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Let k be a field, Fields; the category of extensions of k.

Let F': Fields, — Sets be a functor. If £ is an object of some
F(K), a field of definition of £ is an intermediate field K C L C K
such that £ is in the image of F(L) — F(K).

Definition (Merkurjev). The essential dimension of £, denoted by

ed &, is the least transcendence degree tr deg, F' of a field of
definition F' of &.

The essential dimension of F', denoted by ed F', is the supremum of
the essential dimensions of all objects & of all F(K).

It is easy to see that if F'is represented by a scheme X of finite
type over k, then ed F' = dim X.

The essential dimension ed £ is finite, under weak hypothesis on F..
But ed F' could still be 4o0.
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Merkurjev’s definition generalizes the notion of essential dimension

of a group, due to Buhler and Reichstein.

Definition (Buhler, Reichstein). Let G be an algebraic group over
k. The essential dimension of GG, denoted by ed G is the essential
dimension of the functor H' (—, G) of isomorphism classes of

(GG-torsors over Spec K.

For example, let G = O,,. Then H' (-, 0,,) is the set of
isomorphism classes of non-degenerate quadratic forms on K of
dimension n. Since every such quadratic form can be diagonalized
in the form a;z? + -+ + a,x2, it is defined over k(a1,...,a,).

Hence ed O,, < n.
In fact, it is known that ed O,, = n. Also, ed SO,, = n — 1.

In general finding lower bounds is much harder than finding upper

bounds.
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PGL,, torsors correspond to Brauer—Severi varieties (forms of

P"~1), and also to central simple algebras (forms of M,,).

Main open problem: what is ed PGL,,7

A PGLo-torsor over a field K corresponds to a smooth conic in P%.

A smooth conic in P% can be defined, in appropriate coordinates,
by an equation az? + by? + 22, so it is defined over k(a,b). Hence
ed PGLy < 2. By Tsen’s theorem, ed PGLy = 2.

It is also known that ed PGL3 = 2; this follows from the result of
Albert on the cyclicity of central division algebras of degree 3.
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When n is a prime larger than 3, it is only known (due to
Reichstein) that

n® —n -+ 2

2 <edPGL, <

Computing ed PGL,, when n is a prime is an extremely interesting
question, linked with the problem of cyclicity of division algebras of

prime degree.
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over k, denoted by ed X’ or ed(X /k), is the essential dimension of
the functor of isomorphism classes of objects of X defined over

extensions of k.
Theorem. Let X be an algebraic stack of finite type over a field.
Assume that for each object & of X(K), where K is an algebraically

closed field, the group scheme Autg (§) is affine. Then ed X is
finite.

This follows easily from a result of Kresch, which ensures that such

a stack is stratified by quotient stacks.

For example, X = M,. What can we say about ed M ? The
condition of the theorem is satisfied for g # 1, hence ed M, < 400

if g £ 1.
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Every elliptic curve can be written in the form
Y’z = 23 + axz? + bz3, hence ed My <2, In fact ed My ; = 2.
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A geometric interpretation of ed M, closer to the original
definition of Buhler and Reichstein.

Let C' — S be a family in M, where S is integral of finite type over
k. A compression of C' — S consists of a non-empty open subset

U C S and a cartesian diagram

Cy——D
U——T

where D — T'is in M.

If K is the function field of S, the essential dimension of the generic
fiber Cx — Spec K is the minimal dimension of T', taken over all
compressions of C' — S. The essential dimension of M, is the

supremum over all essential dimension of all families C' — S. Hence
ed M, >3g—3if g > 2.
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Theorem. Let X be a smooth connected separated
Deligne—Mumford stack of finite type over a field k, U a non-empty
open substack. Then ed X = edUd.

In particular, if the stabilizer of a generic point of X s trivial, then
ed X = dim X.

This takes care of the case g > 3. For more general cases we need a

more precise form of the theorem.
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Let X be a smooth connected separated Deligne-Mumford stack of
finite type over a field £ with moduli space X — X. Let K be the

def

function field of X. Let Xx = X Xx Spec K be the generic gerbe of
X.

Theorem. ed X = dim X + ed(Xx /K).

This shows the importance of gerbes in the theory.

For each g > 2 let H, C M, be the smooth substack of
hyperelliptic curves. We have Ho = Ms. What is the generic gerbe

(Hg)K?

