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OBJECTIVE

Our goal is to study the asymptotic behavior of 1–dimensional

dynamical systems perturbed by a weak random noise.

We consider systems of the form

xn+1 = f(xn) + σǫn+1, (1)

where

1. f : M −→M and M = [−1, 1], R
1, or T

1,

2. (ǫn : n ∈ N) is a sequence of independent random variables

defined on some probability space (Ω,F ,P)

3. σ > 0 is small.
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A BRIEF INTRODUCTION

1. Systems of these type have been consider heuristically. In

particular Crutchfield, et. al and Shraiman, et. al (1981,1982)

looked at Gaussian perturbations of the fixed point of the

doubling period and relations for the standard deviation of the

propagation of error.

2. Rigorous results for the scaling relations found in the papers

above are done in Khanin, et. al (1984) based on the

Thermodynamic formalism.

3. Collet and Lesne (1989) presented a renormalization group

analysis for the study of accumulation of period doubling with

noise.

4. Most recently, Isaeva, et. al. (2004) studied the effects of small

noise of a complex map at the period–tripling accumulation

point.
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A GENERAL CLT FOR 1-D MAPS

Let us denote by xn(x0, σ), the value at time n of the process x

starting at x0, for which the scale σ has been fixed.

We are interested in the behavior of xn(x0, σ) for small noise level

σ and large time n.

We define the Lindeberg–Lyapunov functionals

Λp(x, n) =

n∑

j=1

∣∣∣
(
fn−j

)′ ◦ f j(x)
∣∣∣
p

Λ̂(x, n) = max
0≤i≤n

i∑

j=1

∣∣∣
(
f i−j

)′ ◦ f j(x)
∣∣∣

Under the general assumption that

0 < c ≤ E
1/2[ε2j ] ≤ E

1/p[|εj |p] ≤ C <∞

we have the following result
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Theorem 1. (Diaz-de la Llave) Assume that for some x ∈M and

p > 2

lim
k→∞

Λp(x, nk)

(Λ2(x, nk))
p/2

= 0 (2)

Then, for any sequence σk decreasing to 0 such that

lim
k→∞

Λ̂3
nk

(x)√
Λ2(x, nk)

E

[
max

1≤j≤nk

ǫ2j

]
σk = 0,

there exists events Bk ∈ F with limk P[Bk] = 1 such that

wnk
=

xnk
(x, σk) − fnk(x)√

var[xnk
(x, σk) − fnk(x)]

1Bk
=⇒ N(0, 1)
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REMARKS

(i) An important property of the Lindeberg–Lyapunov functionals

that works nice for renormalization is

Λp(x, n1 + n2) =
{
(fn2)

′
(fn1(x))

}p
Λp(x, n1) + Λp(f

n1(x), n2)

(ii) The standard CLT corresponds to taking f(x) = x. In this

case, the each outliers is empty. For more complicated f ’s these

outliers may have positive, though small, probability.

(ii) When the point x0 is hyperbolic, then hypothesis 2 is not

satisfied. Systems with enough hyperbolicity satisfy other types

of limit theorems even in the absence of noise Liverani (1995),

or for weak noise Kiffer (1996)
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Example: Consider the map on R (or T
1) given by f(x) = 2x.

There is a limit for the scaled noise which depends on the

distribution of the sequence ǫn.

If (ǫn) is an i.i.d U [−1, 1] sequence, then

xn(x0, σn) − 2nx0

3−1
√

4n − 1
=⇒ ξ

where ξ has characteristic function

φ(z) =

∞∏

n=1

sin(2−n3z)

2−n3z

If (εn) is an i.d.d. standard normal sequence, we have a Gaussian

behavior.
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Example: Smooth diffeomorphisms of the circle with whose

rotation numbers satisfy a Diophantine condition are smoothly

conjugate to linear rotations (Herman, Yoccoz, Khanin). Hence, for

this systems, the CLT holds.

Example: One important class of systems satisfying condition (2)

are those given by maps in the stable manifold of the the fixed

point of period doubling RG operator, as well as analytic maps of

the circle with one singularity, whose rotation number is the golden

mean.

For instance, for the critical map

f(x) = 1 − µx2

with µ = 1.40115519..., numerical experiments suggest the existence

of a Gaussian limiting behavior for x2n(x, σn) with σn small.
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SKETCH OF THE PROOF OF THE GENERAL CLT

We divide the proof in tow parts.

