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Key S': uniformly distributed n-bit string

Informal definition of security

S'Is e-secure if the information of £/ (adversary) on S is not larger than «.

Questions

e How to measure E’s information?
Should we use, e.g., Shannon (mutual) information?

e How to choose 7
Is ¢ := 21000 gyfficient?

Goal of this talk
e Answer these questions — “good” security definition.

e Generate fully secure keys from only partially secure data.
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Classical situation

Notation

S secret key
Z (overall) information of adversary

Pg 5 Joint distribution of S and Z

Definition

S is e-secure with respect to Z if
|Psz — Py x Py <¢

where F;; is the uniform distribution.

Statistical distance: | Px — Px/|| := %Z Px(z) — Pxi(x)]
xr
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Classical situation: interpretation

Lemma
Let S- be an e-secure key (with respect to 7).

Then there exists a key Sp which is perfectly secure (with respect to 2)

and
Pr[Se # So] < ¢.

Main implication for applications
If we use an =-secure key S: instead of a perfectly secure key S, then the

error probability cannot grow by more than .

—— parameter ¢ has a well-defined interpretation: failure probability
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Notation

S secret key
por State of adversary’s quantum system £ (might depend on S)

Definition
S'is perfectly secure w.r.t. £ if P¢, = P;; X Py for any measurment of £

giving Z +«— pgp completely independent of S.

PE

S lmeasurement

Z
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Example

adv. E/ has encodings of rand. bits ; w.r.t. basis depending on key bits .S;

uniform key S adversary’s state pp
S1|S2| -+ [Sh|Sn+1 |R1)s,||R2)s,| -+ [|Rn)s,
0 1 0 [R1)4+ |R2)x |Rn) 4
measurement

Spt1:=R1® - & Ry

Z

Observation: S is still e-secure w.r.t. Z, fore < 2777,
Remark: Shannon (mutual) information is small as well: 1(S; Z) < e.

But: Given Sq, ..., Sn, the bit S, 1 is completely insecure w.r.t. £!
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S key S Z

I(Z;5) <e <= guessing of S not possible < S secure
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Implications for QKD

Alice Bob Eve
QKD protocol > OE
i key i
One-time pad encryption > C

T l lmeasurement

M M Z =M



Keys in a quantum world

Example

adversary has encodings of random bits 12; w.r.t. basis dep. on key bits S,

uniform key S adversary’s state pp
S1|S2| -+ [Sn|Sn+1 |R1)s,||R2)s,| -+ [|Rn)s,
0 1 0 |[R1)4+ |R2)x |Rn) 4
measurement
Sp4+1 = R1D--- D Ry
/

Observation: S and Z almost independent: 7(S; Z) < 2—52(n),

But: Given S, ..., Sn, the bit S, 1 is completely insecure w.r.t. E!
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Keys in a quantum world

Recall the classical definition

S is e-secure with respect to Z if | Ps; — Piy x Py|| < e for Py uniform.
Idea: Translate this definition to quantum states.

Let psp =D Ps(s) - |s)(s| ® pk; where
S

|s) orthogonal states representing the value of S
p7 state of £/ conditioned on S = s.

Definition [BHLMOO04, RK04]

S is e-secure with respect to E if ||psp — py ® pg|| < €.

pry fully mixed state
|- || trace norm



Generating secure keys

Question
Is the definition achievable?

(Can we generate =-secure keys, e.g., by QKD?)

If yes, how?
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Generating secure keys

Transforming partially secure data X into a fully secure key S

Alice Bob Eve
X X E

F hashing F

\ 4 \ 4
S S (E,F)

Result [BBR88,ILL89,BBCM95] (for class. adv.); [RK05] (for quant. adv.)

If X has sufficient entropy given F and if F'is a two-universal hash funct.
then S = F'(X) is e-secure with respect to (E, F).
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Generating secure keys

How does privacy amplification work?
(random) hash function F': X +— {0, 1}

X (range of X)

o0 ° o °° o .0:. 0|
F~1(0) F~1(1)
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Generating secure keys

Definition
A family F of functions from X to ) is called two-universal if
1
Pr |[F(z) = F(z)| < —
FrAF@ =FE) <5
for all z % /.
Examples

e The set of all functions from X to ).

o {Fu},cqr(aMy, Where Fo(z) := [a - 2], (computed in GF(2MY).
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How to measure the entropy?

Classical case
X initial key
Z information of adversary on S
P~ » joint distribution of X and Z
Definition

The min-entropy of X given Z is defined by

Px 7(x, z)
HAin(XI|Z) ;= —log max
min(X12) gma, P, (2)

Remark: There are alternative definitions (e.g., Dodis, Smith).



Generating secure keys

Classical case

X initial key
Z information of adversary on S
P~ 7 joint distribution of X and Z

Definition
The min-entropy of X given Z is defined by

Px 7(x, z)
Hnin(X|Z) ;= —log max
min(X1[2) gma P, (2)

Theorem (Privacy amplification) [ILL89,BBCM95]

Two-universal hashing gives a secure key of length n ~ H i, (X |2).



Generating secure keys

Quantum case

X initial key
E information of adversary on S

PXE ;PX(fE) ) (x| ® pE

Definition

The min-entropy of X given E is defined by

Hpmin(X|E) 1= —log maxev|(idx ® pp)~/?px p(idx ® pg) /2]

Theorem (Privacy amplification) [RO5]

Two-universal hashing gives a secure key of length n ~ H,in (X |E).



Generating secure keys

Theorem (Privacy amplification against quantum adv.) [R05]

1
S = F'(X) is e-secure with respect to (E, '), for e = 2_§(HOO(X|E)_“>.

X Heo(X|E) XXXXXXXXX

lF 2log i
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e =-Secure keys can be generated from partially secure data X with

sufficiently large entropy Ho (X |E) (two-universal hashing).



Conclusions

Main points
e Definition of e-security where ¢ is a finite and well-defined parameter
(e: failure probability).
e =-Secure keys can be generated from partially secure data X with

sufficiently large entropy Ho (X |E) (two-universal hashing).

Remarks related to QKD
e definitions based on Shannon information are not sufficient (even if the
security parameter is exponentially small)
e use two-universal hashing as a last protocol step to get e-secure keys

(choice of £ might be left to the user).
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