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Pressure-driven intraparenchymal infusion

Microinfusion




Problems with delivery of CNS therapies

“Universe of discourse”. Therapies that have difficulty crossing
the blood-brain barrier (BBB)

1 Direct (intraparenchymal) delivery

Problem: Coverage of target
1 Local placement of therapy

Problem: Dose calculations and drug transport
1 Systemic delivery

Problem: Interstitial distribution of drug vs systemic
toxicity



Intraparenchymal delivery: device and placement
matter

BrainLAB iPlanFlow ™
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Local placement

Gliadel Wafer label extension rejected due to unproven
clinical benefits

What is the right dose?

Dose often calculated from systemic pharmacokinetics and totally
inadequate for local placement

When the wafer faces the resection cavity where will the drug go?




Systemic delivery: surgeon’s selection of (equal) residual
tumor show very different dose characteristics




Human trials

“Each new agent should be introduced into
human efficacy trials in a manner that optimizes
its chances of success’

- Suitable patients
 Suitable adjuvant trials (may affect dose!)

» Assessment of efficacy
* Delivery to target



Amgen Trials of Intraputamenal GDNF

“Point source concentration of GDNF may explain
failure of phase II clinical trial”

Salvatore et. al., Experimental Neurology, 2006

“... patients who experienced large drug losses across
gray tissue boundaries due to variation in catheter
placement.”

Convective delivery of glial cell line-derived neurotrophic

factor in the human putamen, Morrison et. al.,
Journal of Neurosurgery, 2007
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MRI and histology of ex vivo Protox injection studies of
human prostates

Observations of four procedures at
Scott & White Memorial Hospital, Temple, Texas

Study conducted by:

Thomas Kuehl, Arthur Boyer, John Milleman, and Scott
Coffield
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Contrast, as an indicator of delivery of agent to tissues,
is not uniformly distributed.

Histopathology shows that
prostate is not a uniform
tissue in older patients with
cancer and BPH.

MRI with contrast also shows
the distribution is not uniform.

v s &
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Injection solution moves from injection site to urethra during US directed
administration in all 4 samples. Visible as contrast next to urethral catheter in

'\

subsequent MRI.




Blue dye

MR contrast & blue dye
demonstrate variability in
distribution in prostate #3 with
material concentrated around
capsule, urethra, and a few
injection sites

e
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Simplest equation for drug transport

dc/ dt = VV: (Dc) - Ve(ve) + 1/¢ [Fcapillary o I:{bind (C, b) ]

1 Where the drug ends up depends on:
Convection by fluid
Drainage from tissue into capillaries

Diffusion &
Binding

plus initial-boundary values
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Simple Infusion Model
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Drug concentration reaches steady state even
in absence of leakage into subdural and other
spaces
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Steady state conc. Conc. near tip
vs radial distance (spherical source)
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Reach of convected drug from spherical source

days

centimeters
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Distribution of molecules according to size

concentration

6 hours X-axis = Distance 48 hours
Small vs large molecule 19



Re-scale intensity level of small molecule: the fronts
match — implications for surrogate tracers

concentration

Distance from center
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Backflow as a boundary condition

M)

Gd-saline infusion, 6 min

Moseley, Stanford University, 2000

Qutflow from catheter is not from the port but from an extended region of several centimeters
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Backflow to cortical surface
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Backflow through inhomogeneous tissue

M
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<+<— High Conductivity

«— Low Conductivity

Tissue conductivity barriers will be barriers to backflow
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SWITCH TO TEX SLIDES
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Simulated backflow through inhomogeneous
tissue

Backflow distance
goes down as
hydraulic conductivity
goes up

Sampson, Duke University, 2003
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Backflow distance (cm)
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Experimental tests at Virginia Commonwealth
University under NIH grant.
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Tumor location and catheter placement
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Infusion and Tumor Location
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Figure 12
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Figure 13
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Current catheters won’t work for cortical delivery
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Designs that confine infusion to layers
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The theory of backflow is a steady state theory
but there is significant non-equilibriation
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Convection

Moseley, Stanford University, 2000

Convection of fluid spreads from
the backflow region
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Convection

Gd-saline infusion, 100 min

Deceleration due to capillary
removal leads to increased

drug concentration




Pressure and Velocity: D'Arcy‘s law says interstitial
fluid velocity is a linear map of pressure gradient

Pressure | Grad(P) | | Fluid Velocity |

Fields estimated from simulation and displayed over Trace(HC).

