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We start with a
n ×m integer matrix A.
We always think of A as a LIST of vectors in Zn ⊂ Rn, its columns:

A := (a1, . . . , am)

Consider the system of linear equations:
m∑

i=1
aixi = b, or Ax = b, A := (a1, . . . , am) (1)

b a vector in Zn.

We assume that the matrix A is such that 0 is NOT in the convex
hull of its columns.
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The Problem, variable polytopes

This assumption implies that our system has a finite number P(b)
of positive integral solutions.

We would like to compute the number

P(b)
A way to look at P(b) is the following. Consider the

ΠA(b) := {x |Ax = b, xi ≥ 0, ∀i}

which are convex and bounded for every b.

If we identify the spaces Ax = b and Ax = 0 then we may think of
ΠA(b) as a variable polytope in the space Ax = 0
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The finite set IA(b) of points in ΠA(b) with integer coordinates. is
the set of solutions to our system. So

PA(b) = |IA(b)|

and our problem is the computanion of the number of integral
points in ΠA(b).

What we are really going to do is to give a qualitative study of the
function PA(b) as b ∈ Zn varies.

Notice that it is natural to think of an expression like:
b = t1a1 + · · ·+ tmam with ti not negative integers as a:

partition of b in t1 parts of “size” a1 plus . . . tm parts of “size” am,
hence the name partition function for the number PA(b), thought
of as a function of the vector b.
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The cone

Obviously, the set of vectors b such that ΠA(b) is not empty is
equal, by definition, to:

The cone generated by A

CA := {
m∑

i=1
xiai | xi ≥ 0}

CA is a convex cone in Rn.

By assumption its non zero elements lie entirely in the interior of a
half space soCA does not contain a line. Thus

CA is a pointed cone and 0 is its vertex.
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A 2–dimensional example

A =

∣∣∣∣1 1 0 −1
1 0 1 1
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the associated cone C(A) has three big cells (the definition is
coming)

. . . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . .

. //

OO >>}}}}}}}

``AAAAAAA

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
. . . .

Corrado De Concini Some remarks on vector partition functions



Big Cells Small Cells

Let us describe some combinatorial geometry of the cone C(A).
This will be needed to state the results.

Set
S(A) = {B ⊂ A|B does not span V }

Y = ∪B∈S(A)C(B)

X = C(A)− Y .

X is called the set of regular points of C(A).
Y is called the set of singular points of C(A)
A connected component of X is called a big cell If instead of the
cones C(B) we take the linear span 〈B〉 we get the notion of a
small cell. A connected component of C(A)−∪B∈S(A)〈B〉 is called
a small cell.
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An example (two dimensional section):

There can be more small cells than big cells
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We have 3 big cells and
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6 small cells.
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Laplace transform

We go back to the partition function.
Denote by Λ = Zn the integral lattice.
It is convenient to think of a function f on Λ as the distribution

∑
λ∈Λ

f (λ)δλ.
with “Laplace
transform"

∑
λ∈Λ

f (λ)e−λ.

which we think as a “function" on the algebraic torus
T = C∗ ⊗Z Λ∗, whose character group is Λ.
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The partition function

As a special case let us take the partition function

PA(b) = #{t1, . . . , tm ∈ N |
m∑

i=1
tiai = b}

An easy computation gives its Laplace transform

of the partition
distribution

PA =
∑
λ∈Λ

PA(b)δb.
We get LPA =

∏
a∈A

1
(1− e−a)
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Two non commutative algebras

The algebra D(T )

is defined as the Weyl algebras of differential operators on the
torus T with coefficients regular functions. i.e. it is generated by
the functions eλ, λ ∈ Λ and the derivations ∂φ with φ ∈ Λ∗.
The relations are given by

[∂φ, eλ] = 〈φ, λ〉

The algebra W (Λ)

is the algebra of difference operators with polynomial coefficients
on Λ. It is generated by polynomials and translation operators
τλ, λ ∈ Λ defined by τλ(f )(x) := f (x − λ).
The relations are given by

[φ, τλ] = −〈φ, λ〉
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Fourier transform
The relations tell us that there is an algebraic Fourier isomorphism
F between D(T ) and W (Λ), given by

F (eλ) = τλ F (∂φ) = −φ.

