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Abstract

I will describe how one can combine ideas from dynamical systems

theory and kinetic theory to describe the long-time behavior of

solutions of the Navier-Stokes equations. In two dimensions this leads

to a very complete description of the behavior of solutions whose initial

vorticity is at least slightly localized. In three dimensions it give a better

understanding of the existence of the Burgers vortex and its variants.

This is joint work with Th. Gallay of the Univ. of Grenoble.

Work supported in part by the US National Science Foundation.
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Introduction

Understanding the long-time evolution of fluid
motion is often facilitated by studying the
coherent structures of the flow.

In physical flows, these structures are often
vortices
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Introduction

Understanding the long-time evolution of fluid
motion is often facilitated by studying the
coherent structures of the flow.

In physical flows, these structures are often
vortices

From a mathematical point of view these
structures may be invariant manifolds in the
phase space of the system.
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Examples

Vortices are often prominent in fluid flows in the
laboratory.

Figure 94 from An Album of Fluid Motion (1982) 176 pp, assembled by Milton Van Dyke; Parabolic Press.
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Examples (cont.)

More relevant to this talk, vortices are often still
obvious structures even after the flow becomes
turbulent.

Figure 166 from An Album of Fluid Motion (1982) 176 pp, assembled by Milton Van Dyke; Parabolic Press.Fields Institute, April 2007 – p. 5



Examples (cont.)

In two dimensional turbulent flows votices
undergo a characteristic "coarsening" known as
the "inverse cascade".

The images on this slide are from the work of the of the Fluid
Dynamics Group, Los Alamos.

http://gravly.lanl.gov/Turbulence/Dns/2d/2d.html
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Examples (cont.)

The images on this slide are from the work of the of the vortex
dynamics group TUE, Netherlands.

http://www.fluid.tue.nl/WDY/vort/2Dturb/2Dturb.html
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3 Dim. Examples

As we’ll discuss later vortices have been used to
model three dimensional turbulent flows for many
years. There is both experimental and numerical
evidence for the importance of vortices in such
flows.

Figure from: She, Jackson, and Orzag; Proc. R. Soc. London, Ser. A 434101-124 (1991).
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3 Dim. Examples (cont.)

Another example of the occurrence of such
vortex tubes in three-dimensional turbulence is
this figure from the work of Jiménez, et. al:

Figure from: Jiménez, Wray, Saffman and Rogallo; J. Fluid Mech. 255 65-90 (1993).
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Two-dim. Navier-Stokes eqn.

A system of nonlinear partial differential equations which describe the
motion of a viscous, incompressible fluid.

If u(x, t) describes the velocity of the fluid at the point x and time t then
the evolution of u is described by:

∂u

∂t
+ (u · ∇)u = ν∆u −∇p , ∇ · u = 0 ,

The first of these equations is basically Newton’s Law; F = ma while
the second just enforces the fact that the fluid is incompressible.
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Two-dim. Navier-
Stokes (cont.)

We’ll begin by focussing on the motion of two dimenional fluids,
including possibly turbulent motions.

Although, we live in a three dimensional world, many phenomena are
essentially two dimensional – for instance, the behavior of the
atmosphere on large scales may for many purposes be treated as two
dimensional.

Two dimensional turbulent motions display certain distinctive
characteristics which are particularly apparent in this movie from the
vortex dynamics group TUE, Netherlands.
http://www.fluid.tue.nl/WDY/vort/2Dturb/bounded/img/movie nsbc.gif
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Two-dim. Navier-
Stokes (cont.)

We would like to explain the numerical (and experimental) observation
that the vorticity of a turbulent two-dimensional flow tends to
concentrate itself into isolated vortices. – or more poetically,

When little whirls meet little whirls,
they show a strong affection;
elope, or form a bigger whirl,
and so on by advection.

This is quoted without attribution on
http://www.fluid.tue.nl/WDY/vort/2Dturb/2Dturb.html
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2 Dim. Results

In two dimensions we find that the long-time asymptotics of any
solution of the Navier-Stokes equation with integrable intial vorticity is
governed by a single, explicitly computable votex solution.

Furthermore, the long-time asymptotics of small solutions (or any
solution of finite energy) can be computed by restricting the partial
differential equation to a finite dimensional, invariant manifold in the
infinite dimensional phase space of the equation.
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Vorticity

It is convenient to rewrite the Navier-Stokes equations in terms of the
vorticity of the fluid rather than the velocity. Roughly speaking, the
vorticity describes how much “swirl” there is in the fluid.

