
Gene Freudenburg

Western Michigan University

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Motivation: Dolgachev-Weisfeiler Conjecture

If φ : Cn → Cm is a flat morphism, and each

fiber is isomorphic to Cn−m, then φ is a trivial

fibration.
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Vénéreau Polynomials fn:

B = C[x, y, z, u], fn ∈ B (n ≥ 1), An = C[x, fn]

Let φn : C4 → C2 be induced by An ↪→ B.

Kaliman, Vénéreau , Zaidenberg showed:

I. For n ≥ 3, φn : C4 → C2 is a trivial fibration.

II. For n ≥ 1 and λ(x) ∈ C[x], fn − λ(x) defines

a C3 in C4, and its generic fiber is also an affine

space.

III. Given n ≥ 1, let C3 ↪→ C4 be defined by fn,

and let C4 ↪→ C5 be the standard embedding.

Then the composite embedding C3 ↪→ C5 is

rectifiable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Open Question: Are φ1 and φ2 trivial?
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Theorem (2005): If π : C4 × C1 → C4 is the

standard projection, then φnπ : C5 → C2 is a

trivial fibration for each n ≥ 1.

Algebraically, this means that the Vénéreau

polynomials are stable x-variables, i.e., for

each n ≥ 1, there exist X, Y, Z ∈ B[t] such that

C[x, y, z, u, t] = C[x, fn, X, Y, Z].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark: van den Essen, 2002, showed that f1
is an x-variable of B[s, t]....complicated!
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Define p = yu + z2, v = xz + yp,

w = x2u − 2xzp − yp2

The Vénéreau polynomials are fn := y + xnv

(n ≥ 1).

Rational Generators:

Define a C(x)-derivation θ of C(x)[y, z, u] by

θ(y) = 0 , θ(z) = x−1y , θ(u) = −2x−1z ,

noting that θ(p) = 0. Then

y = exp(pθ)(y), v = exp(pθ)(xz), w = exp(pθ)(x2u) .

It follows that, for all n ≥ 1,

C(x)[y, z, u] = C(x)[y, xz, x2u] = C(x)[y, v, w]

= C(x)[y + xnv, v, w] = C(x)[fn, v, w].
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Strategy: Find a locally nilpotent derivation

D of B or B[t] with Dx = Dv = 0 and Dy = xn.

Then

x = exp(vD)(x) and fn = exp(vD)(y).

Notation: ∂(a, b, c, d) means ∂(a,b,c,d)
∂(x,y,z,u), and

∂(a, b, c, d, e) means ∂(a,b,c,d,e)
∂(x,y,z,u,t).
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Proof of I: Define a locally nilpotent deriva-

tion of B by d = ∂(x, ·, v, w). Then dx = dv =

0 and dy = x3. Therefore, if n ≥ 3, then

∆ = xn−3d is locally nilpotent, and satisfies

∆x = ∆v = 0, and ∆y = xn. 2

Proof of Theorem: Set T = xt + p in B[t].

Then

v − yT = xV , w + vT = xW ′, W ′ + V T = xW

which yields

V = z − yt and W = u + 2zt − yt2.

Define D = ∂(x, ·, v, W, T), which is locally nilpo-

tent since

C(x)[y, v, W, T ] = C(x)[y, z, u, t].
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It follows that Dx = Dv = 0, and

Dy

= ∂(x, y, v, W, T )

= x−1∂(x, y, v, W ′ + V T, T ) : W = x−1(W ′ + V T )

= x−1∂(x, y, v, W ′, T ) : V T = x−1(vT − yT2)

= x−2∂(x, y, v, w + vT, T ) : W ′ = x−1(w + vT)

= x−2∂(x, y, v, w, T)

= x−2∂(x, y, v, w, xt + p)

= x−2∂(x, y, v, w, xt) : p alg./C[x, y, v, w]

= x−1∂(x, y, v, w, t)

= x−1d(y) = x−1x3 = x2 .

Therefore, f2 is an x-variable of B[t].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What about f1? The ”Strategy” no longer

works. However...
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...we have:

x2 = ∂(x, y, v, W, T )

= ∂(x, y + xv, v, W, T )

= ∂(x, f1, v, W, T)

= ∂(x, f1, v − f1T, W, T )

= ∂(x, f1, xV1, W, T )

= x∂(x, f1, V1, W, T ) ,

which implies

x = ∂(x, f1, V1, W, T )

= ∂(x, f1, V1 + f1T2, W, T )

= ∂(x, f1, V2, W, T )

= ∂(x, f1, V2, W, T − (f1W + V 2
2 ))

= ∂(x, f1, V2, W, xT2)

= x∂(x, f1, V2, W, T2) .

Therefore ∂(x, f1, V2, W, T2) = 1, and since

C(x, f1, V2, W, T2) = C(x, y, z, u, t),

we conclude that C[x, f1, V2, W, T2] = C[x, y, z, u, t].
2
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We now have An = C[x, fn] and B[t] = An[X, Y, Z].

Note that:

fn is an x-variable of B if and only if

t is an An-variable of B[t].

A necessary condition that An[X, Y, Z] = An[t][2]

is (tX , tY , tZ) = (1). Using x = a and f2 = b, I

get

t = Z +(aY + abZ + b2X + bY 2)[aX −2Y (aZ +

bX +Y 2)−a(aY +abZ + b2X + bY 2)(aZ + bX +

Y 2)2].

I checked with a computer algebra system that

this ideal equality does, in fact, hold. (The

analogous result also holds for f1.)

