d \bar{\phi})} I^{\wedge \backslash\{a, b\}} \bar{\phi}_{a} \phi_{b}
$$

Supersymmetry $Q=\iota+d$ implies zero vacuum energy.

