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Summary

Let us consider 3 facts:

(A) E exp(Tξ2) = +∞ for any Gaussian random variable ξ and any T > 1/(2Var ξ).

(B) Let R(t) be a Gaussian Ornsten-Uhlenbek process,

dR(t) = −λR(t)dt + σdw(t).

The existence of an equivalent measure such that R(t) is a martingale for t ∈ [0, T ] is

usually ensured by Novikov condition:

E exp
(

λ2

2σ2

∫ T

0
R̃(t)2dt

)
< +∞. (0.1)

By (A), it is unclear if this condition holds for large T . The hypothesis that Novikov

condition holds for large T is non-trivial, and it is even counterintuitive. 1

(C) A market model with the stock price S(t) = eR(t) is arbitrage free if Novikov condition

is satisfied (in sligtly different form than (0.1)). However, there is common sense that

a mean-reverting market model may allow some speculative opportunities.

We study these facts and their connections.

∗To appear in Applied Mathematical Finance
1the similar question arises for the process exp(R(t)): can it be a martingale on a large time interval?
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1 The mean-reverting model

We assume the so-called mean-reverting model, when the discounted stock price evolves as

S̃(t) = s0e
R̃(t),

dR̃(t) = (α− λR̃(t))dt + σdw(t), (1.1)

where σ > 0, α, λ > 0 are deterministic. We assume that R̃(0) is non-random. The process

R̃(t) is Gaussian. (If α = 0, then R̃(t) is an Ornstein-Uhlenbek process)

Proposition 1.1 There exists a stationary Gaussian process R̃0(t) is Gaussian, and E|R(t)−
R0(t)|2 → 0 and R̃(t) → R̃0(t) a.s. as t → +∞.

Clearly,

dS̃(t) = S̃(t) (ã(t)dt + σ(t)dw(t)) , t > 0, (1.2)

where

ã(t) = α− λR̃(t) +
σ2

2
, σ(t) = σ.

Definition 1.2 We say that the Novikov condition is satisfied for a time interval [0, T ] if

E exp
1
2

∫ T

0
ã(t)2σ(t)−2dt < +∞. (1.3)

It is well known that if the Novikov condition is satisfied, then By Girsanov’s Theorem, one

can define the (equivalent) probability measure P∗,T such that w∗(t)
∆= w(t) +

∫ t
0 σ−1ã(s)ds

is a Wiener process under P∗,T for t ∈ [0, T ].

The following result is well known.

Theorem 1.3 Let a market model be such that Novikov condition is satisfied for some T > 0.

Then the market model does not allow arbitrage for the time interval [0, T ].

2 Absence of arbitrage for the mean-reverting model

Theorem 2.1 For any κ ∈ R, T > 0,

E exp
(

1
2σ2

∫ T

0
[κ− λR̃(t)]2dt

)
< +∞. (2.1)

In particular, Novikov condition (1.3) holds for any T > 0 for the mean-reverting stock price

model with ã(t) = α− λR̃(t) + σ2/2.
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As is known, E exp(Tξ2) = +∞ for any Gaussian random variable ξ and any T >

1/(2Var ξ). For the mean-reverting model, ã(t) is Gaussian, and ã(t) → const − λR̃0(t)

as t → +∞, where R̃0(t) is a stationary Gaussian process. Therefore, the fact that the

Novikov condition holds for mean-reverting model for large T is non-trivial, and it is even

counterintuitive. The proof uses certain properties of the mean-reverting process; in partic-

ular, constant in time Gaussian processes are excluded.

Corollary 2.2 For any T > 0, there exists an equivalent probability measure P∗ = P∗,T such

that the process R̃(t) is a martingale under P∗ in t ∈ [0, T ] with respect to the filtration Ft.

If R̃(0) = 0, then the process R̃(t)/σ is a Wiener process under P∗ in t ∈ [0, T ].

It will be useful to consider the log-normal processes.

Corollary 2.3 For any T > 0, there exists an equivalent probability measure P̂∗ = P̂∗,T
such that the process S̃(t) ∆= s0e

R̃(t) is a martingale under P̂∗ in t ∈ [0, T ] with respect to the

filtration Ft.

Existence of an equivalent martingale measure is a sufficient condition of absence of arbitrage

for a given finite time interval [0, T ].

Corollary 2.4 The mean-reverting model does not allow arbitrage for the time interval [0, T ]

for any T > 0.

