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Topic of talk

The notion of indistinguishability is important in the theory of
cryptography.

This talk will focus on two instances that arise in the quantum setting:

• Indistinguishability of two or more quantum states.

• Indistinguishability of two or more quantum operations.

Two natural notions of indistinguishability:

• Information-theoretic indistinguishability.

• Computational indistinguishability.

The purpose of the talk will be to discuss important issues regarding these
notions.

Principal motivation: zero-knowledge.
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Information-theoretic indistinguishability of states

Suppose two mixed states are fixed in advance: ρ and ξ.

One of the two states is selected uniformly at random, and given to an
adversary whose goal is: determine which states was selected.

• There is a measurement that correctly identifies whether the state
was ρ or ξ with probability

1

2
+

1

4
‖ρ− ξ‖

tr
.

• This is optimal.
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Distinguishing between operations

Consider a similar question for operations rather than states:

Φ Ψ

Assume that only a single evaluation of the given operation is permitted.

Quantum computational indistinguishability and zero-knowledge 4 / 23



Distinguishing between operations

Note: it may not be the case that the operations are unitary. They might,
for example, arise as follows:

Φ is given by

U

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

We are working with general quantum operations (also called
admissible operations, CPSO’s, etc.).
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Distinguishing between operations

Given two such operations:

Φσ

























ρ Ψσ

























ξ

What is the best way to distinguish between them?

One possibility:

Try to optimally choose an input state σ so that the output states ρ and ξ
have large trace distance.

Bad choice. . .
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So close and yet so far. . .

Let Φ and Ψ be mappings from n qubits to n qubits defined as follows:

Φ(X) =
1

2n + 1
((trX)I+ XT) , Ψ(X) =

1

2n − 1
((trX)I− XT) .

These are both valid quantum operations.

• For every mixed state σ it holds that ‖Φ(σ) − Ψ(σ)‖
tr

6
4

2n+1
. The

outcomes are exponentially close in trace distance.

• Take a maximally entangled state on 2n qubits

|ψ〉 =
1√
2n

2
n

−1
∑

i=0

|i〉 |i〉 .

Then
‖(Φ⊗ I)(|ψ〉 〈ψ|) − (Ψ⊗ I)(|ψ〉 〈ψ|)‖

tr
= 2.

The two outcomes are perfectly distinguishable.
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So close and yet so far. . .

Φσ













































ρ Ψσ













































ξ

ρ ≈ ξ (for any choice of σ)
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So close and yet so far. . .

Φ
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‖ρ− ξ‖
tr

= 2 (i.e., they are perfectly distinguishable)
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Kitaev’s “diamond” norm

There is a norm defined on super-operators that perfectly handles this
situation: Kitaev’s “diamond” norm.

Simplified definition:

‖Φ− Ψ‖� = max
σ

‖(Φ⊗ I)(σ) − (Ψ⊗ I)(σ)‖
tr

.

The optimal probability of correctly identifying which of the two
operations Φ and Ψ was given, allowing for a single evaluation on a state
of arbitrary size, is

Pr[correct identification] =
1

2
+

1

4
‖Φ− Ψ‖� .

Note: the existence of the external space gives the diamond norm nice
properties and makes it well-suited for various applications.
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Classical zero-knowledge

Suppose (V ,P) is an interactive proof system for some problem A.

Then (V ,P) is (classical) zero-knowledge if, for every poly-time V ′ there
exists a poly-time simulator S so that these two processes are
indistinguishable when x ∈ A:

w x

PV ′

(V ′(w),P)(x)

w x

S

S(x,w)

The input w represents the auxiliary input.
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Quantum statistical zero-knowledge

We have a similar picture where the cheating verifier V ′ may be quantum:

σ x

PV ′

Φx(σ)

σ x

S

Ψx(σ)

We say that (V ,P) is quantum statistical zero-knowledge if, for every
poly-time V ′, there exists a poly-time S, such that

‖Φx − Ψx‖�
is negligible whenever x ∈ A.
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Comments on this definition

• Captures the following notion: if you have a quantum computer, you
cannot increase your knowledge by interacting with a quantum
statistical zero-knowledge prover a polynomial number of times.

• The resulting class of proof systems have good closure properties:
closure under sequential composition and Karp reductions.

• Opinion: this is the “correct” quantum analogue to the standard
classical definition of statistical zero-knowledge from an operational
viewpoint. . .

. . . removing the auxiliary quantum input or changing the norm, for
instance, represents a compromise or one sort or another.
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Quantum statistical zero-knowledge protocols

Some interactive proof systems can be proved to be zero-knowledge with
respect to the previous definition:

1. The Goldreich-Micali-Wigderson Graph Isomorphism protocol.

2. A few other protocols with a similar form: prover sends a message,
verifier flips a single coin, prover responds with a second message.