LINEAR THEORY

First we use a linear approximation of the map f using Taylor

expansion. Notice that system (1) can be expressed as

xn = fn(x) + σLn(x, ε) + σ2Qn(x, ε, σ)

The term Ln is a sum of independent random variables with

weights

Ln(x, ε) =
n∑

k=1

(
fn−k

)′ ◦ fk(x)εk

The term Qn contains the nonlinear propagation of noise.
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The condition (2) implies that the linear propagation

yn(x, σ) = fn(x) + σLn(x, ǫ)

satisfies the following CLT:

ynk
(σ) − fnk(x)√

var[ynk
(σ) − fnk(x)]

=⇒ N(0, 1)

Observe that this result does not depend on the scale σ.
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NON–LINEAR THEORY

(i) To complete the proof we show that the linear approximation

yn and the nonlinear process xn are closed to each other when

σ is properly chosen. This is done in a similar way as in the

analysis of variational equations for ordinary differential

equations.

(ii) The control of nonlinear terms imply the existence of outliers,

sets of small probability where fluctuations of noise are large.
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FEIGENBAUM FIXED POINT

The doubling period RG transformation T defined by

Tf(x) =
f (2)(λfx)

λf
with λf = f(f(0))

acts on the space P of unimodal symmetric maps on the unit

interval that satisfy

(a) f(0) = 1

(b) f ∈ C1, xf ′(x) < 0 for x 6= 0

(c) 0 < af < bf and f(bf ) < af , with af = −f(f(0)) and

bf = f(af )
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By induction, it can be seen that

Tnf(x) =
f2n

(Γf
nx)

Γf
n

where Γf
n = f2n

(0). Also,

λT n−1f =
Γf

n

Γf
n−1

=
f2n

(0)

f2n−1(0)
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It is known (Lanford, 1984) that

1. There is a function g, analytic and even on

V = {z ∈ C : ‖z‖ <
√

8} whose restriction to I is a fixed point

of T . Restricted to I, g is concave.

2. There is a neighborhood V of g on the space of even analytic

functions having value 1 at 0 where T is differentiable.

3. For f ∈ V, the derivative DT (f), acting on the space of even

functions that vanish at 0, is a compact operator.

4. DT is hyperbolic with one–dimensional expanding subspace.

The eigenvalue δ associated to this expanding subspace, δ is

larger that one.
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CLT FOR THE FEIGENBAUM FIXED POINT

Theorem 2. Assume ǫn is a sequence of independent random

variables with uniformly bounded moments of order p > 2. There is

γ > 1 such that if x ∈ Cg and σn is such that

E[ max
1≤j≤n

ε2j ]σnn
3(γ+1) = 0(1)

then, there is a sequence of sets Bn ∈ F with large probabilities

such that

xn(x, σn) − gn(x)

σn

√
Λ2(x, n)

1Bn
=⇒ N(0, 1)
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The key argument for a CLT for maps close to the fixed point g on

the stable manifold of T is

Theorem 3. For x ∈ Cg we have

lim
n→∞

Λp(x, n)

{Λ2(x, n)}p/2
= 0

1. First we show this is true for x = 0 through the sparse

subsequence 2n by analyzing the spectrum of the cumulant

operators Kp.

2. Extend the limit to all steps n by renormalization techniques

3. Extend limit to all points in {gk(0)} again by renormalization

techniques.
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CUMULANTS

Definition 1. The cumulant generating function (c.g.f.), φX of a

random variable X is defined as

ψX(t) := log E
[
eitX

]

The m–th order cumulant of X, κn(X), is defined as the n–th

coefficient in formal Taylor of ψX(t) =
∑∞

k=1
κn

n! (it)
n.

Clearly

ψaX+Y (t) = ψX(at) + ψY (t)

κn(aX + Y ) = anκn(X) + κn(Y )
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ANALYSIS OF CUMULANTS AND RENORMALIZATION

Recall the variational equation

y2n = f2n

(x) + σ

n∑

j=1

(
fn−j

)′ ◦ f j(x)εj

Let Wn
p (x) be the p− th order cumulant of y2n . By independence

of ε, one can show that

Wn
p (x) ≈

{(
f2n−1

)′
◦ f2n−1

(x)

}p

Wn−1
p (x) +Wn−1

p ◦ f2n−1

(x)
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Consider the renormalized cumulants

W̃n
p (z) = |Γf

n|−pWn
p (Γf

nz)