Discussion and some applications

Non-robustness of Novikov condition for the mean-reverting model for large time

intervals

Lemma 2.5 Let R̃(0) be such as described in Remark ??. Let α = 0. Then, for any ε > 0,

there exist T > 0 such that

E exp
([ λ2

2σ2
+ ε

] ∫ T

0
R̃(t)2dt

)
= ∞. (2.2)

Corollary 2.6 Let the stock price evolution be described by equation (??) with (a(t), σ(t))

such that ã(t) ≡ λ1R̃(t), σ(t) ≡ σ, where λ1, σ ∈ R are given, and where R̃(t) is defined by

(1.1) with the same σ, with α = 0, and with some λ > 0. It follows from the results above that

if |λ1| ≤ λ, then Novikov condition holds for any finite time interval [0, T ]. If |λ1| > λ, then

there exists time T > 0 such that Novikov condition does not hold for time interval [0, T ].

(Note that the case when λ1 = λ corresponds to the mean reverting model).

Lemma 2.5 and Corollary 2.6 mean that the mean-reverting model is on the ”edge” of the

area where Novikov condition holds for all time intervals.
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On the sets of trajectories for Wiener and Ornstein-Uhlenbek processes

In fact, a Wiener process can be transformed to an Ornstein-Uhlenbek process on unlimited

time interval by some exponential time change (see, e.g., Cox and Miller (1965), p. 224).

Furthermore, it is easy to see that a Wiener process is an Ornstein-Uhlenbek process under

a changed probability measure on any small enough time interval [0, T ] without time change,

i.e., with the same time scale (it suffices to notice that Novikov condition holds for small

enough T and apply Girsanov Theorem). Corollary 2.2 shows that this is also true for any

finite arbitrarily large time interval [0, T ]. In particular, it follows that a Wiener process

has the same set of trajectories as an Ornstein-Uhlenbek process in the same time scale for

any finite time interval [0, T ]. It follows that an Ornstein-Uhlenbek processes cannot be

distinguished surely from a Wiener process using observations of a sample on any arbitrarily

large finite time interval.

Applications to optimal portfolio selection problems

There is one more application of Theorem 2.1 to mathematical finance: it can be used for

analysis of diffusion market models such that the appreciation rate a(t) is a Gaussian process

satisfying linear Ito equations. Lakner (1995), (1998), and Dokuchaev (2005), studied optimal

portfolio selection problems in this setting. To ensure that there exists a equivalent martingale

measure, some restrictive conditions on upper bound for admissible terminal time T were

imposed in these three papers. Now these restrictions can be lifted for the special case when

the appreciation rate is a process defined by (1.1), where R̃(0) is such as described in Remark

??, and for the models of prices from Corollary 2.6.
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3 Speculative opportunities for the mean-reverting model

3.1 On wealth and strategies

We consider the diffusion model of a securities market consisting of a risk free bond or bank

account with the price B(t), t ≥ 0, and a risky stock with price S(t), t ≥ 0. The price of the

bond evolves as

B(t) = ertB(0), (3.1)

where r ≥ 0 is a risk free interest rate.

Let X(0) > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at time t > 0.

We assume that the wealth X(t) at time t ≥ 0 is

X(t) = β(t)B(t) + γ(t)S(t). (3.2)

Here β(t) is the quantity of the bond portfolio, γ(t) is the quantity of the stock portfolio,

t ≥ 0. The pair (β(t), γ(t)) describes the state of the bond-stocks securities portfolio at time

t. Each of these pairs is called a strategy.

3.2 The discounted wealth and stock prices

It is natural to estimate the loss and gain by comparing it with the results for the ”keep-

only-bonds” strategy.

Definition 3.1 The process X̃(t) ∆= e−rtX(t). The process S̃(t) ∆= e−rtS(t), S̃(0) = S(0), is

called the discounted stock prices.

Let ã(t) ∆= a(t)− r(t). Clearly,

dS̃(t) = S̃(t)(ã(t)dt + σ(t)dw(t)).

Proposition 3.2 An admissible straregy is self-financing if and only if

dX̃(t) = γ(t)dS̃(t), (3.3)

i.e.,

X̃(t) = X(0) +
∫ t

0
γ(s)dS̃(s). (3.4)
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4 Existence of speculative opportunities

In this section, we assume the mean reverting model for stock prices, with deterministic R̃(0).

Let A denote the class of functions Ψ : (0, +∞) → R such that

• Ψ(S(0)) = X(0);

• Ψ(x) is concave, continuous, and twice differentiable in x > 0;

• Ψ(x) is not an affine function on (0, +∞), i.e., Ψ(x) cannot be represented as Cx + c

with C, c ∈ R.

• there exists C > 0, c > 0 such that
∣∣∣∣
dkΨ
dxk

(x)
∣∣∣∣ ≤ C(1 + |x|c + |x|−c), k = 0, 1, 2.

Proposition 4.1 For the mean-reverting market model, the self-financing strategy (β(·), γ(·))
is admissible, if γ(t) = dΨ

dx (S̃(t)), where Ψ ∈ A. In that case, EX(T )2 < +∞ for all T .

