Gene Freudenburg
Western Michigan University

The Vénéreau polynomials relative to \mathbb{C}^{*}-fibrations and stable coordinates

Fields Institute, Toronto, 11 July 2006

Motivation: Dolgachev-Weisfeiler Conjecture

If $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is a flat morphism, and each fiber is isomorphic to \mathbb{C}^{n-m}, then ϕ is a trivial fibration.

Vénéreau Polynomials f_{n} :

$B=\mathbb{C}[x, y, z, u], f_{n} \in B(n \geq 1), A_{n}=\mathbb{C}\left[x, f_{n}\right]$
Let $\phi_{n}: \mathbb{C}^{4} \rightarrow \mathbb{C}^{2}$ be induced by $A_{n} \hookrightarrow B$.

Kaliman, Vénéreau, Zaidenberg showed:
I. For $n \geq 3, \phi_{n}: \mathbb{C}^{4} \rightarrow \mathbb{C}^{2}$ is a trivial fibration.
II. For $n \geq 1$ and $\lambda(x) \in \mathbb{C}[x], f_{n}-\lambda(x)$ defines a \mathbb{C}^{3} in \mathbb{C}^{4}, and its generic fiber is also an affine space.
III. Given $n \geq 1$, let $\mathbb{C}^{3} \hookrightarrow \mathbb{C}^{4}$ be defined by f_{n}, and let $\mathbb{C}^{4} \hookrightarrow \mathbb{C}^{5}$ be the standard embedding. Then the composite embedding $\mathbb{C}^{3} \hookrightarrow \mathbb{C}^{5}$ is rectifiable.

Open Question: Are ϕ_{1} and ϕ_{2} trivial?

Theorem (2005): If $\pi: \mathbb{C}^{4} \times \mathbb{C}^{1} \rightarrow \mathbb{C}^{4}$ is the standard projection, then $\phi_{n} \pi: \mathbb{C}^{5} \rightarrow \mathbb{C}^{2}$ is a trivial fibration for each $n \geq 1$.

Algebraically, this means that the Vénéreau polynomials are stable x-variables, i.e., for each $n \geq 1$, there exist $X, Y, Z \in B[t]$ such that

$$
\mathbb{C}[x, y, z, u, t]=\mathbb{C}\left[x, f_{n}, X, Y, Z\right] .
$$

Remark: van den Essen, 2002, showed that f_{1} is an x-variable of $B[s, t] \ldots$ complicated!

Define $\quad p=y u+z^{2}, \quad v=x z+y p$,

$$
w=x^{2} u-2 x z p-y p^{2}
$$

The Vénéreau polynomials are $f_{n}:=y+x^{n} v$ ($n \geq 1$).

Rational Generators:

Define a $\mathbb{C}(x)$-derivation θ of $\mathbb{C}(x)[y, z, u]$ by

$$
\theta(y)=0, \theta(z)=x^{-1} y, \theta(u)=-2 x^{-1} z
$$

noting that $\theta(p)=0$. Then
$y=\exp (p \theta)(y), v=\exp (p \theta)(x z), w=\exp (p \theta)\left(x^{2} u\right)$.
It follows that, for all $n \geq 1$,

$$
\begin{aligned}
& \mathbb{C}(x)[y, z, u]=\mathbb{C}(x)\left[y, x z, x^{2} u\right]=\mathbb{C}(x)[y, v, w] \\
& =\mathbb{C}(x)\left[y+x^{n} v, v, w\right]=\mathbb{C}(x)\left[f_{n}, v, w\right]
\end{aligned}
$$

Strategy: Find a locally nilpotent derivation D of B or $B[t]$ with $D x=D v=0$ and $D y=x^{n}$. Then

$$
x=\exp (v D)(x) \quad \text { and } \quad f_{n}=\exp (v D)(y) .
$$

Notation: $\partial(a, b, c, d)$ means $\frac{\partial(a, b, c, d)}{\partial(x, y, z, u)}$, and $\partial(a, b, c, d, e)$ means $\frac{\partial(a, b, c, d, e)}{\partial(x, y, z, u, t)}$.

Proof of I: Define a locally nilpotent derivation of B by $d=\partial(x, \cdot, v, w)$. Then $d x=d v=$ 0 and $d y=x^{3}$. Therefore, if $n \geq 3$, then $\Delta=x^{n-3} d$ is locally nilpotent, and satisfies $\Delta x=\Delta v=0$, and $\Delta y=x^{n}$.