ω = ∇× u = (0, 0, ∂xu2 − ∂yu1) .

Note that in two dimensions we can treat the vorticity as a scalar!

ω = ∂xu2 − ∂yu1 .

Then

ωt + (u · ∇)ω = ∆ω ,
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Biot-Savart

One problem with the vorticity formulation of the Navier-Stokes
equation is that the fluid velocity still appears in the nonlinear term. We
can recover the velocity given the vorticity via the Biot-Savart law:

u(x) =
1

2π

∫

R2

(x− y)⊥

|x − y|2 ω(y)dy , x ∈ R
2 .

Here and in the sequel, if x = (x1, x2) ∈ R2, we denote x = (x1, x2)
T

and x⊥ = (−x2, x1)
T.

Note that this means that the non-linear term is still quadratic (in the
vorticity) but now nonlocal.
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Oseen vortices

From the simulations we looked at earlier it seems clear that vortex
solutions play an important role in two-dimensional fluid motion. There
exists a family of explicit vortex solutions of the 2D Navier-Stokes
equations known as the Oseen vortices.

ΩA(x, t) =
A

4π(t + 1)
e
−

x2

4(1+t) ,

with the associated velocity field

vA(x, t) =
A

2π

e
−

x2

4(1+t) − 1

|x|2
(

x2

−x1

)

.
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Scaling variables

Note that the formula for the Oseen vortices shows that the size of the
vortex increases with time (like

√
t ). This is consistent with the

simulations we looked at above and suggests that the analysis of these
vortices may be more natural in rescaled coordinates. With this in mind
we introduce “scaling variables” or “similarity variables”:

ξ =
x√
1 + t

, τ = log(1 + t) .
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Scaling variables (cont.)

Also rescale the dependent variables. If ω(x, t) is a solution of the
vorticity equation and if u(t) is the corresponding velocity field, we
introduce new functions w(ξ, τ), v(ξ, τ) by

ω(x, t) =
1

1 + t
w(

x√
1 + t

, log(1 + t)) ,

and analogously for v.
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Scaling variables (cont.)

In terms of these new variables the vorticity equation becomes

∂τw = Lw − (v · ∇ξ)w ,

where

Lw = ∆ξw +
1

2
ξ · ∇ξw + w

Note that the Oseen vortices take the form

WA(ξ, τ) = AG(ξ) =
A

4π
e−

ξ2

4 ,

in these new variables. Thus, they are fixed points of the vorticity
equation in this formulation.
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Dynamical Systems

It is natural to inquire whether or not these fixed points are stable. It
turns out (somewhat remarkably) that they are actually globally stable.
Any solution of the two-dimensional vorticity equation whose initial
velocity is integrable will approach one of these Oseen vortices.

The proof of this result which draws on ideas from dynamical systems
theory combines:

A local approach, based linearization about the fixed point.

A global approach based on Lyapunov functionals.
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Linearization

We begin with the linearization about the vortex solution. Linearizing
about the vortex AG the equation takes the form:

∂τw = Lw + AΛw

where

Lw = ∆w +
1

2
ξ · ∇w + w

and

Λw = VG · ∇w + v · ∇G

In this last expression VG is the velocity field associated with the
Oseen vortex and v is the velocity field associated with w via the
Biot–Savart law.
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The operator L
The analysis of the operator L is facilitated by the observation that it is
can be rewritten as the quantum mechanical harmonic oscillator. In
order to compute the spectrum precisely we must specify precisely
what function spaces we are working on. For our purposes, square
integrable functions with some decay at large distances are
appropriate and thus we define:

L2(m) =
{

f ∈ L2(R2) | ‖f‖m < ∞
}

,

where

‖f‖m =

(∫

R2

(1 + |ξ|2)m|f(ξ)|2dξ

)1/2

,
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Spectrum of L
In these spaces, the spectrum of L consists of two pieces:

Eigenvalues σd = {−k
2
| k = 0, 1, 2, . . .},

Continuous spectrum σc = {λ ∈ C | <λ ≤ −(m−1

2
)}.

(m−1)/2

−1−2
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Invariant Manifolds

If we think of this spectral picture in terms of dynamical systems theory
we expect that we should be able to construct finite dimensional
invariant manifolds tangent at the origin to the eigenspaces of the
isolated eigenvalues.