So any DT module M becomes a W (Λ) module M̂ and viceversa.

Let us see how we can use the Laplace transform as a Fourier
isomorphism.
Start by remarking the following property:

L(∂φf )(u) = φLf (u), L(τλLf )(u) = e−λLf (u).

This easily implies:
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Theorem
The following two modules are Fourier isomorphic:

1. The W (Λ)-module ΣA generated, in the space of distributions,
by the partition distribution PA under the action of the algebra
W (Λ).

2. The algebra SA := C[Λ][
∏

a∈A(1− e−a)−1] obtained from the
coordinate ring C[T ] by inverting uA :=

∏
a∈A(1− e−a) i.e. the

coordinate ring of the open set in T obtained by removing the
kernels of the character e−a, a ∈ A. considered as a DT -module
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Before we go on here is an “explicit” description of ΣA.

ΣA is the space of functions on Λ which are linear combinations of
polynomial functions on the cones C(B) ∩ Λ, B ⊂ A a linearly
independent subset and their translates.

What we are going to do now is to obtain informations on ΣA
studying its Fourier transform SA. In particular we shall obtain
some partial fraction expansions of

1∏
a∈A(1− e−a)

.

and translate them into expressions for the partition function. To
explain this we need to study
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The toric arrangement

We have already introduced the torus T with character group Λ

We have also seen that setting Ta equal to the kernel of the
character ea, a ∈ A, SA = C[T ][u−1

A ] is the coordinate ring of the
open set

A = T/ ∪a∈A Ta

We now define

The toric arrangement as the set of connected components of all
the intersections of the subgroups Ta, a ∈ A.
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Among the elements of the toric arrangement the one more
relevant to partition functions are the points. These are obtained
as follows

Given a basis b extracted from A, consider the lattice Λb ⊂ Λ that
it generates in Λ.

We have that Λ/Λb is a finite group of order [Λ : Λb] = | det(b)|.

Its character group is the finite subgroup T (b) of T which is the
intersection of the kernels of the functions ea as a ∈ b.

These are the

points of the arrangement

Q(A) := ∪b∈B(A)T (b).
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The filtration

We define a filtration on SA.

SA,k =
∑
B⊂A

dim 〈B〉≤k

C[T ][u−1
B ]

with uB =
∏

b∈B(1− e−b).

Each SA,k is a DT submodule, SA,k ⊃ SA,k−1.

Theorem
SA,n/SA,n−1 is a semisimple DT -module whose isotipic components
are indexed by the points of the arrangements.

An analogous result holds for each k ≥ 0. SA,k/SA,k−1 is a
semisimple DT -module whose isotipic components are indexed by
the subspaces of the arrangements of codimension k.
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Take a point eφ ∈ PA. Define
Aφ := {a ∈ A | e〈a |φ〉 = 1}.

Aφ = {b1, . . . bt} is a sublist of A. Aφ spans V . Before we go on
we need a general definition.

Suppose now we have a list X = {x1, . . . xs} of vectors spanning
V . A basis σ = {xi1 , . . . xin} is called NB (no broken) if for all h
there is no t < ih such that the vectors {xt , xih , . . . xin} are linearly
dependent.

As an example let us take the list

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

of positive roots of type A3
We have 16 bases . 10 broken and 6 no broken. Here are the NB
bases
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α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

NB bases have a lot to do with the big cells. Indeed given a
regular point p we associate to p the collection Np of NB bases
such that p lies in the cone they generate. Then

Theorem
If p, q are two regular points in C(X ), Np = Nq if and only if p
and q lie in the same big cell.
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Go back to the decomposition of SA,n/SA,n−1. Given a point
eφ ∈ Q(A) and a NB basis σ in Aφ we take the element

nφ,σ =
γφ∏

a∈σ(1− e−a)
∈ SA,n/SA,n−1,

with γφ the minimal idempotent in C[Λ/Λσ] associated to
eφ ∈ (Λ/Λσ)∗ (it is easy to see that this makes sense).

