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The frequency of a mutation
The relative frequency { X (¢),t > 0} of genes of type a in a pop-
ulation of two types a and A is modelled by a diffusion process
with generator
2
L=tpa—o)
2 Ox2
Simplest model with no mutation or selection.

Denote AX (t) = X (t+ At) — X (1)

0At + O(At)

E(AX(t) | X(t) = x)
X(t)== x(1l — x)At + o(At)

Var(AX(t) | X(1) )

Kimura (1955), Bochner (1954) in a different context.
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X (t), Neutral model, no mutation



Wright-Fisher model N genes, Types a, A. Fixed population size
of N genes. Offspring in a generation choose their parents at
random with replacement from the prior generation and inherit
their type.

XN(T), T =20,1,...is the relative frequency of a genes in gen-
eration 7.

EAXNH) | XN(r)y=2) = 0
1
Var(AXN(r) | XN () =2) = z(1—2)- =
Higher moments of AX " (7) are of order smaller than %

Measure time in units of N generations, so 0t = % then

{XN([IN]), ¢ > 0} = {X(t),¢ > 0}
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Transition density in the neutral model

fp,mit) =2 ' (1—2)~ Ze 20D P (p) Py ()

where { P;(-)} are scaled Gegenbauer polynomials, orthogonal on
m(z) =z (1 —z)"!
Reversibility before hitting O or 1

m(x) f(x,p;t) = m(p) f(p,x;t)



Genealogical form of the transition density

o0 14
14 _
fpozst) = ) aqu(t) ) (k)pk(l —p) "
(=1 k=1
I'(4)
X
L'(k)'(6— k)
where {qy(t)} are transition probabilities of a death process

(coalescent process) {A(t), ¢ > 0} with death rates pj = (S)
and A(0) = oo.

ka_l(l o x)@—k—l

G (1980), Ethier and G (1993).



Time t back, A(t) = ¢ ancestors

KAKAA

Current population

The relative frequency of family sizes in the / lines is Dirichlet(1,1,. ..

Line types are chosen from a, A independently with probability
p,1—p
If £ of the [ lines are of type a, then the density of a is
I'(4) k—1
™
D(k)D( — k)




Two-allele models with mutation

Wright-Fisher model with genes of type a, A
Mutation a — A with probability w per gene per generation
Mutation A — a with probability v per gene per generation

Diffusion process {X (t),t > 0} for the relative frequency of «a
genes at time t.

Generator

2
— 1x(l - x)a— —- 1( —ax + B(1 — :15'))i
2 x Ox

where @ = 2Nwu, 8 = 2Nw.



The stationary distribution of the diffusion process is Beta

d(z;a,8) = Bla, B) 12 11 —2)P L o<z <1

satisfying the forward equation

;8822{ (1 —x)o(x; aaﬁ)} ({i{ () (x; a,ﬁ)}
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Wright-Fisher diffusion process with d types

X(t) = (Xq(t)...,X4(t)) are gene frequencies of d types, la-
belled 1,2,....d at time t > 0.

X(8)] = X1(8) + - + Xq(t) = 1.

Mutations « — j occur at rate 3¢5, 2,7 = 1,...d.

Backwards generator

52 1Y 9
x; — T + — € — |€E|T;) —
ZZ ’L ’l,] axax QZ(’L ‘ ‘ Z>6£CZ
z 19=1 1=1
Stationary distribution is Dirichlet
r _ _
D(CB,E) _ (|€|) xil 1"’5172d 1
['(e1) -+ T'eq)

for x1,...x4 > 0 and |z :Z(fa?izl



Transition density (zr — vy in time t) is

fayt) =Dw,o{1+ > pp0)Qn)Qnw)}

{n;nGZi_l ,|n|>0}

Eigenfunctions Q)5 (x) are orthonormal polynomials on the Dirichelt
distribution.
Eigenvalues are pj,,((t) = exp{—%|n[(|n[ + |e| — 1)t} repeated

n|l+d—2\ ,. : :
(' ‘W ) times corresponding to eigenvectors QY (x), G (1979).