Proof of Theorem: Set $T=x t+p$ in $B[t]$. Then

$$
v-y T=x V, w+v T=x W^{\prime}, W^{\prime}+V T=x W
$$

which yields

$$
V=z-y t \quad \text { and } \quad W=u+2 z t-y t^{2} .
$$

Define $D=\partial(x, \cdot, v, W, T)$, which is locally nilpotent since

$$
\mathbb{C}(x)[y, v, W, T]=\mathbb{C}(x)[y, z, u, t] .
$$

It follows that $D x=D v=0$, and

Dy
$=\partial(x, y, v, W, T)$
$=x^{-1} \partial\left(x, y, v, W^{\prime}+V T, T\right): W=x^{-1}\left(W^{\prime}+V T\right)$
$=x^{-1} \partial\left(x, y, v, W^{\prime}, T\right) \quad: V T=x^{-1}\left(v T-y T^{2}\right)$
$=x^{-2} \partial(x, y, v, w+v T, T): W^{\prime}=x^{-1}(w+v T)$
$=x^{-2} \partial(x, y, v, w, T)$
$=x^{-2} \partial(x, y, v, w, x t+p)$
$=x^{-2} \partial(x, y, v, w, x t) \quad: p$ alg. $/ \mathbb{C}[x, y, v, w]$
$=x^{-1} \partial(x, y, v, w, t)$
$=x^{-1} d(y)=x^{-1} x^{3}=x^{2}$.

Therefore, f_{2} is an x-variable of $B[t]$.

What about f_{1} ? The "Strategy" no longer works. However...
...we have:

$$
\begin{aligned}
x^{2} & =\partial(x, y, v, W, T) \\
& =\partial(x, y+x v, v, W, T) \\
& =\partial\left(x, f_{1}, v, W, T\right) \\
& =\partial\left(x, f_{1}, v-f_{1} T, W, T\right) \\
& =\partial\left(x, f_{1}, x V_{1}, W, T\right) \\
& =x \partial\left(x, f_{1}, V_{1}, W, T\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
x & =\partial\left(x, f_{1}, V_{1}, W, T\right) \\
& =\partial\left(x, f_{1}, V_{1}+f_{1} T^{2}, W, T\right) \\
& =\partial\left(x, f_{1}, V_{2}, W, T\right) \\
& =\partial\left(x, f_{1}, V_{2}, W, T-\left(f_{1} W+V_{2}^{2}\right)\right) \\
& =\partial\left(x, f_{1}, V_{2}, W, x T_{2}\right) \\
& =x \partial\left(x, f_{1}, V_{2}, W, T_{2}\right)
\end{aligned}
$$

Therefore $\partial\left(x, f_{1}, V_{2}, W, T_{2}\right)=1$, and since

$$
\mathbb{C}\left(x, f_{1}, V_{2}, W, T_{2}\right)=\mathbb{C}(x, y, z, u, t)
$$

we conclude that $\mathbb{C}\left[x, f_{1}, V_{2}, W, T_{2}\right]=\mathbb{C}[x, y, z, u, t]$.

We now have $A_{n}=\mathbb{C}\left[x, f_{n}\right]$ and $B[t]=A_{n}[X, Y, Z]$. Note that:

f_{n} is an x-variable of B if and only if t is an A_{n}-variable of $B[t]$.

A necessary condition that $A_{n}[X, Y, Z]=A_{n}[t]^{[2]}$ is $\left(t_{X}, t_{Y}, t_{Z}\right)=(1)$. Using $x=a$ and $f_{2}=b$, I get
$t=Z+\left(a Y+a b Z+b^{2} X+b Y^{2}\right)[a X-2 Y(a Z+$ $\left.b X+Y^{2}\right)-a\left(a Y+a b Z+b^{2} X+b Y^{2}\right)(a Z+b X+$ $\left.\left.Y^{2}\right)^{2}\right]$.

I checked with a computer algebra system that this ideal equality does, in fact, hold. (The analogous result also holds for f_{1}.)

Question: Is $t \in \mathbb{C}[a, b, X, Y, Z]$ a variable over $\mathbb{C}[a, b]$?

