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Canada age-specific mortality 1995-1997

| (from Statistics Canada

http://www.statcan.ca:80/english/freepub/84-537-XIE/ ‘rables.h‘l'm)
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Evolution of Aging

General idea goes back to A. Weismann (late
19th C.), P. Medawar and G. Williams (1950s):

Late-acting deleterious mutations are
subject to less stringent selection control
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Mutation-Selection Equilibrium

Intuitive single-locus model: Mutant allele arises
at rate v. Selective cost s. Equilibrium when
frequency of mutant is v/s.
B. Charlesworth (2001):
constant reproduction rate A
high "background mortality” p
mutation increases mortality by m at age x
constant mutation rate v

cost = me M” of total reproduction

Expect equilibrium frequency Kex\w.
m



Problems:

Mathematical framework for single
locus, applied to infinite-locus setting.

Selective cost of multiple mutations
non-additive.
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Improved model (S. Evans, K. Wachter, and DS):

Mutation space M
Mutation rate v = o-finite measure on M
Genotype space G =

{countable integer measures on M}
State of system P = probability on G

Selection cost S : GoR™
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Evolution equation:

%PtF &= (/ F(- 4 6m) — F(-)}dV(m)>

—Py(FS) + (B F)(FS)



In this case, the solution is unique.




General solution by Feynman-Kac: Let X, be a
Poisson point process with intensity v. Then

i [exp (— fg S(X.) du) F(Xt)}
D [exp (— fg 90X du)] |
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General solution by Feynman-Kac: Let X, be a
Poisson point process with intensity v. Then

i [exp (— fg S(X.) du) F(Xt)}
D [exp (— fg 90X du)] |

PtF:

When S is linear ("non-epistatic”), the solution
reduces to a Poisson random measure with

iIntensity | S mt

S(m)
In this case, the solution is unique.

dv(m).



What does this tell us?

1. Series expansion for P+ and limiting
distribution: Let Y,,Y,,....Y, be an increasing

random choice of n mutations (from
distribution v.) Then

| Yoo vODPE [ (S() - S(Ya)) T F(Y,)]
lim P F = :

i S y(M)"E {(S(Yl) o S(Yn))_l}

There is a corresponding finite-time formula.



What does this tell us?

2. Explosion: If B is a set s.t. S(g+b)-S(g)<v(B)
when beB, then the number of mutations in B

goes to infinity.

Implies "wall of death” rather than Gompertz.



Recombination

viability and

viability
selection mating
+ mutation selection

meiosis
with
recombination

Barton-Turelli model




Recombination: Pick a random subset of
mutations A from a distribution r. New
genotype gets A mutations from one
parent, and A° mutations from the other.

If we iterate this process, the genotypes
get completely reshuffled.

End up with a Poisson random measure,
with the same marginal intensities as the
genotype distribution we start with.



Definition: The recombination measure R is the
distribution on subsets of M, defining which
sites come from the same parent. R is

shattering if there is a positive constant « such
that E[v(ANR)?| < zv(A)? — av(A)°.

Definition: A distribution P on genotypes is
dispersive if there is a constant B such that

for any Borel set A,
J 9(A)1gay>23dP(g) < BuP(A)*.




Recombination Operator
P[] = [ [ [ Flor|n+ 2] )dPlon)dPloa)aR(R)
Mutation operator; suppose F(g)=e9.'!

MP[F] = P [F - e”(e_f_l)/"’} ;

Selection operator:
S Pl )
= TS @hdp(g)

Poissonization operator: i
PBP[F] = exp < / (e~ ™) — 1)duP(m)

\. /




Easy part: Repeated recombination without
mutation or selection (or linear selection)
converges to Poisson distribution.

Theorem: If P is dispersive and R is shattering,
then H%kp ik ;BP‘ b
< (38 +2) (Iv]? v 20Ju]) (k+1)".

This is a process version of Le Cam's Theorem on
convergence to Poisson distribution.

This justifies defining a dynamical system
concentrated only on Poisson random measures.



Since mutation and selection are much
slower, this converges to a process that is
always Poisson.

Let sp(m) be the average cost of mutations
m, averaged over the genotype dist. P.

If P is Poisson, then

sp(m) = [ [S(g+bm) - S(g)]aP(9)




Let p+ be the Poisson intensity at time .

dpt
dt

= o1 (m)pt

Theorem (Evans, DS, Wachter): If v is finite,
this equation has a unique solution, which
remains finite for all t.



Does this poissonization
really work?

Partial
viability and ISsonization
viability
selection mating
+ mutation selection

/

Away from Poisson
(if selective cost
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Main result
Let Qp := (RMS)* P, Q). := (PMS)* P,

If the initial Po is Poisson and R is shattering,
then for any positive T,

nl—l—{go fgg HHpt s QLt”J ||Wa5 =Y.

L1, is the Poisson measure with intensity p.



Main idea

HQk ¥ C2;4”\7\/'&8 S HQk b kaHWas iy 4HMQk i MQ;HW&S
ar = ||@k — PQk| vy
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Thus, if we can show that ax stays on order 1/n,

the same will be true for bx.



|Qr — Bkl 1wae

C k—1
< E;/dﬂzk(ﬂ)/
where So 4(g) =

K
—nZ(logQ [e_S(X)/” | Ve gAi} A
i=1

1oz Q [e—S<X>/”D
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Example: Brownian
Excursion model
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Limit mortality rates