D‘Arcy’s law is a steady state theory
(e.g. no time dependence of pressure)
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Where the drug goes in a specific subject
requires specific inputs

Process

Catheter insertion

Backflow

Fluid flow in tissue

Agent transport

Agent binding

Parameters

Tissue damage, coring, ...

Input flowrate
Tissue properties near catheter

Hydraulic conductivity (HC)
Efflux
Interstitial pressure variations

Diffusion
Efflux

Adsorption
Pharmacokinetics
Receptor densities
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The inputs needed can be gotten from imaging plus
mathematics

Example: getting one physical property from
another more directly obtained from imaging

P. j I g(X)

pG G

I X
pi pe

The p's depend on the physical property, not on geometry

The G, g's depend on the geometry only
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Extracellular Conductivity:

Different physical response functions face the
same geometry of cellular organization.

Use a measurable response function (e.g. water
diffusion) to disentangle geometry from physics.

Experimental tests at Virginia Commonwealth
University under NIH grant.
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Properties from Diffusion Tensor Imaging

Property Uses

Hydraulic conductivity CED prediction for drug delivery

Intrinsic pathways for disease progression

Shear modulus Backflow for catheter placement/design

Disease monitoring/diagnosis

Bulk modulus Physiological consequences of edema
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Other applications of DTI

Property Uses
Thermal conductivity Prediction of heat dissipation in tissue for
removing unwanted side effects or for heat
therapy
Electrical conductivity Deep brain stimulator placement/design for
Parkinson’s

Trans-cranial magnetic stimulation

Molecular diffusivity Long-term particle distribution
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Some CED Simulation Data Requirements

1 Hydraulic Conductivity, HC
1 Elastic moduli, K,G
1 Pore Fraction, ¢
1 Extracellular Diffusion, De
Quantitativggarameters
MR Imaging - )
- N H
HC
Diffusion Tensor D r'???'?';__
G
e
Proton Density o




Gaussian Diffusion

Probability density

.

Measured in MRI with DWI/DTI
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Diffusion in white matter

1 Extracellular
1 Intracellular

1 -Exehange-

>V

XS
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Restricted Diffusion
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Two-compartment model
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Extracellular diffusion tensor

MR imaging courtesy of Dr. Panos Fatouros, Virginia Commonwealth University (49




Extracellular water fraction, We
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Obtaining pore fraction from We

Water fraction = Volume (pore) fraction

W, should be scaled by the fraction of
the volume containing water:

o="w,
Po

myelin
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Pore fraction map

AN
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Hydraulic Conductivity

Diffusivity Estimated Hydraulic Conductivity
Tissue
hydraulic
conductivity is
Trace: both:
Fractional

Anisotropy:
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Where the drug goes in a specific subject
requires specific inputs

Process

Catheter insertion

Backflow

Fluid flow in tissue

Agent transport

Agent binding

Parameters

Tissue damage, coring, ...

Input flowrate
Tissue properties near catheter

Hydraulic conductivity (HC)
Efflux
Interstitial pressure variations

Diffusion
Efflux

Adsorption
Pharmacokinetics
Receptor densities
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Elastic (reversible) deformation

~

Proton Density, 100 min
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Elastic Deformation

Sampson, Duke University, 2004

Under infusion- or tumor-induced edema, dramatic increases in conductivity in white matter occur
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Elastic Deformation

Sampson, Duke University, 2004

Under infusion- or tumor-induced edema, dramatic increases in conductivity in white matter occur
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Elastic Deformation




Diffusion

19 hours post infusion




Particle simulation step

)

One step, from location x:
1. Convection:

V(x) * At
2. Hydrodynamic Dispersion:

g * HD * sqrt(2At), Rotate
3. Diffusion:

g " D(x) " sgrt( 2 At ), Rotate
4. Accumulate Degradation
-ou(X) * At
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Particle simulation path

—

Repeat with n particles from x:

1, Run up to (t / dt) steps.

2 Check for collision with boundary.
Sample value from boundary
Scale by degradation

3 Average into bin at x.
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Labelled albumin (1)

Upper row: SPECT
measurements
Lower row: Simulation results

IVAX TP38 1 Duke University 62



Labelled albumin (2)

Upper row: SPECT
measurements
Lower row: Simulation results
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IVAX TP38 1 Duke University



Infusion Progression
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P08 Measured Concentration
(as a fraction of infused concentration)

1.0
0.9
0.8
0.7
0.6
0.5

0.4
0.3
0.2

0.1
0.0

65



Simulation vs. Measured Concentration:
Measured Pore Fraction, Isotropic Diffusion/HC Model

Simulated:

Red: Sim.
Green: Meas.