The Russell-Sathaye Criterion (1979)

Let B be a domain over a UFD A such that

$$
B[t] \cong B^{[1]}=A[X, Y, Z] \cong A^{[3]}
$$

If there exists $\alpha \in B$ of the form $\alpha=P+Z Q$, where $P \in A[X], Q \in A[X, Y, Z]$, and $A[P(X)]=$ $A[X]$, then $B \cong A^{[2]}$.

In our current situation, using $A=\mathbb{C}\left[x, f_{1}\right]$ or $A=\mathbb{C}\left[x, f_{2}\right]$, the existence of such an element $\alpha \in \mathbb{C}[x, y, z, u]$ would imply that f_{1} or f_{2} is an x-variable.

Associated \mathbb{C}^{*}-Fibrations

For $n \geq 1$, define a degree function deg_{n} on B by declaring that
$\operatorname{deg}_{n}(x)=-2, \quad \operatorname{deg}_{n}(y)=-n-2$, $\operatorname{deg}_{n}(z)=n, \quad \operatorname{deg}_{n}(u)=3 n+2$.

This is equivalent to the linear \mathbb{C}^{*}-action on \mathbb{C}^{4} with weights $(-2,-n-2, n, 3 n+2)$. In the induced grading of B, f_{n} is homogeneous of degree $-n-2$, and $A_{n}=\mathbb{C}\left[x, f_{n}\right]$ is a homogeneous subring of B. Up to multiples, this is the unique system of weights relative to which the monomials of f_{n} have the same degree.

Kaliman and Zaidenberg pointed out that the $\operatorname{map} \phi_{n}: \mathbb{C}^{4} \rightarrow \mathbb{C}^{2}$ yields a flat family of affine planes over \mathbb{C}^{2}, and that ϕ_{n} is an algebraic fiber bundle if and only if f_{n} is an x-variable. We can further add to their observations that (1) ϕ_{n} is equivariant relative to the \mathbb{C}^{*}-actions on \mathbb{C}^{4} and \mathbb{C}^{2}; and (2) the \mathbb{C}^{*}-action on \mathbb{C}^{4} maps fibers linearly to other fibers.

To see this, consider first the planar \mathbb{C}^{*}-action associated to f_{n}. Given $(a, b) \in \mathbb{C}^{2}$, the fiber over (a, b) is defined by the B-ideal $\left(x-a, f_{n}-b\right)$. Apply the \mathbb{C}^{*}-action:

$$
\begin{aligned}
& t \cdot\left(x-a, f_{n}-b\right)=\left(t^{-2} x-a, t^{-n-2} f_{n}-b\right) \\
& =\left(x-t^{2} a, f_{n}-t^{n+2} b\right)
\end{aligned}
$$

Thus, the \mathbb{C}^{*}-action maps the fiber over (a, b) to the fiber over $\left(t^{2} a, t^{n+2} b\right)$, and \mathbb{C}^{*} acts on the base of the fibration with weights $(2, n+2)$. How does \mathbb{C}^{*} act on the fibers?

It is easy to see that, over points of the form $(0, b)$ in the base, \mathbb{C}^{*} acts on the fibers with weights $(n, 3 n+2)$. So consider fibers over (a, b) for $a \neq 0$.

Recall that $\mathbb{C}(x)[y, z, u]=\mathbb{C}(x)\left[f_{n}, v, w\right]$. Similarly, $\mathbb{C}[y, z, u]=\mathbb{C}\left[f_{n}(a), v(a), w(a)\right]$, where $F(a)$ denotes evaluation at $x=a$. (This requires $a \neq 0$.) Therefore, $B=\mathbb{C}\left[x, f_{n}(a), v(a), w(a)\right]$. It follows that, for $t \in \mathbb{C}^{*}$, the coordinate ring of the fiber over $t \cdot(a, b)$ is $\mathbb{C}\left[v\left(t^{2} a\right), w\left(t^{2} a\right)\right]$. Moreover,
$t \cdot v(a)=t \cdot(a z+y p)=a t^{n} z+t^{n-2} y p$
$=t^{n-2}\left(\left(t^{2} a\right) z+y p\right)=t^{n-2} v\left(t^{2} a\right)$
and
$t \cdot w(a)=t \cdot\left(a^{2} u-2 a z p-y p^{2}\right)$
$=t^{3 n-2}\left(\left(t^{2} a\right)^{2} u-2\left(t^{2} a\right) z p-y p^{2}\right)=t^{3 n-2} w\left(t^{2} a\right)$.
Therefore, when $a \neq 0$, we associate to the fiber over (a, b) the linear \mathbb{C}^{*}-action on the plane with weights $(n-2,3 n-2)$. Herein lies a key difference in the cases $n=1, n=2$, and $n \geq 3$:

- The planar \mathbb{C}^{*}-action associated to a general fiber of Φ_{1} is hyperbolic, with weights $(1,-1)$.
- The planar \mathbb{C}^{*}-action associated to a general fiber of Φ_{2} is parabolic, with weights $(0,4)$.
- The planar \mathbb{C}^{*}-action associated to a general fiber of Φ_{n} is elliptic when $n \geq 3$, with weights ($n-2,3 n-2$).

Theorem: If $B=A_{n}^{[2]}$, there exist $P_{n}, Q_{n} \in B$ such that
(a) $B=A_{n}\left[P_{n}, Q_{n}\right]$
(b) P_{n} and Q_{n} are homogeneous
(c) $\operatorname{deg}_{n}\left(P_{n}\right)=n$ and $\operatorname{deg}_{n}\left(Q_{n}\right)=3 n+2$.

Proof. The assumption $B=A_{n}^{[2]}$ implies that ϕ_{n} is a \mathbb{C}^{*}-vector bundle. By the well-known theorem of Masuda, Moser-Jauslin, and Petrie, every algebraic \mathbb{C}^{*}-vector bundle over a \mathbb{C}^{*} module is trivial. At the level of coordinate rings, this is precisely the statement that there exist homogeneous $P_{n}, Q_{n} \in B$ such that $B=$ $A_{n}\left[P_{n}, Q_{n}\right]$. To verify the claim about degrees, given $F \in B$, let F^{*} denote its linear part, i.e., the degree-one summand of F in the standard grading of B. Then $B=\mathbb{C}\left[x, f_{n}, P_{n}, Q_{n}\right]=$ $\mathbb{C}\left[x, f_{n}^{*}, P_{n}^{*}, Q_{n}^{*}\right]=\mathbb{C}\left[x, y, P_{n}^{*}, Q_{n}^{*}\right]$. We may therefore assume that $P_{n}^{*}=a x+b y+c z+d u$ for some $a, b, d \in \mathbb{C}$ and $c \in \mathbb{C}^{*}$. Since P_{n} is homogeneous, it follows that $\operatorname{deg}_{n}\left(P_{n}\right)=\operatorname{deg}_{n}(z)=n$. Likewise, we may assume u appears in Q_{n}^{*}, and thus $\operatorname{deg} Q_{n}=\operatorname{deg}_{n}(u)=3 n+2$. \square

Associated Planar Automorphisms

Set $L=\mathbb{C}\left(x, f_{3}\right)$ and $B_{L}=L \otimes_{\mathbb{C}} B=L[v, w]$. We know that $B=\mathbb{C}\left[x, f_{3}, P_{3}, Q_{3}\right]$, and therefore $L[v, w]=L\left[P_{3}, Q_{3}\right]$. We may thus view the pair $\left(P_{3}, Q_{3}\right)$ as an element of $G A_{2}(L)$, the group of polynomial L-automorphisms of $L[v, w]$, where (v, w) is the identity.

Lemma: P_{3} is a triangular variable.
Proof. $P_{3}=\left(-x^{-3} f_{3}^{2}\right) w+\left(x^{-1} v-x^{-3} f_{3} v^{2}\right)$. \qquad

Likewise, set $K=\mathbb{C}\left(x, f_{1}\right)$ and $B_{K}=K \otimes_{\mathbb{C}}$ $B=K[v, w]$. Suppose $B=\mathbb{C}\left[x, f_{1}, P_{1}, Q_{1}\right]$ for some $P_{1}, Q_{1} \in B$. Then $K[v, w]=K\left[P_{1}, Q_{1}\right]$ and $\left(P_{1}, Q_{1}\right) \in G A_{2}(K)$.

Lemma: In this case, neither P_{1} nor Q_{1} is a triangular variable.

