# Global Hopf Bifurcation of Differential Equations with State-dependent Adaptive Delay

## Qingwen Hu, Jianhong Wu

## Outline

- Introduction to DEs with state-dependent delay;
- 2 Linearization problem;
- $\circ$   $S^1$ -Degree and equivariant formulation of Hopf bifurcation;
- Local Hopf Bifurcation of DEs with Adaptive Delay;
- **1** Global Hopf Bifurcation of DEs with Adaptive Delay;
- Conclusions;
- Selected references.



### Introduction

## Differential Equations with state-dependent delay

$$\begin{cases} \dot{x}(t) = f(x(t), x(t - \tau(t)), \sigma), \\ \dot{\tau}(t) = g(x(t), \tau(t), \sigma), \end{cases}$$
(1)

where  $x \in \mathbb{R}^N$ ,  $\tau \in \mathbb{R}$  and  $\sigma \in \mathbb{R}$ .

## Application Background

- Stage-structured population model (Aiello, Freedman, Wu);
- Commodity price model (Mahaffy, Bélair, Mackey);
- Robots arm control model (Walther);
- Other application: electrodynamics, economics, etc.

## **Current Progress**

- Existence, uniqueness, differentiability wrt parameters of the solutions (e.g. Driver; Hartung; Wu; Chen; Hu)
- 2 Linearization problem (e.g., Brokate; Colonius; Cooke; Huang)
- Existence of periodic solutions (e.g., Stephan; Smith; Arino; Magal; Li; Kuang; Walther)
- Stability of center manifolds; Attractors (e.g., Krisztin; Walther)
- 3 Boundary layer phenomena (Mallet-Paret; Nussbaum)
- **1** Local and global Hopf bifurcation (Walther; Markus; Wu; Hu)

## Major Obstacle in Qualitative Theory of DESDD

The major problem to develop a topological Hopf bifurcation theory for (1) is that for given constants r>0 and  $\tau>0$ , the composite operator

$$\chi: C^{1}([-r, T]; \mathbb{R}^{N}) \times C^{1}([0, T]; [0, r]) \to C([0, T]; \mathbb{R}^{N}),$$
$$\chi(x, \tau)(t) = \chi(t - \tau(t)), \ t \in [0, T],$$
 (2)

is generally not a  $C^1$  mapping with respect to  $\tau$  in the super norm even we restrict the domain of  $\chi$  to be a  $|\cdot|_{C^1}$  bounded subset.

## Choosing state space

Results of Melvin, Hale, Hartung, Wu, Chen and Hu have shown that the spaces

$$W^{k,\infty}([-r, T]; \mathbb{R}^N), (k \in \mathbb{N}, 0 \le r < \infty, 0 < T < \infty)$$

endowed with the norm

$$|\cdot|_{W^{k,p}} (1 \leq p < \infty)$$

is most appropriate to obtain a certain type of differentiability. These spaces are not Banach spaces but locally complete spaces.

## Definition (Locally complete space, I.c.s.)

Let X be a linear space endowed with the norms  $|\cdot|$  and  $|\cdot|_M$ . We say that  $(X, |\cdot|)$  is a locally complete normed linear space with respect to the norm  $|\cdot|_M$  if every closed ball  $\overline{B}_{|\cdot|_M}(0; R) (R>0)$  of X is complete with respect to the  $|\cdot|$ -norm.

#### Remark:

- ① Differentiability can be obtained with local completeness only.
- Theory of functional analysis in locally complete space is not available until now.
- Our contribution: fundamental theory in locally complete space: [Baire's category theorem; Inverse mapping theorem; Equivalent norms theorem; Closed graph theorem; Uniform boundedness theorem; Uniform contraction principle]

## Linearization problem

## Notations (Fix T > 0)

- $\mathfrak{V}^{1,p}$ :  $W^{1,\infty}(\mathbb{R}/T\mathbb{Z};\mathbb{R}^{N+1})$  endowed with the  $|\cdot|_{W^{1,p}}$  norm;
- $\mathcal{L}^p$ :  $L^{\infty}(\mathbb{R}/T\mathbb{Z};\mathbb{R}^{N+1})$  endowed with the  $|\cdot|_{L^p}$  norm.
- 3  $\mathcal{W}^{1,p}$  and  $\mathcal{L}^p$  are locally complete linear spaces.

