
Measure-valued dynamical systems, 
with applications to the evolution of aging

David 
Steinsaltz

Dept. of 
Mathematics 
and Statistics

Queen’s 
University

 Introduction to the evolutionary 
problem

 Description of the model
 Feynman-Kac Solution
 Implications of the Solution
 Adding recombination



This morning



K. Ramanan talked about measure-valued
processes.

This morning



K. Ramanan talked about measure-valued
processes.

B. Griffiths talked about mutation-selection
processes.

This morning



K. Ramanan talked about measure-valued
processes.

B. Griffiths talked about mutation-selection
processes.

I will talk about measure-valued
mutation-selection processes.

This morning



K. Ramanan talked about measure-valued
processes.

B. Griffiths talked about mutation-selection
processes.

I will talk about measure-valued
mutation-selection processes.

Warning: We have stochastics, and processes, 
but no stochastic processes!
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Evolution of Aging

General idea goes back to A. Weismann (late 
19th C.), P. Medawar and G. Williams (1950s):

Late-acting deleterious mutations are 
subject to less stringent selection control
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Mutation-Selection Equilibrium

Intuitive single-locus model: Mutant allele arises 
at rate ν.  Selective cost s.  Equilibrium when 
frequency of mutant is ν/s.
B. Charlesworth (2001): 
 constant reproduction rate λ
 high “background mortality” μ
 mutation increases mortality by m at age x
 constant mutation rate ν

cost = me-μx of total reproduction 

Expect equilibrium frequency ν

m

e
λx

.



Problems:
Mathematical framework for single 
locus, applied to infinite-locus setting.

Selective cost of multiple mutations 
non-additive. 



Problems:

Mutations which 
act only at one age 
are extremely 
unrealistic.

294 S. D. Pletcher, D. Houle and J. W. Curtsinger

classes, and one additional line was found with differ-

ent mortality at a single age. Six of these seven lines

were also observed to have significant age-specific ef-

fects in  females. A sample of mortality estimates relative

to the control lines for females from eight lines and

males from eight lines is presented in  Figure 3. Most of

the mutations affect mortality rates early in  life, and a

few show significant effects on middle ages. No lines

were identified as showing mortality effects of mutation

late in  life, i.e., !37 days.

Evidence for mutations that have effects on mortal-

ity throughout life were identified in  both sexes (Table

3) . Although there were no lines that remained signifi-

cant after a strict Bonferroni correction for the 29 hy-

pothesis tests in  each sex, we would expect only 1.45

lines to show significance at the P " 0.05 level by

chance alone. In  females, eight accumulation lines

showed mortality rates consistently higher than con-

trols, and one showed lower mortality throughout life

(at the P " 0.05 level) . Of these eight lines, five were

also identified as having significant effects at specific

ages. The evidence is less convincing in  males: Two

lines were considered to have higher mortality than the

controls throughout life, while one line showed a con-

sistent decrease in  mortality. The two lines with higher

mortality also exhibited significant effects of mutation

in at least two age intervals (Table 3) .

Mean mortality curves for the 29 mutation accumu-

lation lines and the three control lines are presented in

Figure 4. The prevalence of mutations increasing early-

age mortality in  females is reflected in  the significantly

greater average mortality for the accumulation lines.

Figur e 3.—Mutation ac-
cumulation lines showing
age-specific effects of spon-
taneous mutations on mor-
tality. Mortality rates (and
99.5% confidence inter-
vals)  for each of the accu-
mulation lines are calcu-
lated from deaths occur-
ring in 3-day intervals, and
they are plotted as the dif-
ference from control line
mortality at each age. The
shaded region represents
the 99.5% confidence re-
gion for control line mor-
tality. Confidence intervals
were generated from a
bootstrap procedure and
were based on 50,000 boot-
strapped samples. Ages in
which confidence intervals
are not overlapping are
considered to represent
ages in  which control line
mortality is significantly dif-
ferent than accumulation
line mortality.

Mathematical framework for single 
locus, applied to infinite-locus setting.

Selective cost of 
multiple mutations 
non-additive. 



Mutation space M
Mutation rate ν = σ-finite measure on M
Genotype space G = 

           {countable integer measures on M}
State of system P = probability on G

Selection cost S : G→R+

Improved model (S. Evans, K. Wachter, and DS):



Mutation space M
Mutation rate ν = σ-finite measure on M
Genotype space G = 

           {countable integer measures on M}
State of system P = probability on G

Selection cost S : G→R+

Improved model (S. Evans, K. Wachter, and DS):

Evolution equation:
d

dt
PtF = Pt

(
∫

[

F (· + δm) − F (·)
]

dν(m)

)

−Pt(FS) + (PtF )(PtS)



In this case, the solution is unique.



General solution by Feynman-Kac: Let Xt be a 
Poisson point process with intensity ν.  Then

PtF =
E

[

exp
(

−

∫

t

0
S(Xu) du

)

F (Xt)
]

E

[

exp
(

−

∫

t

0
S(Xu) du

)] .