Karlin and McGregor (1975) - Moran model version whose sta-
tionary distribution is the Dirichlet-Multinomial. Polynomials are
Hahn multivariable analogues explicitly constructed.



Backward generator

d
Z Z 337, 17 33' (9£BZ'(9£B' + 5 Z(Ez - ‘e‘xz)axz

z 19=1
Forward generator

1 0
Z Z axzax wi(8ij — w5) = 5 D 5 —(ei = leli)

z 19=1
Eigenfunction equations

LQ3() = —Inl(Inl + || - D@5 ()

LD(z,€)Qp(x) = —%\nl(\nlﬂel—1)79(27,6)@%(33)



Mutant families in an infinite-leaf coalescent tree
Mixture distribution arising from the coalescent

o0 d
fewn=> a3 (Iepwe+n

11|=0 {l:|l] fixed} 1

q||l€||(t) is the distribution of LI€l(¢), the number of non-mutant
founder lineages at time ¢ back. LI€/(¢) is a death process back
in time, starting from infinity, where lineages are reduced by coa-
lescence or mutation from k — k—1 at rate k(k—1)/2+kle| /2.
Families are either from founder lineages or new mutations, giv-
ing the Dirichlet mixture.

f(x,y;t) and the eigenfunction form are identical.



Infinite-leaf coalescent tree with mutations, type j with probability €;/|€|

8 i




Forest of non-mutant ancestral lineages, to defining mutations

L

I I
—_ B |—|—_||_| - I

Ancestral lineages are lost back in time by coalescence

or mutation at rates (3) and % while 2 non-mutant lineages.




Dirichlet family sizes

d
Z ('i') H:U,liiD(y,e—l—l)

{l:|1| fixed} 1
II| non-mutant founder lineages are divided into [ = (I1,...,1)
numbers of types 1,...,d with probability <|§|> Hcli azi’b
Let U = (Uy,...,U;) be their relative family sizes in the leaves

of the tree, and V = (Vq,..., V) be the frequencies of families
derived from new mutations on the tree edges in (0,1).

UsV = (Uy,...,U,Vi,...,Vy) is D(u ® v,(1,...,1) @ €).
D(y, e + 1) is obtained by adding Dirichlet parameters
corresponding to types 1,....d.



Eigenfunction expansion

flz,y;t) = D(y7€>{1 + Zp|n| )Qn(, y)}
n-Kernel polynomials

Q)= Y Qu@)Qu®)

{n;|n| fixed }
invariant under which orthogonal polynomial set is used.

Qi (=) = (le] +2[n| — 1) i(—l)‘”'— {11+ ) (| e
m=0

ml(jn] — m)

where &, = Z <Tl”/) [c |m) H(%yz
o U e



Two forms of the density

f(z,y;t) = D(y, E){1 + D o (DQy (z, y)}
1
PIn|(¢) are eigenvalues.
d
fm,y;t) = Z a (t) > (';')Hﬂfﬁ-i@(y,eﬂ)
1|=0 (1:]1] fixed} 1

qm( ) are death process transition probabilities.
Fleming-Viot Dirichlet process version in Ethier & G (1993).



Poisson Dirichlet random measure

©.@)
p= ) g
=1

where {z;} is PD(#) and independent of {{;} which are i.i.d.
vog € P(S), with S a compact metric space.

Stationary distribution of the random measure

g, () = Plp € -)

Fleming-Viot process with type space S, and mutation operator

(AN@) = [ (7O~ F@)wo(de



The Fleming-Viot process with type space S and mutation op-
erator A has transition function P(t, u,dv) for given u € P(S)

P(tps) = ah(H)g ()
£ 30 ah(0) [ n"dys x - x dyn)
n=1 ST
o0, (n0) =1 (g1 i) +000} )
where 1, (y1, ..., Yn) as the empirical measure of points
Yl,--->Yn € 5,

Un(yla R 7yn) — n_1(5y1 T+t 6yn)



Characterization of Markov processes with
Beta stationary distributions and polynomial
eigenfunctions



Characterization of distributions with polynomial eigenfunctions

B(a, B) 'y (1 —y)P
x {1+ 3 wnhn R (@) R (1)}, 0 < 2,y < 1
n=1

IS a probability distribution for a sequence of constants {wn} it
and only if {wn} is a positive definite sequence.