These manifolds reduce the understanding of the long-time
asymptotics of these partial differential equations to computing the
asymptotics of a finite system of ordinary differential equations.

By this method we are able to compute the long-time asymptotics of
solutions of small norm (or in fact, any solution of finite energy) to any
inverse power of t.
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The operator Λ

In order to analyze the effect of the the second term in the linearized
vorticity equation

Λw = VG · ∇w + v · ∇G

we note that:

Because the effects of Λ are localized it has no effect on the
essential spectrum.

After an appropriate change of coordinates the operator L is
self-adjoint and the operator Λ is anti-self-adjoint.

Roughly speaking this second fact means that the effect of Λ is to
move the eigenvalues of L off the real axis into the complex plane, but
not to the right.
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Local Stability

With this spectral information the local stability of the Oseen vortices
follows easily, namely if one chooses initial conditions for the
two-dimensional Navier-Stokes equation which are close to an Oseen
vortex the resulting solution converges toward the vortex as t → ∞.
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Global Stability

In the two-dimensional case it turns out that these vortices are globally
stable. This analysis depends on the existence of a pair of Lyapunov
functionals for the two-dimensional vorticity equation.

The first of these is related to the maximum principle and it implies that
given any solution whose initial vorticity is integrable the limit of this
solution (more precisely, its ω-limit set) must lie in the set of functions
which are everywhere non-negative or every where non-positive.
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Entropy functional

The other Lyapunov functional is more interesting and is related to
similar functionals which arise in kinetic theory – there too one is often
looking for convergence to some Gaussian.
In our context this functional takes the form

H(τ) =

∫

R2

w(ξ, τ) log

(

w(ξ, τ)

G(ξ)

)

dξ

Proposition H(τ) is non-increasing on positive solutions of the rescaled vorticity

equation and is strictly decreasing unless w(ξ, τ) = A(τ)G(ξ).
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Global Stability

Putting these local and global results together we finally find the
following theorem which tells us that any solution of the
two-dimensional Navier-Stokes equation whose initial vorticity is
integrable eventually converges to one of these Oseen vortices.

Theorem If ω0 ∈ L1(R2), with A =
∫

R2 ω0(x)dx, the solution ω(x, t) of the

two-dimensional vorticity equation satisfies

lim
t→∞

t1−
1
p |ω(·, t) − A

t
G(

x√
t
)|p = 0 ,

for 1 ≤ p ≤ ∞.
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3 Dim. Navier-Stokes

Turning now to the three-dimensional Navier-Stokes we cannot expect
such a complete analysis. Indeed, even the existence of smooth,
global solutions for general initial data remains an open question.

However, for solutions with small initial data we are still able to
describe the long-time asymptotics of solutions in terms of
finite-dimensional invariant manifolds as in two-dimensions.
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3D Navier-Stokes (cont.)

In 3D, the vorticity equation takes the form:

ωt + (u · ∇)ω − (ω · ∇)u = ∆ω ,

The extra term in the equation allows for an "amplification" of the
vorticity and precludes in general the sort of "relaxation" toward a
single vortex that we observed in two-dimensions. This is also evident
in the following simulation of a three-dimensional turbulent flow by the
research group of Prof. L. Collins.
http://gears.aset.psu.edu/viz/services/projectlist/lance collins/
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3D Navier-Stokes (cont.)

Note that:

The vortices have a relatively stable shape as they evolve.

They are not quite circular in cross section.

This second point was also apparent in the figure from Jiménez, et. al
that we looked at earlier.

Fields Institute, April 2007 – p. 32



Burgers vortex

These vortices can exist because of a balance between the
amplification due to the vortex stretching term and the diffusion due to
viscosity.

An explicit example is the Burgers vortex, an exact solution of the
Navier-Stokes equation that is is a superposition of a background strain
field with a swirling motion in the plane perpendicular to the strain axis.
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Burgers vortex (cont.)

The velocity field of the Burgers vortex has the form:

U(x1, x2, x3, t) =





−γ
2
x1

−γ
2
x2

γx3



 +





u1(x1, x2, t)

u2(x1, x2, t)

0



 ,

where the components u1 and u2 of the velocity are exactly the same
as those of the Oseen vortex. However, in this case they do not spread
with time since the streching due to the background strain field offsets
the effects of diffusion.
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Burgers vortex (cont.)