Let Ψ ∈ A be given. Set ψ−
∆= infx≥0 Ψ(x). Let Γ ∆= [ψ−, +∞), if ψ− > −∞, and let

Γ ∆= R, if ψ− = −∞.

Let U0 be the class of all functions U(x) = δ−1xδ, δ < 1. We assume that this class

includes also U(x) = lnx, which corresponds to δ = 0.

Let Û denotes the class of all monotonic non-decreasing functions U : Γ → R such that

there exists C = CU such that U(x) < C(|x|+ 1) (∀x ∈ Γ).

Note that if U ∈ Û , then EU+(X̃(T )) < +∞ for all T and for admissible strategies, where

X̃(·) is the corresponding discounted wealth, U+(x) ∆= max(0, U(x)). Hence the expectation

EU(X̃(T )) is well defined (the case when EU(X̃(T )) = −∞ is not excluded).

Let U+
Ψ denotes the set of all functions U ∈ Û such that infx∈Γ U(x) > −∞.

Let UΨ denotes the set of all functions U ∈ Û such that supx∈Γ U(x) = +∞, and there

exists ν > σ2/(2λ) such that
∫ +∞
−∞ exp

(
−x2

ν

)
u−(x)2dx < +∞, where u(x) ∆= U(Ψ(s0e

x)),

u−(x) ∆= max(0,−u(x)).

Remark 4.2 The classes of utilities U+
Ψ and UΨ can be reasonably wide, with an appropriate

choice of Ψ. For instance, let Ψ(x) = Cxp + c, p ∈ (0, 1), C > 0, c ≥ 0. Clearly, ψ− = c.

If c > 0, then U0 ⊂ U+
Ψ . If c ≥ 0, then UΨ contains all functions U(x) = δ−1xδ, δ > 0, and

U(x) = lnx.

Let

S̃0(t)
∆= s0e

R̃0(t).
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Theorem 4.3 Assume the mean-reverting model for the stock prices. Let Ψ ∈ A be given,

and let a self-financing strategy (β(·), γ(·)) be such that

γ(t) =
dΨ
dx

(S̃(t)).

Then this strategy has the following properties:

(i) The corresponding discounted wealth X̃(T ) is such that

X̃(T ) = Ψ(S̃(T )) + ζ(T ), (4.1)

where Ψ(S̃(T )) converges to the stationary process Ψ(S̃0(T )) as T → +∞ with prob-

ability 1, and ζ(T ) is a monotonically increasing in T process such that ζ(T ) ≥ 0,

ζ(T ) → +∞ a.s.

(ii) If ψ− > −∞ and U ∈ U+
Ψ , then X̃(T ) → +∞ as T → +∞ with probability 1, and

EU(X̃(T )) → supx∈Γ U(x) as T → +∞.

(iii) If U ∈ UΨ, then EU(X̃(T )) → +∞ as T → +∞.

Remark 4.4 The strategy does not use any knowledge about the value of (α, λ, σ); this makes

it similar to the strategies from technical analysis. Moreover, the strategy is risk bounded

with an appropriate Ψ for all (α, λ, σ) or even uniformly over all (α, λ, σ). For instance, if

Ψ(x) = xp + c, p ∈ (0, 1), c ≥ 0, and let X(0) = S(0)p + c, then

X̃(t) = c + S̃(t)p +
p(1− p)

2

∫ t

0
σ(s)2S̃(s)pds ≥ c + S̃(t)p. (4.2)

Note that (4.2) holds even if the model is not mean-reverting; in fact, it holds for any process

(r(t), a(t), σ(t)) such as described in Section 3.1.

Remark 4.5 For a discrete time market model, strategies that explore oscillating of prices or

stationarity can also be found (examples of these strategies were given in Dokuchaev (2006)

for price series oscillating in a given interval).

5 Speculative opportunities: formal definitions and examples

Frittelli (2004) introduced a utility based ”market free lunch” as an alternative description of

arbitrage opportunities for financial markets, in addition to ”free lunch”. Further details can

be found in Klein (2006). We explore below some similar utility-based definitions; our purpose

is to underline the features of the mean-reverting model. However, the exact definitions given
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in the cited papers cannot separate the mean-reverting model from other models. We saw

that the mean-reverting model is such that a martingale measure exists for any finite time

interval, and it is the same situation as for the model with bounded risk premium process

σ(t)−1ã(t): there is no arbitrage for any finite time interval. However, Theorem 4.3 shows

that the mean-reverting model allows some special opportunities that cannot be expressed

via the terms of arbitrage, asymptotic arbitrage, ”free lunch”, or ”market free lunch”. To

describe the situation more clearly, we introduce the following definition (that uses a class of

utilities, similarly to Frittelli (2004)).