Question: Is t ∈ C[a, b, X, Y, Z] a variable over

C[a, b]?
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The Russell-Sathaye Criterion (1979)

Let B be a domain over a UFD A such that

B[t] ∼= B[1] = A[X, Y, Z] ∼= A[3] .

If there exists α ∈ B of the form α = P + ZQ,

where P ∈ A[X], Q ∈ A[X, Y, Z], and A[P(X)] =

A[X], then B ∼= A[2].

In our current situation, using A = C[x, f1] or

A = C[x, f2], the existence of such an element

α ∈ C[x, y, z, u] would imply that f1 or f2 is an

x-variable.
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Associated C∗-Fibrations

For n ≥ 1, define a degree function degn on B
by declaring that

degn(x) = −2, degn(y) = −n − 2,
degn(z) = n, degn(u) = 3n + 2.

This is equivalent to the linear C∗-action on
C4 with weights (−2,−n − 2, n,3n + 2). In the
induced grading of B, fn is homogeneous of
degree −n − 2, and An = C[x, fn] is a homo-
geneous subring of B. Up to multiples, this is
the unique system of weights relative to which
the monomials of fn have the same degree.

Kaliman and Zaidenberg pointed out that the
map φn : C4 → C2 yields a flat family of affine
planes over C2, and that φn is an algebraic
fiber bundle if and only if fn is an x-variable.
We can further add to their observations that
(1) φn is equivariant relative to the C∗-actions
on C4 and C2; and (2) the C∗-action on C4

maps fibers linearly to other fibers.
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To see this, consider first the planar C∗-action
associated to fn. Given (a, b) ∈ C2, the fiber

over (a, b) is defined by the B-ideal (x−a, fn−b).

Apply the C∗-action:

t · (x − a, fn − b) = (t−2x − a, t−n−2fn − b)

= (x − t2a, fn − tn+2b)

Thus, the C∗-action maps the fiber over (a, b)

to the fiber over (t2a, tn+2b), and C∗ acts on

the base of the fibration with weights (2, n+2).

How does C∗ act on the fibers?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to see that, over points of the form

(0, b) in the base, C∗ acts on the fibers with

weights (n,3n + 2). So consider fibers over

(a, b) for a 6= 0.

12



Recall that C(x)[y, z, u] = C(x)[fn, v, w]. Simi-

larly, C[y, z, u] = C[fn(a), v(a), w(a)], where F(a)

denotes evaluation at x = a. (This requires

a 6= 0.) Therefore, B = C[x, fn(a), v(a), w(a)].

It follows that, for t ∈ C∗, the coordinate ring

of the fiber over t · (a, b) is C[v(t2a), w(t2a)].

Moreover,

t · v(a) = t · (az + yp) = atnz + tn−2yp

= tn−2((t2a)z + yp) = tn−2v(t2a)

and

t · w(a) = t · (a2u − 2azp − yp2)

= t3n−2((t2a)2u−2(t2a)zp−yp2) = t3n−2w(t2a).

Therefore, when a 6= 0, we associate to the

fiber over (a, b) the linear C∗-action on the

plane with weights (n − 2,3n − 2). Herein lies

a key difference in the cases n = 1, n = 2, and

n ≥ 3:
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• The planar C∗-action associated to a gen-

eral fiber of Φ1 is hyperbolic, with weights

(1,−1).

• The planar C∗-action associated to a gen-

eral fiber of Φ2 is parabolic, with weights

(0,4).

• The planar C∗-action associated to a gen-

eral fiber of Φn is elliptic when n ≥ 3, with

weights (n − 2,3n − 2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Theorem: If B = A
[2]
n , there exist Pn, Qn ∈ B

such that

(a) B = An[Pn, Qn]
(b) Pn and Qn are homogeneous
(c) degn(Pn) = n and degn(Qn) = 3n + 2.

Proof. The assumption B = A
[2]
n implies that

φn is a C∗-vector bundle. By the well-known
theorem of Masuda, Moser-Jauslin, and Petrie,
every algebraic C∗-vector bundle over a C∗-
module is trivial. At the level of coordinate
rings, this is precisely the statement that there
exist homogeneous Pn, Qn ∈ B such that B =
An[Pn, Qn]. To verify the claim about degrees,
given F ∈ B, let F ∗ denote its linear part, i.e.,
the degree-one summand of F in the standard
grading of B. Then B = C[x, fn, Pn, Qn] =
C[x, f∗

n, P ∗
n, Q∗

n] = C[x, y, P ∗
n, Q∗

n]. We may there-
fore assume that P ∗

n = ax+by+cz+du for some
a, b, d ∈ C and c ∈ C∗. Since Pn is homoge-
neous, it follows that degn(Pn) = degn(z) = n.
Likewise, we may assume u appears in Q∗

n, and
thus degQn = degn(u) = 3n + 2. 2
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Associated Planar Automorphisms

Set L = C(x, f3) and BL = L ⊗C B = L[v, w].
We know that B = C[x, f3, P3, Q3], and there-
fore L[v, w] = L[P3, Q3]. We may thus view
the pair (P3, Q3) as an element of GA2(L),
the group of polynomial L-automorphisms of
L[v, w], where (v, w) is the identity.

Lemma: P3 is a triangular variable.

Proof. P3 = (−x−3f2
3)w +(x−1v−x−3f3v2). 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Likewise, set K = C(x, f1) and BK = K ⊗C
B = K[v, w]. Suppose B = C[x, f1, P1, Q1] for
some P1, Q1 ∈ B. Then K[v, w] = K[P1, Q1]
and (P1, Q1) ∈ GA2(K).

Lemma: In this case, neither P1 nor Q1 is a
triangular variable.
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