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ηx(t) ∈ {0, 1}: number of particles at site x at time t
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Stationary distribution:
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∏
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Bernoulli(ρ)
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Claim: if we ’put’ a second class particle at site 0 at time 0 in our
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C1t
1/3 ≥ DASEP(t) ≥ C t1/3

⇓ (Comparison Theorem)

For any finite-range Asymmetric Exclusion Process on Z:

C1t
1/3 ≥ D(t) ≥ C t1/3 in the weak sense



Newer Results

For any finite-range Asymmetric Exclusion Process on Z:

Ct1/3 ≥ D(t) in the usual sense



Main Tools

Green-Kubo formula:

D(t) =
∑

z

z2p(z) + 2χt−1

∫ t

0

∫ s

0
〈〈w , euLw〉〉duds

〈〈φ, ψ〉〉 = 〈φ,
∑
x

τxψ〉

w = microscopic current

L = generator



Main Tools

Green-Kubo formula:

D(t) =
∑

z

z2p(z) + 2χt−1

∫ t

0

∫ s

0
〈〈w , euLw〉〉duds

〈〈φ, ψ〉〉 = 〈φ,
∑
x

τxψ〉

w = microscopic current

L = generator



Main Tools

Taking the Laplace transform∫ ∞
0

e−λttD(t)dt = λ−2

(∑
z

z2p(z) + 2χ|||w2|||−1,λ

)

where
|||φ|||−1,λ = 〈〈φ, (λ− L)−1φ〉〉1/2

D(t) ' C t1/3 in a weak sense ⇐⇒ |||w |||2−1,λ ' λ−1/3



Main Tools

Taking the Laplace transform∫ ∞
0

e−λttD(t)dt = λ−2

(∑
z

z2p(z) + 2χ|||w2|||−1,λ

)

where
|||φ|||−1,λ = 〈〈φ, (λ− L)−1φ〉〉1/2

D(t) ' C t1/3 in a weak sense

⇐⇒ |||w |||2−1,λ ' λ−1/3



Main Tools

Taking the Laplace transform∫ ∞
0

e−λttD(t)dt = λ−2

(∑
z

z2p(z) + 2χ|||w2|||−1,λ

)

where
|||φ|||−1,λ = 〈〈φ, (λ− L)−1φ〉〉1/2

D(t) ' C t1/3 in a weak sense ⇐⇒ |||w |||2−1,λ ' λ−1/3



Proof of the Comparison Theorem

We need:
|||wA|||2−1,λ ≤ C |||wB |||2−1,βλ

(different norms, different functions)

I Different norms are comparable

I |||wA − kwB |||−1,λ is small
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Open Questions

I Lower bound for D(t)

I Limit of D(t)t−1/3

I Scaling limit?