Definition 5.1 Let Σ̄ be a class of admissible self-financing strategies {(β(·), γ(·))}. Let U
be a class of functions U : R → R.

(i) We say that a market allows speculative opportunities with respect to (Σ̄,U), if there

exists a strategy (β(·), γ(·)) ∈ Σ̄ such that

inf
T>0

EU(X̃(T )) > −∞ ∀U ∈ U ,

and that there exists U ∈ U such that

EU(X̃(T )) → sup
x

U(x) as T → +∞. (5.1)

Here X̃(t) is the corresponding discounted wealth.

(ii) We say that a market allows strong speculative opportunities with respect to (Σ̄,U), if

there exists a strategy from Σ̄ such that (5.1) holds for all U ∈ U .

(Note that we do not exclude the case when supx U(x) = +∞ in (5.1)).

At first sight, speculative opportunities from Definition 5.1 (i) are easy to find for a

typical model, since it requires maximization of just one expected utility for T → +∞ only,

with mild restrictions on other utilities. However, it can be seen from the following example

that a very generic market model does not allow these opportunities for popular Merton’s

strategies and for the defined above set U0 of utilities. It is also true if ã(t) = const 6= 0 and

σ(t) = const > 0 are known constants, i.e., for the prime model for Merton’s strategies.

Example 5.2 Let ã(·) be a bounded random process independent from w(·), and let σ

be constant, X(0) = 1. Let Ft be the filtration generated by (S(t), r(t), ã(t)) (i.e., we

assume that ã(t) is observable). Let Σ̄M be the class of all strategies such that γ(t) =

ν(t)ã(t)X̃(t)S̃(t)−1σ−2, where ν(t) is a positive bounded deterministic function. This class

includes the so-called Merton’s strategies. Let (ν(·), δ) be such that

E
{

δ−1X̃(T )δ|ã(·)
}
→ sup

x>0
δ−1xδ as T → +∞,
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then ∫ T

0
ν(t)ã(t)2dt → +∞ as T → +∞.

It follows that there exists δ̂ < 1 such that E
{

δ̂−1X̃(T )bδ|ã(·)
}
→ −∞ as T → +∞.

Therefore, this market does not allow speculative opportunities with respect to (Σ̄M ,U0)

(Definition 5.1 (i)). Note that we do not exclude the case case when ã(t) = const 6= 0 is

known, constant in time, and deterministic; in this case, any Merton’s strategy with constant

ν is the optimal myopic strategy for some U ∈ U0; it maximizes EU(X̃(T )) for all T > 0.

The class Σ̄M looks special and narrow, but it is not the reason why speculative opportu-

nities in Example 5.2 are absent in this class. In fact, this class is even too wide for practical

applications, because it includes the strategies that use direct observations of ã(t). This is

not realistic, because in practice the process ã(t) is unknown and need to be estimated. At

first sight, it is not a problem, since ã(t) can be estimated using observations of historical

prices. For instance, the corresponding Merton’s strategy with ã(t) replaced by its estimation

is optimal for the utility function U(x) = lnx. Unfortunately, calculation of this estimate

requires a prior distribution of ã(t), and a wrong hypothesis about this distribution leads to

losses (see Dokuchaev and Savkin (2004), p. 417).

In contrast, the mean-reverting market model gives an example of a model that allows

strong speculative opportunities in the sense of Definition 5.1 (ii). Moreover, the correspond-

ing strategy does not use observation of market parameters, and it does not require a prior

distribution of the market parameters.

Example 5.3 The mean-reverting market model allows strong speculative opportunities with

respect to (Σ̄Ψ,U+
Ψ ) and (Σ̄Ψ,UΨ), where Σ̄Ψ is a singleton consisting of the strategy defined

in Theorem 4.3.

Note that the classes U+
Ψ and UΨ of utilities are quite wide for a right choice of Ψ.

The question arises if there are speculative opportunities for a generic market model with

constant (σ, ã, r) such that ã = a−r 6= 0 for other classes of strategies. So far, we don’t know

the answer; the proof for the mean-reverting model is based on the stationarity properties,

and cannot be extended on this case. For instance, it can be seen that the strategy from

Remark 4.4 that gives (4.2) is less risky than the ”buy-and-hold” strategy, and it may give a

good performance when ã > 0; however, the possibility of the scenario when S̃(T ) stays near

zero may decrease the expected utilities.
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6 Appendix: Proofs

Proof of Proposition 3.2 and Theorem 1.3 is well known and will be omitted.