In this case, the solution is unique.



General solution by Feynman-Kac: Let Xt be a 
Poisson point process with intensity ν.  Then

PtF =
E

[

exp
(

−

∫

t

0
S(Xu) du

)

F (Xt)
]

E

[

exp
(

−

∫

t

0
S(Xu) du

)] .

When S is linear (”non-epistatic”), the solution 
reduces to a Poisson random measure with 
intensity 

1 − e−S(m)t

S(m)
dν(m).

In this case, the solution is unique.



What does this tell us?

1. Series expansion for Pt and limiting 
distribution: Let Y1,Y2,...,Yn be an increasing 
random choice of n mutations (from 
distribution ν.)  Then

lim
t→∞

PtF =

∑

∞

n=0
ν(M)nE

[

(

S(Y1) . . . S(Yn)
)

−1
F (Yn)

]

∑

∞

n=0
ν(M)nE

[

(

S(Y1) . . . S(Yn)
)

−1
] .

There is a corresponding finite-time formula.



2. Explosion: If B is a set s.t. S(g+b)-S(g)<ν(B) 
when b∈B, then the number of mutations in B 

goes to infinity.  

Implies “wall of death” rather than Gompertz.

What does this tell us?
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Recombination: Pick a random subset of 
mutations A from a distribution r.  New 
genotype gets A mutations from one 
parent, and Ac mutations from the other.

If we iterate this process, the genotypes 
get completely reshuffled.

End up with a Poisson random measure, 
with the same marginal intensities as the 
genotype distribution we start with.



Definition: The recombination measure R is the
distribution on subsets of M, defining which 
sites come from the same parent. R is 
shattering if there is a positive constant α such 
that E

[
ν(A ∩R)2

]
≤ 1

2ν(A)2 − αν(A)3.

Definition: A distribution P on genotypes is 
dispersive if there is a constant β such that
for any Borel set A,

∫
g(A)1{g(A)≥2}dP (g) ≤ βµP (A)2.



Recombination Operator

RP [F ] =
∫ ∫ ∫

F (g1

∣∣
R + g2

∣∣
Rc)dP (g1)dP (g2)dR(R)

Mutation operator; suppose F(g)=e-g[f]

MP [F ] = P
[
F · eν(e−f−1)/n

]
;

Selection operator:

SP [F ] =
∫

e−S(g)/nF (g)dP (g)∫
e−S(g)/ndP (g)

.

Poissonization operator:
PP [F ] = exp

{∫
(e−f(m) − 1)dµP (m)

}



Easy part: Repeated recombination without
mutation or selection (or linear selection) 
converges to Poisson distribution.

Theorem: If P is dispersive and R is shattering,
then ‖RkP −PP‖Was

≤ (3β + 2)
(
|ν|2 ∨ 2α|ν|

)
(k + 1)−1.

This justifies defining a dynamical system 
concentrated only on Poisson random measures.

This is a process version of Le Cam’s Theorem on 
convergence to Poisson distribution.



Since mutation and selection are much 
slower, this converges to a process that is 
always Poisson.

Let sP(m) be the average cost of mutations 
m, averaged over the genotype dist. P.

If P is Poisson, then

sP (m) :=

∫

[

S(g + δm) − S(g)
]

dP (g).



Let ρt be the Poisson intensity at time t.

dρt

dt
= ν − sPt

(m)ρt.

Theorem (Evans, DS, Wachter): If ν is finite,
this equation has a unique solution, which 
remains finite for all t. 



Does this poissonization 
really work?

viability
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Partial 
poissonization

Away from Poisson 
(if selective cost 

nonlinear)



Main result

lim
n→∞

sup
t≤T

∥∥Πρt −Q$tn%
∥∥

Was
= 0.

Let Qk := (RMS)kP0

If the initial P0 is Poisson and R is shattering,
then for any positive T,

Πρ is the Poisson measure with intensity ρ.

Q′
k := (PMS)kP0



Main idea
∥∥Qk −Q′

k

∥∥
Was

≤
∥∥Qk −PQk

∥∥
Was

+ 4
∥∥µQk − µQ′

k

∥∥
Was

ak =
∥∥Qk −PQk

∥∥
Was

bk =
∥∥µQk − µQ′

k

∥∥
Was

bk+1 ≤ eσ/n

(
bk +

2σ

n
ak +

2σ2

n2

)
.

Thus, if we can show that ak stays on order 1/n,
the same will be true for bk.



≤ C

n

k−1∑

i=0

∫
dRk(A)

∫ ∣∣∣Ŝ′
Qi

(g)− ŜQ∗
i ,Ak−i(g)

∣∣∣ dPi(g)

∥∥Qk −PQk

∥∥
Was

where

−n
K∑

i=1

(
log Q

[
e−S(X)/n

∣∣ XAi = gAi

]
−

− log Q
[
e−S(X)/n

])

ŜQ,A(g) =



Example: Brownian 
Excursion model



Limit mortality rates


