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Abstract

A very long random walk, seen from so far away that individual
steps cannot be resolved, is the continuous random path called
Brownian motion. This is a rough statement of Donsker’s theorem
and it is an example of how models in statistical mechanics fall
into equivalence classes classified by their scaling limits. One quite
general way to understand scaling limits is to exploit combinatorial
connections with Gaussian Integration and then to use the
renormalisation group to study the resulting almost Gaussian
integrals.
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A Random walk ¢

is a sequence of random positions: ®1,$5, O3, ...

Think of it as a random function ® : N — R
on the one dimensional lattice N

Boundary Condition: &g =0
The joint distribution of ®1,$5,..., &,
d"¢ (g1 — do) (d2 —b1) ... 1(dn— ¢n-1)
density of ®; density of ®|®;

where / : R — R such that

probability [/(¢)d¢ =1

mean zero [ ¢l(¢)dp =0

variance [ ¢?I(¢)d¢ =1
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Scaling limit Lf%CDLLtJ for L — o0

Donsker 1951 Lf%CDLLtJ — B; (Brownian Motion)

wﬁ" f\
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Universality All Local Functions | give the same scaling limit

QFT This limit, Brownian motion, is a Euclidean Quantum
Field Theory

CLT Is QFT a fundamental theory?
Stat. Mech. Time N becomes (Euclidean) spacetime Z¢
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Recap

Local functions of ¢ I; = I{¢pj — pi—1)
Global function /" :=[T;cp /i
Law for ®;cp dPp = L IN do

Normalisation

Infinite Volume Limit A — N determines law dP of ®
such that [ dP f(¢) = lima_n [ dPa f(9)

Scaling Limit Law for L_%(DLLQ in limit L — ooc.
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Think of a random surface over Z4

ANczd

Boundary Condition ® = 0 outside A

Finite volume law dPy = —X— [N dMg

Normalisation
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Example of a Local Function, anharmonic crystal

Local I, = e~ 2oy~x V(dy—0x)
G|Oba| IA g e_% Z:><Ny V(¢X_¢,V)

Think of ¢4 as the displacement of an atom in a crystal from
equilibrium position at x € Z9.

Then @ is a sound wave (phonon) in the crystal.
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Massless Gaussian

Local IX = e_% zy~x(¢y_¢x)2
Global N = e 3 Zxny(9x—0y)?

- 1
Intuition /N ~ e~ 3 Ja(V9)?
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Scaling limit of massless Gaussian

1. finite dimensional distributions are Gaussian
2. ®(x) in d\:’( LIVl (Lx)
3. where [¢] = 952, d #£2.

[¢] is called the canonical dimension of &

Brownian motion is case d = 1, for which [¢] = 152



Typical Theorem



Typical Theorem

1. If the local function | = (V) is lattice reflection invariant
and even, with derivatives bounded by € exp(§|V¢|?) then
scaling limit exists and is, up to a finite scaling, the massless

Gaussian.



Typical Theorem

1. If the local function | = (V) is lattice reflection invariant
and even, with derivatives bounded by € exp(§|V¢|?) then
scaling limit exists and is, up to a finite scaling, the massless
Gaussian.

2. Gawedski-Kupiainen 84 using RG.



Typical Theorem

1. If the local function | = (V) is lattice reflection invariant
and even, with derivatives bounded by € exp(§|V¢|?) then
scaling limit exists and is, up to a finite scaling, the massless
Gaussian.

2. Gawedski-Kupiainen 84 using RG.

3. 2007 Park City Lectures on my homepage



Typical Theorem

1. If the local function | = (V) is lattice reflection invariant
and even, with derivatives bounded by € exp(§|V¢|?) then
scaling limit exists and is, up to a finite scaling, the massless
Gaussian.

2. Gawedski-Kupiainen 84 using RG.
3. 2007 Park City Lectures on my homepage
4. Log concavity, Spencer-Naddaf 97.



Typical Theorem

1.

o A~ b

If the local function | = (V) is lattice reflection invariant
and even, with derivatives bounded by € exp(§|V¢|?) then
scaling limit exists and is, up to a finite scaling, the massless
Gaussian.

Gawedski-Kupiainen 84 using RG.
2007 Park City Lectures on my homepage
Log concavity, Spencer-Naddaf 97.

RG cancels the exp(O(A)) in numerator and denominator of

[ oty 1

so accurately that we see the correct decay in x — y after
taking limat.

1

Normalisation
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Part Il. Wick's theorem
_ do
9= o

2
Moments /e‘ﬁgb” do = (e%Agb”)
¢=0

82
A=—.
0P?
¢" can be replaced by any polynomial P

Proof.
Compare two ways of solving % = %Au,

(6—9')2

(a) u(t.g)= / e (¢! d
(b) u(t, ) = e22P(¢)
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Many variables

Ais a symmetric matrix
(6,A0)
/e— I Pdto = (e22P)
¢=0

A= Z(A Xyad)xaﬁby

X,y €N
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[e 5 g202 dMg
= <e§A¢§¢2b) 0

_ 52
X A2¢)§¢23 A= Zx,ye/\(A l)xy OpxO0py
X (Ail)a,a (Afl)b,b +

+ (A b (A )b



Example

205 d"o

_ 52
X A2¢§¢27 A= Zx,ye/\(A l)xy OpxO0py

¢ e e
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Self-Avoiding Loops

Let ) )
Iy = 5(;5)2(, respectively 1+ 5(;5)%
(Thanks to John Imbrie) Evaluate

/e§(¢7A¢) 14 dA(;S
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Oriented Loops

/’\"\
N T

Let B
Iy =c+ ¢X¢X
Evaluate

/e—(¢,A¢_>) IN d?N g
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Particle finding its way through a sea of loops

.\‘/H\o—» @)
0 N

/ e—(0.A7) INLab} 5 M
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O o o
\‘/ \0—»0

Let B B
/x = 1+¢x¢x+d¢x/\d¢x

An
o (d¢.AdG) def Z 1| <§ Asydoy A d&y)
n!
X’y
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O o o
\‘/ \0—»0

Let B B
/x =1 +¢X¢X + d¢x A dd)x
o—(d9,Adg) def Z 1 <ZA dox A dd )/\”
nl x,y dPx y
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Self-Avoiding Walk, No Loops, Cohomology and
Cosmology

O o o
\‘/ \0—»0

Let B B
=1 +¢X¢X + d¢x A dd’x
-(a0A07) & 3~ 1 (ZA 0o 1 o )
n! oy SR TRy
X,y
Evaluate

/ e (0.AD)~(d0,AdD) N\(a.b} 5

Supersymmetry @ = ¢+ + d implies zero vacuum energy.