Proof of Proposition 1.1. We have that

dR̃0(t) = (α− λR̃0(t))dt + σdw(t), (A.1)

R̃0(0) =
α

λ
+

∫ 0

−∞
eλsσdw(s) =

α

λ
+

∫ ∞

0
e−λsσdw̃(s), (A.2)

and Y (t) ∆= R̃0(t)− R̃(t) satisfies

dY (t) = −λY (t)dt, Y (0) = R̃0(0)− R̃(0), (A.3)

i.e., Y (t) = R̃0(t) − R̃(t) = e−λt[R̃0(0) − R̃(0)]. Clearly, this process converges to zero in

mean square and with probability 1. ¤
Proof of Theorem 2.1. Let em(·) : Rn → [0, 1] be continuous functions such that em(x) = 1

if |x| ≤ m, em(x) = 0 if |x| > m, and em(x) ≤ em+1(x) for all x, m = 1, 2, 3, .... Let um(x, t, T )

be the solution of the Cauchy problem for the following backward parabolic equation

∂um

∂t
(x, t, T ) + (α− λx)

∂um

∂x
(x, t, T ) +

σ2

2
∂2um

∂x2
(x, t, T )

+
1

2σ2
(κ− λx)2em(x)um(x, t, T ) = 0, t < T, x ∈ R,

um(x, T, T ) = 1. (A.4)

Clearly, (A.4) is the Kolmogorov’s equation for the process R(t), and

um(x, t, T ) = E
{

exp
1

2σ2

∫ T

t
(κ− λR̃(s))2em(R̃(s))ds

∣∣∣ R̃(t) = x

}
, t ∈ (0, T ].

Let b̃(t) ∆= κ− λR̃(s),

ζm
∆= exp

1
2σ2

∫ T

0
b̃(s)2em(R̃(s))ds, ζ

∆= exp
1

2σ2

∫ T

0
b̃(s)2ds.

By the definitions, it follows that

um(R̃(0), 0, T ) = Eζm.

Clearly, ζm → ζ as m → +∞ a.s., and the convergence is monotonic, i.e., ζm > 0 is non-

decreasing in m a.s. It follows that the function um(R̃(0), 0, T ) is non-negative, and it is

monotonic and non-decreasing in m for any T . In addition, Eζm → Eζ as m → +∞ (even if

Eζ = +∞), i.e., um(R̃(0), 0, T ) = Eζm → Eζ.
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To prove the theorem, it suffices to show that

sup
m>0

um(x, 0, T ) < +∞ ∀T > 0, ∀x ∈ R. (A.5)

Let us prove (A.5). Let y
∆= λ

2σ2 , and let vm(x, t) ∆= um(x, t, T )e−x2y. We have that

um(x, t, T ) = vm(x, t)ex2y,
∂um

∂t
=

∂vm

∂t
ex2y,

∂um

∂x
=

∂vm

∂x
ex2y + vmex2y · 2xy = ex2y

[
∂vm

∂x
+ 2xyvm

]
,

∂2um

∂x2
=

∂2vm

∂x2
ex2y +

∂vm

∂x
ex2y · 4xy + vmex2y(2xy)2 + vmex2y2y

= ex2y

[
∂2vm

∂x2
+ 4xy

∂vm

∂x
+ (2xy)2vm + 2yvm

]
.

Using these formulas, equation (A.4) can be transformed to a equation for vm:

∂vm

∂t
(x, t) + (α− λx)

[
∂vm

∂x
(x, t) + 2xyvm(x, t)

]

+
σ2

2

[
∂2vm

∂x2
(x, t) + 4xy

∂vm

∂x
(x, t) + (2xy)2vm(x, t) + 2yvm(x, t)

]

+
1

2σ2
(κ− λx)2em(x)vm(x, t) = 0, t < T, x ∈ R,

vm(x, T ) = e−x2y. (A.6)

We have that

−λx +
σ2

2
· 4xy = 0, −2λy + 2σ2y2 +

λ2

2σ2
= 2σ2

(
y − λ

2σ2

)2

= 0. (A.7)

By (A.7), equation (A.6) can be rewritten as

∂vm

∂t
(x, t) + α

∂vm

∂x
(x, t) + 2αxyvm(x, t) +

σ2

2

[
∂2vm

∂x2
(x, t) + 2yvm(x, t)

]

+
1

2σ2
(κ2 − 2κλx)em(x)vm(x, t)− yx2(1− em(x))vm(x, t) = 0, t < T, x ∈ R,

vm(x, T ) = e−x2y. (A.8)

Clearly, this equation has an unique solution that can be presented as

vm(x, t) = Ee−yξ(T )2 exp
∫ T

t

(
σ2y + 2αyξ(s) +

1
2σ2

[κ2 − 2κλξ(s)]em(ξ(s))

− y[1− em(ξ(s))]ξ(s)2
)

ds,

and where ξ(s) = ξx,t(s) is the solution of the following linear Ito equation:

dξ(s) = αds + σdw(s), s > t, ξ(t) = x.
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Note that

0 ≤ vm(x, t) ≤ E exp
∫ T

t
(c1 + c2|ξ(s)|)ds ≤ c3E exp

∫ T

t
c2|ξ(s)|ds,

where ci > 0 are constants that do not depend on m. By Jensen’s inequality, it follows from

convexity of exponent that

E exp
∫ T

t
c2|ξ(s)|ds = E exp

( 1
T − t

∫ T

t
(T − t)c2|ξ(s)|ds

)

≤ E
1

T − t

∫ T

t
exp((T − t)c2|ξ(s)|)ds =

1
T − t

∫ T

t
E exp((T − t)c2|ξ(s)|)ds.