Note that the vorticity of the Burgers vortex has only a single non-zero
component, and this component is a Gaussian, just as in the case of
the Oseen vortex.

Ω(x1, x2, x3, t) =

0

@

0

0

ΓG(x1, x2)

1

A , where ΓG = ∂1u2 − ∂2u1 .

The explicit formulas for the components u1 and u2 of the velocity field
are also the same as those of the Oseen vortex (and can be recovered
from the vorticity field via the Biot-Savart law.)

Note that there is a two parameter family of Burgers vortices,
parameterized by γ and Γ.
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Lundgren’s transformation

This connection between the Oseen vortex and the Burgers vortex is
an example of a remarkable connection between two and three
dimensional flows discovered by Lundgren. Namely, if ω(x 1, x2, t) is a
solution of the two dimensional Navier-Stokes equations and if
S(t) = exp(

∫ t

0
γ(τ)dτ), then

Ω(x1, x2, x3, t) =

0

@

0

0

S(t)ω(
p

S(t)x1,
p

S(t)x2, (
R

t
0 S(t′)dt′)t)

1

A

is a solution of the three-dimensional Navier-Stokes in a
time-dependent background strain field

u
s
(x1, x2, x3, t) =

0

B

@

−
γ(t)
2

x1

−
γ(t)
2

x2

γ(t)x3

1

C

A
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3D/2D connection

In the case where γ(t) = γ is constant we just recover the Burger’s
vortex for which the third component of the vorticity ω3 satisfies

∂tω3 = Lω3 − (u⊥ · ∇⊥)ω3 ,

where ∇⊥ is the gradient operator with respect to x1 and x2 and u⊥ is
the two dimensional velocity field obtained from ω3.

This is exactly the same as the two-dimensional vorticity equation we
studied earlier rewritten in the rescaled coordinates.
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Turbulence modeling

A number of authors have used Burger’s vortices to quantitatively
model turbulent flow

Townsend (1951) derived the energy spectrum for a turbulent flow
assuming it was a random collection of Burger’s vortices and vortex
sheets.

Lundgren (1982, 1993) extended Townsend’s work to allow for time
dependent strain fields.

More recently there have been a number of efforts to extend the
type of vortex solutions used in these models and to study their
stability.
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Turbulence modeling (cont.)

Saffman and Robinson (1984) introduced "stretched" vortices as
models. These are vortices in which neither the strain field nor the
vorticity of the vortex are axisymmetric.

They constructed perturbative approximations to these vortices for small Reynolds number and asymmetry
parameter.

They conducted numerical investigations of their existence up to Reynolds number of about 100.

Moffatt, Kida and Ohkitani (1994) developed formal asymptotics
expansions for the vorticity field for large Reynolds number.

Prochazka and Pullin (1998) studied numerically the stability of
these solutions with respect to two-dimensional perturbations in the
plane transverse to the strain axis.
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Rigorous results

Using our results from two-dimensions Gallay and I were able to
extend some of these results about non-axisymmetric vortices.
We look at solutions of the three-dimensional Navier-Stokes equations
in the non-axisymmetric background, strain field:

us(x1, x2, x3) =





−γ
2
(1 + λ)x1

−γ
2
(1 − λ)x2

γ(t)x3





where the asymmetry parameter λ ∈ [0, 1). We begin by looking for
stationary solutions of the Navier-Stokes equation of the form

Ω(x1, x2, x3) = (0, 0, ω3(x1, x2))
T ,

in this background field and then we examine their stability.
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Rigorous results (Existence)

We prove that such axisymmetric vortex solutions exist, if the
asymmetry parameter λ is not to large, for all Reynolds numbers.

R

λ

1

We recover the formal asymptotics derived by Moffatt, et al in the limit
of large Reynolds number.
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Rigorous results (Stability)

For any asymmetry parameter λ ∈ [0, 1) we show that for sufficiently
small Reynolds number we have an asymmetric vortex solution and
that this solution is locally stable with shift with respect to
three-dimensional perturbations.

R

λ

1
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Existence proof

The existence proof is a rigorous perturbation argument, taking as our
starting point the known, symmetric Burger’s vortex. The difficult part
is proving uniformity with respect to the Reynolds number.

We write the vorticity of the asymmetric vortex as ω3 = αG + w (i.e. we

regard it as a perturbation of the Burgers vortex. (Here α is proportional to
the Reynolds number.)

w then satisfies the equation

(L− α)w = λM(αG + w) + v · ∇w

where Mw = (x1∂x1w − x2∂x2w)/2.