{Rq(@a’ﬁ)(:c)} are Jacobi polynomials on the Beta distribution with
Rq(@a’ﬁ)(l) = 1. Scaling by v/ hyn makes them orthonormal.



Bochner (1954) A bounded sequence {cp} is positive definite if

S anhn R (2) >0, 3 |an|hn < oo

implies that
Z CLnCnhan(fLa7ﬁ) (%) Z 0

Gasper (1972) Let oo < 3. If either 1/2 < av or ao+ 3 > 2, then
a sequence pp, is positive definite if and only if

pn = E[Ry7(2)]

for some random variable Z in [0, 1].



Bochner (1954): A family of bounded sequences {cy (1)},
0 <t < oo is called a homogeneous stochastic process if

(i) {cn(t)} is positive definite for each t
(if) cn(t) is continuous in t

(i) en(0) = co(t) =1

(iv) en(t+s) = cn(t)cn(s)

Gasper (1972): Under the conditions on o« and 3, itis N & S
that ¢, (t) = e~ with

R%Oéﬁ)(z)
1 -2z
where o > 0 and v is a finite measure on [0, 1).

Sequences {cn(t)} characterize eigenvalues of transition proba-
bility functions with polynomials as eigenfunctions.

dnzan(n—I—a—l—ﬁ—l)—l—/Ol_ Lo dv(z)



Subordinated Diffusion Process Let {X(t)} be the two allele

1
Wright-Fisher diffusion process with eigenvalues e_ﬁn(”+9_1)t,

where 0 = o + (3
Let {Z(t)} be a Lévy process with Laplace transform

@) 1 —_ e_y¢

Elexp(~¢Z(1)] = exp{ ~t | G(dy))

0 Y
where [ %G(dy) < 0.

Then {X(Z(t))} has polynomial eigenvectors and eigenvalues

cfn,(t):exp{—t/ooo1

_ e~ yn(n+6-1)/2

G(dy)



Markov Process {X (¢)} with transition density
B(a, 8) 'y M1 —y)? !
o
x {1+ 3 e ha R (@) R ()}, 0 <2y < 1

n=1
Poisson kernel in orthogonal polynomial theory

o0
1+ Sy RO (@) RO (y), 0 < 2y < 1, r| < 1

n=1

X(t) = X(Z(t)), where {Z(t)} is a Lévy process with Laplace
transform

exp { —t[\/22 + (6 — 1)2/4 — /(6 — 1)2/4]}, 6> 1




Z(t) is a tilted positive stable process with index + and density

1t
. { 3€_§W‘6_%(0—1)2Z+%|(9_1)|t7 >0
w2

Z(t) is a Lévy process with Laplace transform
b oo p—a(0—1)2/8

eXp{ ~ 2 Jo 3/2
The eigenvalues of X (t) are, for 6 > 1,

E|exp{ — %n(n +0 - 1)Z(t) }| = exp{—nt}

(1— e_w‘) da?}



X (t) has a generator L satisfying

L =/2(—=L) + (0 — 1)2/4 — /(6 — 1)2/4

A series expansion with positive coefficients of L is

fZ By

where ¢ = (§ — 1)?/4.