Hence

vm(x, t) ≤ c3

T − t

∫ T

t
E exp((T − t)c2|ξ(s)|)ds.

The process ξ(s) = ξx,t(s) is Gaussian, and its mean and variance are bounded on [t, T ]

for any given (x, t). In addition, ξ(·), c2, and c3, do not depend on m. It follows that

supm>0 vm(x, 0) < +∞ for any x ∈ R. We have that um(x, t, T ) = vm(x, t)ex2y is the

solution of (A.4). Hence

sup
m>0

um(x, 0, T ) = sup
m>0

vm(x, 0) < +∞ ∀x ∈ R.

By (A.5), the proof follows. ¤
Proof of Corollary 2.2 and 2.3 is given under the assumptions of Remark ??.

Proof of Corollary 2.2. It is well known that if the Novikov condition is satisfied, then

EZ(T )−1 = 1, where Z(T ) is defined by (??). It was proven above that the Novikov condition

is satisfied on the conditional probability space given R̃(0), i.e., under the measure P(·| R̃(0)).

Hence E{Z(T )−1|R̃(0)} = 1 a.s., where Z(T ) is defined by (??). It follows that EZ(T )−1 =

E(E{Z(T )−1|R̃(0)}) = 1. By Girsanov Theorem, it follows that w∗(t)
∆= w(t) +

∫ t
0 σ−1b̃(s)ds

is a Wiener process under P∗,T for t ∈ [0, T ], where b̃(t) ∆= α − λR̃(t), and where P∗,T is a

measure defined by dP∗,T /dP = Z(T )−1. Hence it is a equivalent martingale measure. This

completes the proof. ¤
Proof of Corollary 2.3. By Ito formula,

dS̃(t) = S̃(t)
[σ2

2
dt + dR̃(t)

]
= S̃(t)[ã(t)dt + σdw(t)],

where ã(t) = α−λR̃(t)+σ2/2. By Theorem 2.1, (2.1) holds for κ = α+σ2/2 on the conditional

probability space given R̃(0), i.e., under the measure P(·| R̃(0)). Hence E{Ẑ(T )−1|R̃(0)} = 1

a.s., where Ẑ(T ) is defined by

Ẑ(T ) ∆= exp
(∫ T

0
â(t)σ(t)−1dw(t) +

1
2

∫ T

0
â(t)2σ(t)−2dt

)
. (A.9)
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(??). It follows that EẐ(T )−1 = E(E{Ẑ(T )−1|R̃(0)}) = 1. By Girsanov Theorem again, it

follows that w∗(t)
∆= w(t) +

∫ t
0 σ−1ã(s)ds is a Wiener process under P̂∗,T for t ∈ [0, T ], where

P̂∗,T is a measure defined by dP̂∗,T /dP = Ẑ(T )−1. This completes the proof. ¤
Proof of Lemma 2.5. It suffices to consider non-random R̃(0). (It is the same as to prove

(2.2) for the conditional space given R̃(0)). Let k
∆= λ2/σ2 + 2ε. We have that

E exp
(k

2

∫ T

0
R̃(t)2dt

)
≥ E exp

k

2T

(∫ T

0
R̃(t)dt

)2
= Ee

1
2
ξ2

,

where ξ
∆=

√
k
T η, η

∆=
∫ T
0 R̃(t)dt. It suffices to show that, for large T ,

Var ξ > 1, i.e., Var η >
T

k
. (A.10)

We have that

Var η = E
(∫ T

0
R̃(t)dt−E

∫ T

0
R̃(t)dt

)2
= E

(∫ T

0
[R̃(t)−ER̃(t)]dt

)2

= E
(∫ T

0
dt

∫ t

0
e−λ(t−s)σdw(s)

)2

= E
∫ T

0

∫ T

0
dtdq

∫ t

0
e−λ(t−s)σdw(s)

∫ q

0
e−λ(q−p)σdw(p)

= 2E
∫ T

0
dt

∫ T

t
dq

∫ t

0
e−λ(t−s)σdw(s)

∫ q

0
e−λ(q−p)σdw(p)