We are going to consider SA,n/SA,n−1 as a DT -module and also as
a under the polynomial ring M of constant coefficient differential
operators in DT (this is the symmetric algebra over Λ∗). We have
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Theorem

SA,n/SA,n−1 = ⊕φ,σDT nφ,σ

with eφ ∈ Q(A) and σ a NB basis in Aφ.
The module DT nφ,σ is irreducible and it is isomorphic to DT /Jφ

where Jφ is the left ideal generated by maximal ideal in C[T ]
defining the point eφ.
As a M module SA,n/SA,n−1 is free with basis the elements nφ,σ.

This result tells us that in particular there exist uniquely defined
differential operators with constant coefficients qφ,σ(−∂) with the
property that in SA,n/SA,n−1

u−1
A =

∑
φ,σ

qφ,σ(−∂)nφ,σ.
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Quasi Polynomiality

At this point we go back to the partition function applying the
inverse Laplace transform. In order to make our translation we
need two remarks

1 L−1(
γφQ

a∈σ(1−e−a)) = eφχC(σ), χC(σ) the characteristic
function of C(σ).

2 Any identity holding in SA,n/SA,n−1 is transformed by L−1

into and identity on functions on Λ which is valid outside a
finite union of translates of cones of the form C(B) with
B ⊂ A 〈B〉 ( V .
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With these two remarks, we can safely apply L−1 and using the
fact that it gives a Fourier isomorphism, deduce

Theorem
If λ ∈ Λ does not lie in a suitable finite set of translates of cones of
the form C(B) with B ⊂ A 〈B〉 ( V , we have

PA(λ) =
∑
(φ,σ)

e〈φ|λ〉qb,φ(λ)χC(σ)(λ).

Notice that eφ is a point of finite order so that the function e〈φ|λ〉
is constant on the cosets of a sublattice of finite index.
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Now fix a big cell C . Take the set

MC = {(φ, σ)| , eφ ∈ Q(A), σ NB basis in Aφ, C ⊂ C(σ)}.

Taking into account the fact that a big cell is the intersection of
the C(σ) containing it we get that (outside a finite union of
translates of cones of the form C(B) with B ⊂ A 〈B〉 ( V ) if
λ ∈ C

PA(λ) =
∑

(φ,σ)∈MC

e〈φ|λ〉qb,φ(λ)

This shows that locally PA is a

Linear combination of
polynomials times periodic
exponentials.

Such a function is called a
Quasi Polynomial
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Difference equations
One can remove the not so nice “outside a finite union of
translates of cones of the form C(B) with B ⊂ A 〈B〉 ( V ".
Indeed a better result holds

Set

ZA = {
n∑

i=1
tiai | ti ∈ [0, 1]}

ZA is called the zonotope generated by A.

Theorem
For any big cell C, the formula

PA(λ) =
∑

(φ,σ)∈MC

e〈φ|λ〉qb,φ(λ)

holds in C − ZA. In particular on C − ZA, PA coincides with a
quasipolynomial which we shall denote by PC

A .
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As stated the result is due to Szenes-Vergne (2003) by a refined
partial fraction expansion. For small cells instead of big cells had
been obtained before by Dahmen-Micchelli (1988). This result plus
the above considerations imply the result for big cells.

A key observation is that the quasi polynomials appearing in the
formula for PA satisfy special difference equations. Define

Difference operators
For a ∈ Λ and f a function on Λ we define the

∇af (x) = f (x)− f (x − a), ∇a = 1− τa.

If Y = {b1, . . . , by} we set ∇Y =
∏

i ∇bi .
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The ideal JA

Consider the class of u−1
A in SA,n/SA,n−1. Its

annihilator JA in C[T ] is the ideal generated by
the products uY :=

∏
v∈Y (1− e−v ) as Y runs

over the subsets of A such that the complent of
Y does not span V . These subsets are called
cocircuits.

