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P(3)

particles jump independently with rate p(-)
EXCLUSION RULE!
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SCALING PROPERTIES?
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» EX(t) = > oxS(x,t) =x
b drift )
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Formal scaling arguments:

D(t) ~ C ¢'/3
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®: scaling function

superdiffusive behavior
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Resolvent Method
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Previous Results

Ferrari-Spohn (2006):
Limit theorem for the current fluctuations with 1/3 exponent
(TASEP, stationary case)

Additional tightness estimates would imply

D(t)
t—o0 t1/3

= C €(0,00)

'For free':
DTASEP(t) > C +1/3



New Results

For any finite-range Asymmetric Exclusion Process on Z:
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Y

(one-sided) bounds on the growth of the function as t — oo
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4

DASEP(I') > C t1/3(|0g t)77/3
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Newer Results

For any finite-range Asymmetric Exclusion Process on Z:

Ct*/3 > D(t) in the usual sense
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(6,0) = (6,3 )

= microscopic current

L = generator
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We need:
B
w215 < ClwB)I% 1 pa

(different norms, different functions)

» Different norms are comparable

> [wA — kWB”|_17)\ is small
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Upper Bound from Weak Upper Bound

Landim-Yau (1998)
1 ' ‘ 2
CUEL [ w(s)ds. | w(s)as)] < [,
With Green-Kubo the bound follows.

D(t) = Zz2p(z) 4+ 2xt7t /Ot/os«w, et w)) duds



Open Questions

» Lower bound for D(t)
» Limit of D(t)t~1/3

» Scaling limit?