= 2
∫ T

0
dt

∫ T

t
dq

∫ t

0
e−λ(t−s)e−λ(q−s)σ2ds = 2σ2

∫ T

0
dt

∫ T

t
dq e−λ(q−t)

∫ t

0
e−2λ(t−s)ds

= 2σ2

∫ T

0
dt

∫ T

t
dq e−λ(q−t) 1− e−2λt

2λ
= 2σ2

∫ T

0
dt

∫ T

t
dq

e−λ(q−t) − e−λ(q−t)e−2λt

2λ

= σ2

∫ T

0
dt

∫ T

t
dq

e−λ(q−t) − e−λq−λt

λ

=
σ2

λ2

∫ T

0
dt

[
eλt(e−λt − e−λT )− e−λt(e−λt − e−λT )

]

=
σ2

λ2

[
T − eλT − 1

λ
e−λT − 1− e−2λT

2λ
+

1− e−λT

λ
e−λT

]
≥ 1

k − 2ε
(T − c),

where

c
∆= max

T>0

(eλT − 1
λ

e−λT +
1− e−2λT

2λ
− 1− e−λT

λ
e−λT

)

does not depend on T . (Remember that k − 2ε = λ2/σ2). Then (A.10) follows for large T .

This completes the proof. ¤
Proof of Proposition 4.1. It suffices to prove that (??) holds. Remind that ã(t) =

α + σ2/2− λR̃(t). We have that there exists Mi > 0, µi such that

|γ(t)S(t)|2 = S(t)2
∣∣∣∣
dΨ
dx

(S̃(t))
∣∣∣∣
2

≤ M1(S̃(t)µ1 + S̃(t)µ2)2 ≤ M2

(
eµ3R̃(t) + eµ4R̃(t)

)
,
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and

|ã(t)2γ(t)S(t)|2 =
(

α +
σ2

2
− λR̃(t)

)2

S(t)2
∣∣∣∣
dΨ
dx

(S̃(t))
∣∣∣∣
2

≤ M3(1 + R̃(t)2)
(
eµ5R̃(t) + eµ6R̃(t)

)
.

It follows that, for any T > 0,

E
∫ T

0
γ(t)2S(t)2dt < +∞,

and

sup
t∈[0,T ]

Eγ(t)2(a(t)2S(t)2 + σ2S(t)2) < +∞.

Set

X̃(t) ∆= X(0) +
∫ t

0
γ(s)dS̃(s), X(t) ∆= X̃(t) exp

(∫ t

0
r(s)ds

)
, β(t) ∆=

X(t)− γ(t)S(t)
B(t)

.

Then (??) holds, and EX(T )2 < +∞. By Proposition 3.2, (β(·), γ(·)) is an admissible self-

financing strategy with the total wealth X(t) and the discounted wealth X̃(t). ¤
Proof of Theorem 4.3. By Ito formula, it follows immediately that if

X̃(t) = Ψ(S̃(t))− 1
2

∫ t

0

d2Ψ
dx2

(S̃(s))S̃(s)2σ(s)2ds,

then

dX̃(t) = γ(t)dS̃(t).

By Proposition 3.2, it follows that X̃(t) is the corresponding discounted wealth.

Let us prove (i). We have that (4.1) is satisfied with

ζ(T ) ∆= −1
2

∫ T

0

d2Ψ
dx2

(S̃(t))S̃(t)2σ2dt.

Clearly, ζ(T ) ≥ 0, and the process ζ(T ) is monotonic and non-decreasing.

Since Ψ is twice differentiable and it is not an affine function on (0, +∞), we have that

mes {x > 0 : d2Ψ
dx2 (x) < 0} > 0. (Here mes denotes the length of an interval, or the Lebesgue

measure of a subset of R). Let d > 0, M > 0, and an interval D ⊂ [d, +∞) be such that

mes (D) > 0 and d2Ψ
dx2 (x) < −M for all x ∈ D. Clearly,

ζ(T ) ≥ 1
2
σ2d2M

∫ T

0
I{S̃(t)∈D}dt. (A.11)

Here I denotes the indicator function. Let D0 be a subset of the interior of D such that

D0 6= D (i.e., D0 has a positive distance from the endpoints of D). Clearly, R̃0(t) is a
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Gaussian stationary process with continuous spectral distribution function, hence the process

R̃0(t) is ergodic. It follows that

1
T

∫ T

0
I{S̃0(t)∈D0}dt → P(S̃0(T ) ∈ D0) a.s. as T → +∞.

(See, e.g., Rogers and Williams (2000), p.300). Clearly, P(S̃0(T ) ∈ D0) > 0, and

I{S̃(t)∈D} = I{S̃0(t)∈D0} + I{S̃(t)∈D} − I{S̃0(t)∈D0} ≥ I{S̃0(t)∈D0} − I{S̃(t)/∈D,S̃0(t)∈D0}.