Given the information derived earlier about the spectrum of (L− α) we

rewrite this equation as a fixed point problem

w = (L− αΛ)−1
“

λM(αG + w) + v · ∇w
”
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Existence proof (cont.)

One now proves that the fixed point equation for the vorticity has a
solution by the contraction mapping theorem.

The uniformity with respect to the Reynolds number comes from
analyzing (more or less explicitly) the limit

lim
α→∞

(L − αΛ)−1M(αG)
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Stability proof

Once one knows that these asymmetric vortices exist it is natural to
ask about their stability.

Their stability with respect to "transverse" perturbations is relatively
straightforward to establish using our previous results on stability of
two-dimensional vortices and Lundgren’s transformation between the
two and three dimensional equations.

Stability with respect to perturbations along the axis requires another
approach.

For simplicity I’ll explain our result in the context of the classical
symmetric Burgers vortex.
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Stability proof (cont.)

Let ΩB be the vorticity of the Burgers vortex and write the vorticity of
our perturbed solution as

Ω(x, t) = ΩB(x1,x2) + ω(x, t)

Focus on the evolution of the third component of ω

∂tω3 = (L +
1

2
− x3∂x3)ω3 + P (ω) + N (ω)
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Stability proof (cont.)

∂tω3 = (L +
1

2
− x3∂x3)ω3 + P (ω) + N (ω)

L is the linear operator we encountered in analyzing the stability of
two-dimensional vortices:

P is a linear term that comes for the interaction of ω3 with the Burgers
vortex around which we perturb:

The term P (ω) will be small for small Reynolds number.

N (ω) is the contribution of the nonlinear terms

The nonlinear terms will be small if we make a small perturbation of the
original vortex
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Stability proof (cont.)

Focus on

∂tω3 = (L +
1

2
− x3∂x3)ω3 .

We can compute an explicit integral representation for the semigroup
generated by the equation

∂tω3 = (L +
1

2
− x3∂x3)ω3 .
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Stability proof (cont.)

We can compute an explicit integral representation for the semigroup

generated by the equation

∂tω3 = (L +
1

2
− x3∂x3)ω3 .

Solutions decay exponentially if the initial conditions have zero mean in the

transverse direction, i.e if
Z

R2

ω3(x1, x2, x3, t)dx1dx2 = 0

for all x3.

We force this condition to hold by writing

ω3(x1, x2, x3, t) = φ(x3, t)Ω
B(x1, x2) + ω̃(x1, x2, x3, t)

where

φ(x3, t) =

Z

R2

ω3(x1, x2, x3, t)dx1dx2 .
Fields Institute, April 2007 – p. 49



Stability proof (cont.)

Now ω̃ will decay exponentially in time, but what about φ?

Remarkably, the evolution of φ decouples completely from the evolution of the

other components of the vorticity and one finds that

∂rφ = ∂2
x3

φ − x3∂x3φ

which has the solution

φ(x3, t) = (Gt ∗ φ0)(x3e
−t) , x3 ∈ R , t > 0 ,

where

Gt(y) =

s

1

2π(1−e−2t)
exp

0

@−
y2

2(1−e−2t)

1

A , y ∈ R , t > 0 .

The effect of this formula is to make φ approach the constant value

δΓ = (G ∗ φ0)(0) .
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Stability proof (completed)

More physically, we find see that the transverse components of the
perturbation decay to zero exponentially rapidly while the vertical
component is "smeared out" along the axis of the vortex resulting in a
"renormalization" of the Reynolds number of circulation of the vortex
as time tends to infinity.

Theorem Let Ω(x, t) be a solution of the three dimensional vorticity equation with

initial conditions a sufficiently small perturbation of the Burgers vortex with circulation

number Γ. As t tends to infinity, Ω(x, t) tends toward the Burgers vortex with

circulation number Γ′ = Γ + δΓ.
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Summary

Coherent structures, either vortices or invariant manifolds, serve as
important organizing features of viscous fluid flows.

In two dimensions these allow a very complete description of the
long-time asymptotics.

In three-dimensions we can also describe the long-time
asymptotics of "small" solutions in terms of finite-dimensional
invariant manifolds.

We also obtain the existence (for all Reynolds numbers) and
stability (for low Reynolds numbers) of asymmetric versions of
Burgers vortices.
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