Gene Freudenburg	
Western Michigan University	

The Vénéreau polynomials relative to \mathbb{C}^* -fibrations and stable coordinates

Fields Institute, Toronto, 11 July 2006

Motivation: Dolgachev-Weisfeiler Conjecture

If $\phi: \mathbb{C}^n \to \mathbb{C}^m$ is a flat morphism, and each fiber is isomorphic to \mathbb{C}^{n-m} , then ϕ is a trivial fibration.

Vénéreau Polynomials f_n :

$$B = \mathbb{C}[x, y, z, u], f_n \in B \ (n \ge 1), A_n = \mathbb{C}[x, f_n]$$

Let $\phi_n: \mathbb{C}^4 \to \mathbb{C}^2$ be induced by $A_n \hookrightarrow B$.

Kaliman, Vénéreau, Zaidenberg showed:

- **I.** For $n \geq 3$, $\phi_n : \mathbb{C}^4 \to \mathbb{C}^2$ is a trivial fibration.
- II. For $n \ge 1$ and $\lambda(x) \in \mathbb{C}[x]$, $f_n \lambda(x)$ defines a \mathbb{C}^3 in \mathbb{C}^4 , and its generic fiber is also an affine space.
- III. Given $n \geq 1$, let $\mathbb{C}^3 \hookrightarrow \mathbb{C}^4$ be defined by f_n , and let $\mathbb{C}^4 \hookrightarrow \mathbb{C}^5$ be the standard embedding. Then the composite embedding $\mathbb{C}^3 \hookrightarrow \mathbb{C}^5$ is rectifiable.

Open Question: Are ϕ_1 and ϕ_2 trivial?

Theorem (2005): If $\pi: \mathbb{C}^4 \times \mathbb{C}^1 \to \mathbb{C}^4$ is the standard projection, then $\phi_n \pi: \mathbb{C}^5 \to \mathbb{C}^2$ is a trivial fibration for each $n \geq 1$.

Algebraically, this means that the Vénéreau polynomials are **stable** x-**variables**, i.e., for each $n \ge 1$, there exist $X, Y, Z \in B[t]$ such that

$$\mathbb{C}[x, y, z, u, t] = \mathbb{C}[x, f_n, X, Y, Z].$$

Remark: van den Essen, 2002, showed that f_1 is an x-variable of B[s,t]....complicated!

Define
$$p=yu+z^2$$
, $v=xz+yp$,
$$w=x^2u-2xzp-yp^2$$

The **Vénéreau polynomials** are $f_n := y + x^n v$ $(n \ge 1)$.

Rational Generators:

Define a $\mathbb{C}(x)$ -derivation θ of $\mathbb{C}(x)[y,z,u]$ by

$$\theta(y) = 0$$
, $\theta(z) = x^{-1}y$, $\theta(u) = -2x^{-1}z$,

noting that $\theta(p) = 0$. Then

$$y = \exp(p\theta)(y), v = \exp(p\theta)(xz), w = \exp(p\theta)(x^2u)$$
.

It follows that, for all $n \geq 1$,

$$\mathbb{C}(x)[y,z,u] = \mathbb{C}(x)[y,xz,x^2u] = \mathbb{C}(x)[y,v,w]$$
$$= \mathbb{C}(x)[y+x^nv,v,w] = \mathbb{C}(x)[f_n,v,w].$$

Strategy: Find a locally nilpotent derivation D of B or B[t] with Dx = Dv = 0 and $Dy = x^n$. Then

$$x = \exp(vD)(x)$$
 and $f_n = \exp(vD)(y)$.

Notation: $\partial(a,b,c,d)$ means $\frac{\partial(a,b,c,d)}{\partial(x,y,z,u)}$, and

$$\partial(a,b,c,d,e)$$
 means $\frac{\partial(a,b,c,d,e)}{\partial(x,y,z,u,t)}$.

Proof of I: Define a locally nilpotent derivation of B by $d=\partial(x,\cdot,v,w)$. Then dx=dv=0 and $dy=x^3$. Therefore, if $n\geq 3$, then $\Delta=x^{n-3}d$ is locally nilpotent, and satisfies $\Delta x=\Delta v=0$, and $\Delta y=x^n$. \square

Proof of Theorem: Set T = xt + p in B[t]. Then

$$v - yT = xV$$
, $w + vT = xW'$, $W' + VT = xW$

which yields

$$V = z - yt$$
 and $W = u + 2zt - yt^2$.