Measured:
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Goal : patient-specific simulation of CED

CED is patient specific mathematical models, e.g.

> ac/ ot = VV: (Dc) - Ve(vc) +
1/ [F capitary — Roina (C, D) ]

require patient-specific information
To predict for an individual

Software for planning CED

g T e
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Symbol | Meaning How obtained
o) connected extracellular fluid volume fraction Proton density imaging
v fluid velocity field relative to tissue Solved via D'Arcy's law
q rate of production of interstitial fluid DCE
K hydraulic permeability DTI
p hydrostatic pressure relative to a resting pressure in tissue Solved for
c concentration of serum protein in interstitium Solved for
IT osmotic pressure of serum protein in interstitium constitutive relation to ¢
D extracellular diffusion tensor of serum protein in interstitium DTI
k, degradation and loss of serum protein from interstitium Assumed/estimated
R reflection coefficient for serum protein from capillary walls DCE
PS. Permeability-area product per unit tissue volume for serum protein DCE
V
LS Capillary hydraulic conductivity per unit tissue volume DCE
Vv
B Coefficient of expansion of extracellular volume DTI
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Summary

Influx

Determined
by

Flow rate
Duration

&

Transport &

Determined

by

Convection

Diffusion

Conductivity pathways
Surfaces / sulci

Efflux 2

Determined

by

Binding

Capillary permeability

Distribution
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Endogenous flow:

Endogenous flow even in absence damage/disease

ISF (interstitial fluid) circulation is substantial (~ 20% of flow
from ventricles)

Results in pressure gradients in resting tissue
- Significant enhancements in edema
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Simple Endogenous flow Model

Ventricle

Tissue

CSF
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Interstitial flow in spherical model
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Simple Tumor Model (with no necrotic core)

Tissue

CSF
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Elevated tumor pressure is barrier to delivery

Active tumors have
significantly elevated:
interstitial pressures :

Interstitial
Pressure
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Tumor Infusion, catheter near enhancing rim

T1 + Contrast

T1, Gd Infusion
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BBB disruption is a cause for edema

Active tumors disrupt the

blood-brain barrier
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A more refined point of view

Disrupted BBB causes edema and spilling of
serum proteins into interstitium

Endogenous flow will carry proteins into tissue

Osmotic pressure of proteins will alter pressure
outside tumor

Coupled nonlinear differential equations for
hydrostatic & osmotic pressures
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Spherical tumor model
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Cancer: active tumor targets for infusions

Active tumors present a variety of additional barriers to drug delivery

1 high interstitial tumor pressure

1 decreased vascular surface area, heterogeneous distribution
1 increased intra-capillary distance

1 peritumoral edema, disrupted BBB
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Cancer: predicting disease progression for better
intervention

Significant edema, and white matter pathways offer enhanced route for
dissemination of primary cancer
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Understanding cancer cell dissemination can integrate
therapies

1 expand radiosugical target area
1 combine radiosurgery and targeted drug delivery

T1-contrast image T2-weighted image
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Neural stem cells seem to be migrating from sub-
ependymal zone

Stem cells may also be
key in causing cancer!
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Neurodegenerative diseases

One problem: insoluble protein aggregates (plaque)
Pathways for dissemination are confined to cortex (thin sheet not volume)
Plaque dissolving therapies must also be confined to cortical sheets

Other deep brain infusions can be currently supported
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Plaque deposition regions are periarterial spaces

120 E.T. ZHANG, C. B. E. INMAN AND R. 0. WELLER
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Basal aanalial spaces not involved

(a) Artery in Basal Ganglia (b) Artery in Cerebral Cortex



Digression: Infectious proteins
-

1

1-
e

Prion: Normal Prion: Mutated
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Alzheimer’s

87



Parkinson’s
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Be an artist!

When all else fails
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Caspar David Friedrich

stroke 1830’s

efore

After
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Paul-Elie Gernez aphasia 1940’s

Before
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Carolus Horn Alzheimer’s 1960’s
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Carolus Horn Alzheimer’s 1960’s
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