Duality
Associated to JA we can consider the space ∇(A)
which consists of functions f on Λ which are
simultaneous solutions of the equations

∇Y (f ) = 0

for all cocircuits Y .
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∇(A) has various remarkable properties:
1 ∇(A) is finite dimensional
2 ∇(A) is invariant under translations
3 ∇(A) consists of quasi polynomials which are polynomials on

the cosets of the lattice

Ψ = ∩ B⊂A
B basis

ΛB

of degree at most equal to |A| − dimV .
4

dim ∇(A) = δ(A) =
∑
B⊂A

B basis

| Λ

ΛB
|
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For us the most important property is

Theorem
For any big cell C the quasi polynomial PC

A lies in ∇(A).

In fact much more is true. Consider a point v ∈ C very near to
zero and take the translated zonotope v − ZA. It turns out the the
number of lattice points in v − ZA equals δ(A) , the dimension of
∇(A) and these points impose independent conditions on ∇(A).
One can show
Theorem
For any big cell C the quasi polynomial PC

A is the unique element
in ∇(A) such that

PC
A (λ) = δλ,0

for each λ ∈ v − ZA .
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In fact this gives a way of computing PC
A by first imposing the

recursion given by the difference equations and the the initial
conditions given by the theorem.
Before giving an example let me mention two more results. The
first is a remarkable reciprocity formula also due to Dahmen and
Micchelli which can be proved as a consequence of the above
theorem.
Theorem
For every λ ∈ Λ and a big cell C,

PC
A (λ) = (−1)|A|−dim V PC

A (−λ− ρA)

with ρA =
∑

a∈A a.
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The second is a closed formula which can be proved using the
corresponding, analogous but simpler theory which gives the
volume of the polytope ΠA(b). To give it we need to introduce
some auxiliary homogeneous polynomials. Given a ∈ A denote by
Da the derivative in the direction a and for a subset Y ⊂ A set
DY =

∏
a∈Y Da. For any eφ ∈ Q(A) and no broken basis B ∈ Aφ

we define the polynomial pb,Aφ
(x) as the homogeneous polynomial

of degree |Aφ| − dim V , unique solution of the system{
DY f = 0 Y a cocircuit in Aφ

DC f = δB,C C a NB basis in Aφ

Theorem
Set

Qφ =
∏

a/∈Aφ

1
1− e−Da−〈φ | a〉

∏
a∈Aφ

Da
1− e−Da

Then
qb,Aφ

(x) = Qφpb,Aφ
(x).
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To finish let us compute a simple example. We want to to write
down the function P(n) giving in how many ways a number n can
be written as

n = h + 2k + 3s

Since |A| − dim V = 3− 1 = 2 and Ψ = 6Z we need to determine
6 degree 2 polynomials. P0, P1, . . . P5 such that if n ≡ j modulo 6
P(n) = Pj(n). Write

Pj(x) = ajx2 + bjx + bj .
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Our recursion is (this relation appears to be due to Euler)

P(n)−P(n− 1)−P(n− 2) + P(n− 4) + P(n− 5)−P(n− 6) = 0

The initial conditions are

P0(0) = 1

P1(−5) = P2(−4) = P3(−3) = P4(−2) = P5(−1) = 0
The reciprocity law gives

Pj(x) = Pj(−x − 6).

This translates into the relation bj = 6aj .
Now the the Euler relation gives P1(1) = 1. This together with
P1(−5) = 0 gives the system{

7a1 + c1 = 1
−5a1 + c1 = 0

which implies
P1 =

1
12x2 +

1
2x +

5
12

Corrado De Concini Some remarks on vector partition functions



Completely similar considerations give

P0 =
1
12x2 +

1
2x + 1

P1 = P5 =
1
12x2 +

1
2x +

5
12

P2 = P4 =
1
12x2 +

1
2x +

2
3

P3 =
1
12x2 +

1
2x +

3
4
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The algebra of the box spline

De Concini C., Procesi C.
math.NA/0602019
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