Define $D = \partial(x, \cdot, v, W, T)$, which is locally nilpotent since

$$\mathbb{C}(x)[y,v,W,T] = \mathbb{C}(x)[y,z,u,t].$$

It follows that Dx = Dv = 0, and

$$Dy \\ = \partial(x, y, v, W, T) \\ = x^{-1}\partial(x, y, v, W' + VT, T) : W = x^{-1}(W' + VT) \\ = x^{-1}\partial(x, y, v, W', T) : VT = x^{-1}(vT - yT^2) \\ = x^{-2}\partial(x, y, v, w + vT, T) : W' = x^{-1}(w + vT) \\ = x^{-2}\partial(x, y, v, w, T) \\ = x^{-2}\partial(x, y, v, w, xt + p) \\ = x^{-2}\partial(x, y, v, w, xt) : p \text{ alg.}/\mathbb{C}[x, y, v, w] \\ = x^{-1}\partial(x, y, v, w, t) \\ = x^{-1}d(y) = x^{-1}x^3 = x^2 .$$

Therefore, f_2 is an x-variable of B[t].

What about f_1 ? The "Strategy" no longer works. However...

...we have:

$$x^{2} = \partial(x, y, v, W, T)$$

$$= \partial(x, y + xv, v, W, T)$$

$$= \partial(x, f_{1}, v, W, T)$$

$$= \partial(x, f_{1}, v - f_{1}T, W, T)$$

$$= \partial(x, f_{1}, xV_{1}, W, T)$$

$$= x\partial(x, f_{1}, V_{1}, W, T),$$

which implies

$$x = \partial(x, f_1, V_1, W, T)$$

$$= \partial(x, f_1, V_1 + f_1 T^2, W, T)$$

$$= \partial(x, f_1, V_2, W, T)$$

$$= \partial(x, f_1, V_2, W, T - (f_1 W + V_2^2))$$

$$= \partial(x, f_1, V_2, W, T_2)$$

$$= x\partial(x, f_1, V_2, W, T_2).$$

Therefore $\partial(x, f_1, V_2, W, T_2) = 1$, and since

$$\mathbb{C}(x, f_1, V_2, W, T_2) = \mathbb{C}(x, y, z, u, t),$$

we conclude that $\mathbb{C}[x, f_1, V_2, W, T_2] = \mathbb{C}[x, y, z, u, t]$.

We now have $A_n = \mathbb{C}[x, f_n]$ and $B[t] = A_n[X, Y, Z]$. Note that:

 f_n is an x-variable of B if and only if t is an A_n -variable of B[t].

A necessary condition that $A_n[X,Y,Z] = A_n[t]^{[2]}$ is $(t_X,t_Y,t_Z)=(1)$. Using x=a and $f_2=b$, I get

$$t = Z + (aY + abZ + b^2X + bY^2)[aX - 2Y(aZ + bX + Y^2) - a(aY + abZ + b^2X + bY^2)(aZ + bX + Y^2)^2].$$

I checked with a computer algebra system that this ideal equality does, in fact, hold. (The analogous result also holds for f_1 .)

Question: Is $t \in \mathbb{C}[a, b, X, Y, Z]$ a variable over $\mathbb{C}[a, b]$?

The Russell-Sathaye Criterion (1979)

Let B be a domain over a UFD A such that

$$B[t] \cong B^{[1]} = A[X, Y, Z] \cong A^{[3]}$$
.

If there exists $\alpha \in B$ of the form $\alpha = P + ZQ$, where $P \in A[X]$, $Q \in A[X,Y,Z]$, and A[P(X)] = A[X], then $B \cong A^{[2]}$.

In our current situation, using $A=\mathbb{C}[x,f_1]$ or $A=\mathbb{C}[x,f_2]$, the existence of such an element $\alpha\in\mathbb{C}[x,y,z,u]$ would imply that f_1 or f_2 is an x-variable.

Associated \mathbb{C}^* -Fibrations

For $n \ge 1$, define a degree function \deg_n on B by declaring that

$$\deg_n(x) = -2$$
, $\deg_n(y) = -n - 2$, $\deg_n(z) = n$, $\deg_n(u) = 3n + 2$.

This is equivalent to the linear \mathbb{C}^* -action on \mathbb{C}^4 with weights (-2, -n-2, n, 3n+2). In the induced grading of B, f_n is homogeneous of degree -n-2, and $A_n=\mathbb{C}[x,f_n]$ is a homogeneous subring of B. Up to multiples, this is the unique system of weights relative to which the monomials of f_n have the same degree.

Kaliman and Zaidenberg pointed out that the map $\phi_n: \mathbb{C}^4 \to \mathbb{C}^2$ yields a flat family of affine planes over \mathbb{C}^2 , and that ϕ_n is an algebraic fiber bundle if and only if f_n is an x-variable. We can further add to their observations that (1) ϕ_n is equivariant relative to the \mathbb{C}^* -actions on \mathbb{C}^4 and \mathbb{C}^2 ; and (2) the \mathbb{C}^* -action on \mathbb{C}^4 maps fibers *linearly* to other fibers.