The automorphism group of a generic hyperelliptic curve is
po = {=£1}. So (H,)k is banded by p,.

10
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Grothendieck and Giraud, gerbes over a field K that are banded by
., are classified by H*(K, u,). From the Kummer sequence

1—>/J,n—>Gmﬁ>Gm—>1

we get an exact sequence

0=HY(K,Gn) — H*(K,pn,) — H*(K,Gn) == H*(K,Gy,).

The group H*(K, G,,) is called the Brauer group of K, and is
denoted by Br K. If K is the algebraic closure of K and G is the
Galois group of K over K, then Br K = H*(G, K ). Thus

H?(K, p,) is the n-torsion part of Br K.

A gerbe X banded by u, has a class [X] in Br K.
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1s even. Hence
Theorem.
29 of g 1s odd

edHy = dimH, + ed((Hy)x/K) =
29 +1 if g is even.

The proof of the theorem on the essential dimension of a gerbe
banded by p,, relies on a result of Karpenko on rational maps from
a Brauer—Severi variety of prime-power index to itself; in turn this

is an application of Rost’s degree formula.

The theorem has important applications even in the “classical”
case of the essential dimension of an algebraic group.
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edO,, =n
edSO,, =n—1
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How about spin groups?
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Reichstein—Youssin.

n/2]+1 ifn>T7andn=1,00r —1 (mod 8)

ed Spin,, >
n/2] for n > 11.
Furthermore ed Spin,, for n < 14 had been computed by Rost:

edSping =0 edSpiny, =0 edSpiny =0 edSping =0
edSpin, =4  edSping =5 edSping =5 edSpin;, =4

All this seemed to suggest that ed Spin,, should be a slowly

increasing function of n.

15



Theorem. If n is not divisible by 4, then
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ol(n—1)/2) _ ”(”2— Y < edSpin, < altn-1/2)

If n 1s divisible by 4 then

ol(n=1)/2] _ ”(”2_ D 11 <edSpin, < 2l-1/2 |

So for example we get

23 < ed Spin;; < 128
9 < edSpin;g <129
120 < ed Spin;~» < 256
From this point on the exponential term takes over, the growth

becames fast and the gap between the upper and the lower bound

relatively smaller.
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The proof of this result is based on the following fact. Suppose we

have a central extension of algebraic groups

1l —u, — G > () > 1.
We get a boundary map
0: HY(K,Q) — H?*(K,u,) C BrK.

Theorem. Suppose that n is a prime-power, and that P is a
Q-torsor. Then
edG > ind 0P — dim G.

In the theorem above, if n is a power of a prime p, then ind OP is
also a power of the p. This can be used to show that in many

situations the essential dimension is much larger than expected.
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The theorem can be applied to the sequence

1 — pg — Spin, — SO,, — 1.

If P is an SO,,-torsor, OP € H*(K, u) C Br K it the Hasse
invariant of P. Applying the theorem and known results about the
index of the Hasse invariant yields the inequality

ed Spin,, > 2l*7) _ dim Spin,,

_ol™5] _ n(n —1)
> .

Let us sketch a proof of the theorem.
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where n is a prime-power.

If P is a () torsor over an extension K of k, the gerbe 0P of liftings
of P to a G-torsor is banded by p,. Its class in H?(K, u,,) is the

image OP in H*(K, u,,) of the class of P in H' (K, Q). We need to
prove the inequality

edG > ed(6P/K) — dimG.

We may assume that K is finitely generated over k. There exists a
variety V over k with quotient field K and a Q-torsor P — V
whose generic fiber coincides with P. The torsor P corresponds to

a morphism V — BrQ).
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We have a cartesian diagram

op———V

|

5P —Visa gerbe banded by u,,, with generic fiber 6 P.

Hence we have
eddP > ed(6P/K) + dim V.

On the other hand V' — B () is representable, with fibers of
dimension dim V 4+ dim ) = dim V + dim G; hence 0 P — B3 G has
the same property. It follows that

eddP < ed B,G + dim V + dim G.
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Let P be a (Q-torsor. Write the prime factor decomposition
indOP = p{*...p5".

Then
eddP <pi*+---+prr—r+1

Conjecturally, equality holds. This is equivalent to a conjecture of
Merkurjev and Colliot-Thélene on the canonical dimension of
Brauer—Severi schemes. They proved it for ind OP = 6.
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