## Technical assumptions on the system

$$\{\dot{x}(t) = f(x(t), \dot{x}(t-\tau(t)), \sigma), \dot{\tau}(t) = g(x(t), \tau(t), \sigma)\}$$

- $\bullet$   $f \in C^1(\mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}; \mathbb{R}^N)$  and  $g \in C^1(\mathbb{R}^N \times \mathbb{R} \times \mathbb{R}; \mathbb{R})$ .
- ② f and g satisfy the Lipschitz conditions.
- **3**  $\exists L > 0$  s.t.  $g(x, \tau, \sigma) < \frac{L}{L+1}$  for all  $(x, \tau, \sigma) \in \mathbb{R}^{N+2}$ .



#### Lemma

Let U be a bounded open admissible subset of  $\mathcal{W}^{1,p}$  for the system

$$\begin{cases} \dot{x}(t) = f(x(t), x(t - \tau(t)), \sigma), \\ \dot{\tau}(t) = g(x(t), \tau(t), \sigma), \end{cases}$$
(3)

Suppose also that the system satisfies the assumptions. Then

$$F(x, \tau, \sigma)(t) = (f(x(t), x(t - \tau(t)), \sigma), g(x(t), \tau(t), \sigma)),$$

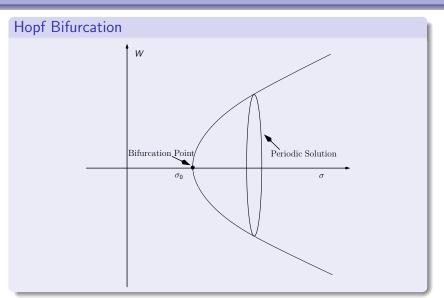
is  $C^1$  in the  $|\cdot|_{L^p}$  norm with respect to  $u=(x,\tau)\in U$ .

#### Remark:

• We can use this lemma to linearize  $F(x, \tau, \sigma)(\cdot)$  in  $\mathcal{W}^{1,p}$  near the stationary points of the system.

# $S^1$ -Degree and equivariant formulation of Hopf bifurcation

- Degree theory is a topological tool for the detection of solutions of an equation defined over a finite dimensional or infinite dimensional space;
- The standard normalization, additivity, homotopy invariance properties are axiomatic properties of degree;
- **3**  $S^1$ -equivariant degree theory is developed for a class of nonlinear mappings preserving the symmetry related to the compact lie group  $S^1 = \{z \in \mathbb{C}; |z| = 1\};$
- $S^1$ -equivariant degree is one of the main approaches for Hopf bifurcation of DEs;
- **3** Calculation of  $S^1$ -degree can be done near a stationary point if some type of linearization is available.



We can rewrite the system equation (1) into  $\mathcal{F}: W \times \mathbb{R}^2 \to W$ ,

$$\mathcal{F} = u - (L_0 + K)^{-1} \left[ \frac{1}{\beta} N_0(u, \sigma, \beta) + Ku \right],$$

#### where

- $u(t) = (x(t/\beta), \tau(t/\beta));$
- ② The differential operator  $L_0: W \to V$ , W and V are isometric representations of  $G = S^1$ ;
- $\odot$  K is a compact resolvent of  $L_0$ .



#### Lemma

Let  $L_0: \mathcal{W}^{1, p} \to \mathcal{L}^p$  be defined by

$$L_0u(t) = \dot{u}(t)$$

and let  $K: \mathcal{W}^{1, p} \to \mathbb{R}^{N+1} \subset \mathcal{L}^p$  be defined by

$$Ku(t) = \frac{1}{T} \int_0^T u(t) dt.$$

Then  $L_0 + K$  has a continuous inverse  $(L_0 + K)^{-1} : \mathscr{L}^p \to \mathscr{W}^{1,p}$ .

This lemma is obtained by a version of Inverse Mapping Theorem for locally complete spaces.

## Crossing number

Let

$$\gamma_{\pm}(u(\sigma_0), \sigma_0, \beta_0) = \deg(\det \Delta_{\sigma_0 \pm \delta}(\cdot), \Omega),$$

then the crossing number of the isolated center  $(u(\sigma_0), \sigma_0, \beta_0)$  is defined to be

$$\gamma(u(\sigma_0), \sigma_0, \beta_0) := \gamma_- - \gamma_+.$$

where  $\Omega := (0, \alpha_0) \times (\beta_0 - \epsilon, \beta_0 + \epsilon)$  is chosen to not contain other zero of the characteristic equation  $\det \Delta_{(u(\sigma), \beta)}(\lambda) = 0$ .