To see this, consider first the planar \mathbb{C}^* -action associated to f_n . Given $(a,b) \in \mathbb{C}^2$, the fiber over (a,b) is defined by the B-ideal $(x-a,f_n-b)$. Apply the \mathbb{C}^* -action:

$$t \cdot (x - a, f_n - b) = (t^{-2}x - a, t^{-n-2}f_n - b)$$

= $(x - t^2a, f_n - t^{n+2}b)$

Thus, the \mathbb{C}^* -action maps the fiber over (a,b) to the fiber over $(t^2a,t^{n+2}b)$, and \mathbb{C}^* acts on the base of the fibration with weights (2,n+2). How does \mathbb{C}^* act on the fibers?

It is easy to see that, over points of the form (0,b) in the base, \mathbb{C}^* acts on the fibers with weights (n,3n+2). So consider fibers over (a,b) for $a \neq 0$.

Recall that $\mathbb{C}(x)[y,z,u]=\mathbb{C}(x)[f_n,v,w]$. Similarly, $\mathbb{C}[y,z,u]=\mathbb{C}[f_n(a),v(a),w(a)]$, where F(a) denotes evaluation at x=a. (This requires $a\neq 0$.) Therefore, $B=\mathbb{C}[x,f_n(a),v(a),w(a)]$. It follows that, for $t\in\mathbb{C}^*$, the coordinate ring of the fiber over $t\cdot(a,b)$ is $\mathbb{C}[v(t^2a),w(t^2a)]$. Moreover,

$$t \cdot v(a) = t \cdot (az + yp) = at^n z + t^{n-2} yp$$

= $t^{n-2}((t^2a)z + yp) = t^{n-2}v(t^2a)$

and

$$t \cdot w(a) = t \cdot (a^2u - 2azp - yp^2)$$

= $t^{3n-2}((t^2a)^2u - 2(t^2a)zp - yp^2) = t^{3n-2}w(t^2a)$.

Therefore, when $a \neq 0$, we associate to the fiber over (a,b) the linear \mathbb{C}^* -action on the plane with weights (n-2,3n-2). Herein lies a key difference in the cases n=1, n=2, and $n\geq 3$:

- The planar \mathbb{C}^* -action associated to a general fiber of Φ_1 is **hyperbolic**, with weights (1,-1).
- The planar \mathbb{C}^* -action associated to a general fiber of Φ_2 is **parabolic**, with weights (0,4).
- The planar \mathbb{C}^* -action associated to a general fiber of Φ_n is **elliptic** when $n \geq 3$, with weights (n-2,3n-2).

Theorem: If $B = A_n^{[2]}$, there exist $P_n, Q_n \in B$ such that

- (a) $B = A_n[P_n, Q_n]$
- **(b)** P_n and Q_n are homogeneous
- (c) $\deg_n(P_n) = n \text{ and } \deg_n(Q_n) = 3n + 2.$

Proof. The assumption $B = A_n^{[2]}$ implies that ϕ_n is a \mathbb{C}^* -vector bundle. By the well-known theorem of Masuda, Moser-Jauslin, and Petrie, every algebraic \mathbb{C}^* -vector bundle over a \mathbb{C}^* module is trivial. At the level of coordinate rings, this is precisely the statement that there exist homogeneous $P_n, Q_n \in B$ such that B = $A_n[P_n,Q_n]$. To verify the claim about degrees, given $F \in B$, let F^* denote its linear part, i.e., the degree-one summand of F in the standard grading of B. Then $B = \mathbb{C}[x, f_n, P_n, Q_n] =$ $\mathbb{C}[x,f_n^*,P_n^*,Q_n^*]=\mathbb{C}[x,y,P_n^*,Q_n^*].$ We may therefore assume that $P_n^* = ax + by + cz + du$ for some $a,b,d\in\mathbb{C}$ and $c\in\mathbb{C}^*.$ Since P_n is homogeneous, it follows that $\deg_n(P_n) = \deg_n(z) = n$. Likewise, we may assume u appears in Q_n^* , and thus $\deg Q_n = \deg_n(u) = 3n + 2$. \square

Associated Planar Automorphisms

Set $L=\mathbb{C}(x,f_3)$ and $B_L=L\otimes_{\mathbb{C}}B=L[v,w].$ We know that $B=\mathbb{C}[x,f_3,P_3,Q_3],$ and therefore $L[v,w]=L[P_3,Q_3].$ We may thus view the pair (P_3,Q_3) as an element of $GA_2(L),$ the group of polynomial L-automorphisms of L[v,w], where (v,w) is the identity.

Lemma: P_3 is a triangular variable.

Proof.
$$P_3 = (-x^{-3}f_3^2)w + (x^{-1}v - x^{-3}f_3v^2)$$
. \square

Likewise, set $K = \mathbb{C}(x, f_1)$ and $B_K = K \otimes_{\mathbb{C}} B = K[v, w]$. Suppose $B = \mathbb{C}[x, f_1, P_1, Q_1]$ for some $P_1, Q_1 \in B$. Then $K[v, w] = K[P_1, Q_1]$ and $(P_1, Q_1) \in GA_2(K)$.

Lemma: In this case, neither P_1 nor Q_1 is a triangular variable.