L= (-L*+(0-1)L)

Eigenfunctions

LR (2) = —nRI®P) ()
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Subordinated Wright-Fisher diffusion (6 = 1.0,1.5,2.0,5.0)



If @ <1 then for n > 1,

E|exp{ — %n(n +0 - 1)Z(t) }| = exp{—nt} x exp{t(1 — 0)}

Let f(z,y:t) be the transition density of X (¢), then the transi-
tion density with eigenvalues exp{—nt}, n > 0 is

€_t(1_0)f(£li,y;t> 4+ (1 o €_t(1_0))B(Oé,ﬁ)_1ya_1<1 o y>ﬁ—1

Subordinated process X (Z(t)) where Z(t) is a similar process to
Z(t) but has an extra state co. Z(t) is killed by a jump to oo
at a rate (1 — 0).



Subordinated genealogical form of the transition density

o0 1
: o —1 .« — L
> af () 3 ()P (=) T Blatk, ft—k) e T (1) PR

where {qg(t)} are transition probabilities of a death process

{AY(t), t > 0} with death rates pj, = (g) + %9 and A%(0) = 0.

Subordinated process X (t) = X (Z(t)) has a similar form for the
transition density, with qg(t) replaced by E(ql@(Z(t)) transition
functions of the subordinated death process A?(Z(t)).



Subordinated death process AY(Z(t)) example

Z(t) is a tilted positive stable process with index .
A%ty = A%(Z(t)) is a Markov process with A?(0) = co and a
pgf of

>0

i )

1 — 4pQS)—% " (1 — \/le; 4pq3)9—1’ 5

where p =e t/(1+e ) and g=1/(1+e0).



Random walk on Z with transitions 3 — 7 + 1 with probability p
and 7 — 7 — 1 with probability g =1 — p and g > p.

Let the number of steps to hit —@, starting from 0 be 2£ + 6.
Then & has a pgf of

H(s) = (

A(t)+1 has the same distribution as the size-biassed distribution
of &, with pgf

1 — /1 —4pgs )9
2ps

~ sH'(s)
“it) T )



The probability distribution of A%(t) is
2401\, 2z i, 1 ~j+o
G ) a9

for j =0,1,..., where z = e L.

The probability distribution of A%(t) is

> _2k+0-1)+0) -1
kg-pZ(t)(—l)k / =) 1

for j =0,1,..., where pz(t) = ¢ k(k+0-1)t/2



General characterization of eigenvalues

R$@@0=2Fwﬂ%n+9—haﬂ—y)

Eigenvalues

/1L—R$ﬁ%w
0

dG(y)

D (=) (n 0 — 1)) gy

- C Qo k!
k=1 (k)

S [1[0 (—nn+0—1)+5G+6-1)
—1 Oék k!

where [ (1 — ) dG(y) = cuy.



The generator corresponding to a process with these eigenvalues
IS

k—1 vy
ico QL+ +0—1)) py_y
O‘(k) k!

=N ©.@)
L:cz
k=1

This is a positive series in L.



Laguerre diffusion {Y (¢),t > 0}
Branching process with immigration

Generator
02 %,
L:$@+(—bx+C)%, b:]_,C>O
Transition functions, for x,y > 0
c—1 n!
©° 5 ety
_ i e—,ua:(:ux)k(l ) (ctk) yc+k—1€—y/(1—r)

k! I'(c+ k)

where {L,,(f_l)(:c)} are Laguerre polynomials, r — e~ ! and [ =

r/(1—r).



Transition functions of a Markov process
c—1

flz,y;t) :?;

n!

—y S —tdp, 7 (c—1) (c=1), 1
(c) ¢ ngo e Ly (37>Ln (y) ()

are characterized by their eigenvalues having the representation

1 1 — o™ 1— 1 — o7
dn:/ i dG(y) :cm—l—/ Y dG(y), a > 0
0 1 0 1 —y

Sarmanov (1968), G (1969).



~

A Markov process with transition functions f(x,y;t)
has a characterization as a subordinated process

Y (t) =Y (at + Z(t))
where {Z(t),t > 0} is a Lévy process with Laplace transform

— 1 — e~ AM—logy)
exp{—/o1 : eliylgy dG(y)}

1— 1 1—
/ LA (—logy)—— dG(y) < o / dG(y) < oo
0 1 —vy 0
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