Crossing numbers are defined to calculate the  $S^1$ -degree of the mapping  $\mathcal{F}: W \times \mathbb{R}^2 \to W$  over each irriducible subrepresentation  $W_k$  of W,  $(k=0, 1, 2\cdots)$ .

# Local Hopf bifurcation of FDE's with Adaptive Delays

#### **Theorem**

Suppose the system (1) satisfies the assumptions and the center  $(x(\sigma_0), \tau(\sigma_0))$  is isolated. If  $\gamma(x(\sigma_0), \tau(\sigma_0), \sigma_0, \beta_0) \neq 0$ . Then  $\exists$  a bifurcation of nonconstant, periodic solutions near  $(x(\sigma_0), \tau(\sigma_0))$ . i.e.,  $\exists \{(x_n, \tau_n, \sigma_n, \beta_n)\}_{n=1}^{\infty}$  s.t.  $\sigma_n \to \sigma_0$ ,  $\beta_n \to \beta_0$  as  $n \to \infty$ , and

$$\lim_{n \to \infty} |x_n - x(\sigma_0)|_{W^{1,2}} = 0, \lim_{n \to \infty} |\tau_n - \tau(\sigma_0)|_{W^{1,2}} = 0,$$

where

$$(x_n, \tau_n) \in (W^{1,\infty}([0, 2\pi/\beta_n]; \mathbb{R}^{N+1}); |\cdot|_{W^{1,2}})$$

is a nonconstant  $2\pi/\beta_n$ -periodic solution.

# Global Hopf bifurcation of FDEs with Adaptive Delays

Let S denote the closure of the set of all nontrivial periodic solutions of system (1) in the space  $\mathscr{W}^{1,2} \times \mathbb{R} \times \mathbb{R}_+$ . Assume further that  $\exists M > 0$  such that

$$-M \le g(x, \tau, \sigma) < 1$$
, for any  $(x, \tau, \sigma)$ .

We can obtain the following global Hopf bifurcation of DESDD of Robinowitz type.

#### **Theorem**

Suppose that system (1) satisfies all the assumptions. Let M be the set of trivial periodic solutions of (1). Assume that all stationary points of (1) are not singular and all the centers are isolated. If  $(u_0, \sigma_0, \beta_0) \in M$  is a bifurcation point, then either the connected component  $C(u_0, \sigma_0, \beta_0)$  of  $(u_0, \sigma_0, \beta_0)$  in S is unbounded, or the number of bifurcation points in  $C(u_0, \sigma_0, \beta_0)$  is finite, that is,

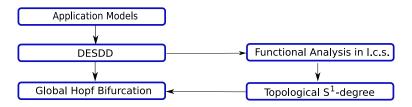
$$C(u_0, \sigma_0, \beta_0) \cap M = \{(u_0, \sigma_0, \beta_0), (u_1, \sigma_1, \beta_1), \cdots, (u_q, \sigma_q, \beta_q)\},\$$

where  $q \in \mathbb{N}$ . Moreover, in the latter case, we have

$$\sum_{i=1}^{q} \gamma(u_i, \, \sigma_i, \, \beta_i) = 0.$$

## Conclusions

- Linearization of DEs with state-dependent delay can be implemented in locally complete space;
- ②  $S^1$ -equivariant degree can be applied to the analysis of global Hopf bifurcation of DEs with state-dependent delay with the aid of the established functional analysis in l.c.s.



## Selected references

- Survey paper: Hartung, F., Krisztin, T., Walther, H. -O., and Wu, J., Functional Differential Equations with State-dependent Delays: Theory and Applications, Handbook of Differential Equations: Ordinary Differential Equations, (Volume 3), Elsevier, North Holland (A. Canada eds.), 2006.
- Aiello, W.G., Freedman H.I. and Wu, J., Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855–869.
- Cooke, K.L. and Huang, W.Z., On the problem of linearization for state-dependent delay differential equations, Proc. Amer. Math. Soc., 124 (1996), 1417–1426.



Thank you!