For each f ∈ Ws(g), define the family of positive cumulant

operators Kf,p by

Kf,ph(y) =
1

ap
f

{{−f ′ ◦ f(afy)}ph(afy) + h ◦ f(afy)}

Then

W̃n
p (z) = KT n−1f,p ◦ · · · ◦Kf,p1(z)
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Lyapunov’s condition (2) for initial condition near zero can be

expressed in terms of the positive cumulant operators by

lim
n→∞

KT n−1f,p ◦ · · · ◦Kf,p1(z)
{
KT n−1f,2 ◦ · · · ◦Kf,21(z)

}p/2
= 0 (3)

If f is close enough to g then the operators Kf,p are well defined as

operators on space of real analytic functions Hr = Hr(U) onto

itself, where for U ⊂ V a strip around I.
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SPECTRAL ANALYSIS OF THE CUMULANT OPERATORS

By Montel’s theorem these operators are compact. Furthermore, if

C be the cone of nonnegative functions on Hr then each operator

Kp = Kf,p satisfies

(i) Km(C \ {0}) ⊂ C \ {0}

(ii) Km(int(C)) ⊂ int(C), and

(iii) for each f ∈ C \ {0}, there is an integer n = n(m, f) such that

Kn
mf ∈ int(C).
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By slight variation on the Krein–Rutman, we have

Theorem 4. For each Kp

(a) the spectral radius ρp of Kp is a positive simple eigenvalue of

Kp;

(b) The eigenvector fp ∈ X \ {0} associated with ρp can be taken in

int(C);

(c) if µ is in the spectrum of Kp, 0 6= µ 6= ρp, then µ is an

eigenvalue of Kp and |µ| < ρp;

(d) if h ∈ C \ {0} is an eigenvector of Kp, then the corresponding

eigenvalue is ρp.
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A consequence of the theorem is that for any h ∈ C \ {0}, there is a

constant cp = cp(h) 6= 0 such that

lim
n→∞

Kn
p h

ρn
pfp

= cp

uniformly. Here fp is a positive eigenfunction of Kp.
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The following result gives a comparison of the sizes among the

spectral radii of the operators Kp

Lemma 5. Let f be a map in Ws(g) close enough to g. let

ρf,p = ρp be the spectral radius of Kf,p = Kp. Then,

1 < (λ−1
f f ′(1))p < ρp < (λ−1

f f ′(1))p + (−λ)−p
f (4)

for all p. In particular, if f = g, then 1 < λ2pρp < 1 + |λ|p.
For each m ∈ N we have that

ρmp < ρm
p

The map p 7→ ρp is increasing and log–convex. Moreover, function

p 7→ log ρp/p is decreasing.
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In particular, if f = g,

ρp < ρ
p/2
2

for all p > 2, and

lim
n→∞

Λp(λ
nz, 2n)

{Λ2(λnz, 2n)}p/2
= lim

n→∞

Kn
p 1(z)

{Kn
2 1(z)}p/2

= lim
n→∞

(
ρp

ρ
p/2
2

)n

= 0

uniformly for z ∈ [−1, 1].
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CENTRAL LIMIT THEOREM IN THE DOMAIN OF

UNIVERSALITY

We will denote by 〈x〉 the integer part of x. For each n ∈ N we

write its binary expansion as

n = 2m0(n) + · · · + 2mrn (n) (5)

so that m0(n) = 〈log2(n)〉 > m1(n) > . . . > mrn
(n) ≥ 0.

We denote by q(n) = rn + 1 the number of terms in (5).

Observe that

1 ≤ q(n) ≤ m0(n) + 1 < log2(n) + 1
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RENORMALIZATION TECHNIQUE

We start by considering x = |λ|m0(n)+1z with |z| < 1.

The properties of q(n) times we obtain

Λp(xn(z), n) =

rn∑

j=0

{Φj,n}pΛp(ξj−1, 2
mj(n))

where

Φj,n =

rn∏

i=j+1

(
g2mi(n)

)′
(ξi−1)

for j = 0, . . . , rn − 1, and Φrn,n ≡ 1.
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The Lyapunov condition for orbits starting near zero follows by

comparing blocks of the same size in the ratio
∑rn

j=0{Φj,n}pΛp(ξj−1, 2
mj(n))

∑rn

j=0{Φj,n}p{Λ2(ξj−1, 2mj(n))}2

where p > 2. The important part of this argument is the control of

the weights Φj,n.
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OTHER CRITICAL MAPS

1. Similar techniques are applied to analytic circle maps with

golden mean rotation number with one critical point at the

origin in Diaz–de la Llave, 2006.

2. A central limit theorem is obtain for Fibonacci times as well as

for all times.

3. Currently work for complex maps that have Siegel discs is

underway. Numerical evidence suggests that there is a rotation

invariance Gaussian limit.
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