3. A universal protocol for QSZKHV.

The construction of simulators for cheating verifiers substitutes an
Amplification Lemma for the usual notion of “rewinding” [W., 2006].
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Computational indistinguishability of states

We have already considered the optimal probability with which two states
can be distinguished by unrestricted measurements.

Now let us consider the case where the measurements are
computationally restricted.

Let us restate the problem in a way that makes sense for computational
restrictions:

Given two sets of states:

{ρn : n ∈ N} and {ξn : n ∈ N}.

The states ρn and ξn are n-qubit states for each n.

What does it mean for the two sets to be quantum computationally
indistinguishable?
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Example: bit commitment

For example, the two sets {ρn : n ∈ N} and {ξn : n ∈ N} might represent
Bob’s view of Alice’s commitment to a bit. . .

In other words, let n be a security parameter, and consider the situation
that Alice commits to a bit b using some unconditionally binding and
computationally concealing commitment scheme.

After the commitment phase:

b = 0 ⇒ Bob’s state is ρn.

b = 1 ⇒ Bob’s state is ξn.
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GMW 3-coloring protocol

The GRAPH 3-COLORING Problem is to determine whether or not a given
n-vertex undirected graph G has a valid coloring with 3 colors.

The Goldreich-Micali-Wigderson protocol for Graph 3-Coloring relies on
computationally concealing bit commitments. . . it is as follows:

Prover: Let φ : {1, . . . ,n} → {1, 2, 3} be a valid coloring of G if one exists,
and uniformly choose π ∈ S3. Send the verifier commitments to the colors
π(φ(1)), . . . ,π(φ(n)).

Verifier: Choose an edge {i, j} of G uniformly at random.

Prover: Reveal the colors ai = π(φ(i)) and aj = π(φ(j)).

Verifier: If ai 6= aj then accept, else reject.

Sequential repetition followed by unanimous vote gives exponentially small
soundness error.
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Computational distinguishability of operations

Similar to before, we may also consider what it means for two operations
to be quantum computationally indistinguishable:

Φn Ψn

Again, only a single evaluation (possibly on just a part of a larger system)
of the given operation is permitted.
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Quantum computational zero-knowledge

A protocol (V ,P) for problem A is quantum computational zero-knowledge
if these two processes are computationally indistinguishable for x ∈ A:

σ x

PV ′

Φx(σ)

σ x

S

Ψx(σ)

They should be quantum computationally indistinguishable for every
choice of the auxiliary input state.
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Non-uniformity in the classical definition

Classically, the definition of computational indistinguishability that is used
in the context of zero-knowledge is a non-uniform one. . .

We would say that two collections of probability distributions

{un : n ∈ N} and {vn : n ∈ N}

are computationally indistinguishable if every family {Cn} of
polynomial-size circuits fails to distinguish un and vn with non-negligible
probability.

Similar definition for processes. . .

This notion of indistinguishability is perfect for classical zero-knowledge,
because it translates to making no assumptions on the auxiliary input. . .

. . . we can view that the optimal input for distinguishing two classical
processes can be hard-coded into a given poly-size circuit.
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Quantum case: a stronger notion of non-uniformity

We need a stronger notion of non-uniformity in the quantum case. . . we
must allow quantum circuits to take an arbitrary quantum input.

Definition: The sets {ρn} and {ξn} are quantum computationally
indistinguishable if for every poly-size family {Qn} and every set {σn} of
states fails to distinguish ρn and ξn with non-negligible bias:

Qn

ρn or ξn







σn















{

0 if input is ρn

1 if input is ξn

Similar definition for operations. . .
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Application to 3-Coloring

Suppose that we have a bit commitment protocol that is unconditionally
binding and quantum computationally concealing with respect to the
strong non-uniform definition.

Then the Goldreich-Micali-Wigderson 3-Coloring protocol is quantum
computational zero-knowledge.

• Proof is based on the same Amplification Lemma that is used in the
statistical zero-knowledge protocols mentioned before.

• It is doubtful that bit commitment protocols with weaker notions of the
quantum computational concealing property could be used instead
(without different proof methods).
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Conclusion

Suggestion:

Whenever possible, allow for auxiliary quantum inputs in definitions of
quantum cryptographic primitives.

Direction for further work:

Find good candidates for quantum one-way functions, and the connection
to bit commitment.

Wish-list:

1. Honest players should not require quantum computers.

2. Security should hold against poly-size quantum adversaries with
arbitrary auxiliary quantum inputs.
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