Hence
1
T

∫ T

0
I{S̃(t)∈D}dt ≥ 1

T

∫ T

0
I{S̃0(t)∈D0}dt− η(T ), (A.12)

where

η(T ) =
1
T

∫ T

0
I{S̃(t)/∈D,S̃0(t)∈D0}dt.

Remember that R̃0(t)− R̃(t) = e−λt[R̃0(0)− R̃(0)]. Hence η(T ) → 0 a.s.. By (A.11)-(A.12),

it follows that ζ(T ) → +∞ as T → +∞ a.s.. By Proposition 1.1, Ψ(S̃(T ))−Ψ(S̃0(T )) → 0

as T → +∞ a.s. Then (i) follows.

Let us prove (ii). By the assumptions, it follows that U(x) → supy∈Γ U(y) as x → +∞.

We have that Ψ(S̃(T )) ≥ ψ− > −∞. It follows from statement (i) that

X̃(T ) → +∞ as T → +∞ a.s.. (A.13)

We have that U ∈ U+
Ψ . Hence U(X̃(T )) → supy∈Γ U(y) a.s. as T → +∞. If supy∈Γ U(y) <

+∞, then the function U is bounded on [ψ,+∞). Then statement (ii) follows from (A.13) and

from Lebesgue’s Dominated Convergence Theorem. If supy∈Γ U(y) = +∞, then statement

(ii) follows from (A.13) and from Fatou’s Lemma. Therefore, statement (ii) is proved.
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Let us prove statement (iii). We have that U(x) = U+(x) − U−(x), where U+(x) ∆=

max(0, U(x), U−(x) ∆= max(0,−U(x),

Let us show first that

EU+(X̃(T )) → +∞ as k → +∞. (A.14)

Let c ∈ R be given such that P(Ψ(S̃0(T )) ≥ c) = p > 0. Let IT
∆= I{Ψ(S̃(T ))≥c}. Since U+

is non-negative and non-decreasing, we have that

EU+(X̃(T )) ≥ EIT U+(X̃(T )) ≥ EIT U+(c + ζ(T )).

Therefore, it suffices to show that EIT U+(c + ζ(T )) → +∞.

Let us assume that it is not true, i.e., there exists C > 0 such that for any t > 0 there

exists Tt ∈ [t,+∞) such that EITtU
+(c + ζ(Tt)) ≤ C. Then

P(ITtU
+(c + ζ(Tt)) ≥ K) ≤ C

K
∀t > 0, K > 0. (A.15)

Remind that supU+(x) = +∞. If t → +∞, then ζ(Tt) → +∞ a.s., hence U+(c + ζ(Tt)) →
+∞ a.s.. Further, P(ITt = 1) = P(Ψ(S̃(Tt)) ≥ c) → p > 0, where p

∆= P(Ψ(S̃0(T )) ≥ c) (this

value does not depend on T ). Thus, (A.15) does not hold for large Tt and K ≥ 2C/p. Hence

(A.14) follows.

To complete the proof, it suffices to show that EU−(X̃(T )) is bounded as T → +∞.

Remember that the processes R̃(t) and R̃0(t) are Gaussian. It is known that

R̃0(T ) =
α

λ
, VarR0(T )2 =

σ2

2λ
, ER̃(T ) = m, Var R̃2(T ) = v,

where

m = m(T ) = (1− e−λT )
α

λ
, v = v(T ) = (1− e−2λT )

σ2

2λ
. (A.16)

We have that

EU−(X̃(T ))) ≤ EU−(Ψ(S̃(T ))) = Eu−(R̃(T ))

=
1√
2πv

∫

R
e−

(x−m)2

2v u−(x)dx =
1√
2πv

∫

R
e

1
2
(−κx2+k1x+k0)e−

x2

2ν u−(x)dx.

Here κ = κ(T ) and ki = ki(T ) are reals uniquely defined from the equality

−(x−m)2

v
≡ −κx2 + k1x + k0 − x2

ν
.

For instance, κ = 1/v − 1/ν. It follows that κ > 0, and

EU−(X̃(T )) ≤ 1√
2πv

[∫

R
e−κx2+k1x+k0dx

]1/2 [∫

R
e−

x2

ν u−(x)dx

]1/2

.
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By (A.16), v → σ2/(2λ) as T → +∞. Hence there exist ε > 0 and T1 > 0, such that κ ≥ ε for

all T > T1. In addition, the fact that a is bounded in T implies that k0 and k1 are bounded

in T . It follows that the value of
∫
R e−κx2+k1x+k0dx is bounded in T . Therefore, EU−(X̃(T ))

is bounded as T → +∞. This completes the proof. ¤
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