How secure is QKD?

Renato Renner

Centre for Quantum Computation
University of Cambridge, UK

Key S: uniformly distributed n-bit string

Question: How to define "security"?

Key S: uniformly distributed n-bit string

Informal definition of security

S is *perfectly secure* with respect to an adversary E

if E has no information on S.

Key S: uniformly distributed n-bit string

Informal definition of security

S is ε -secure if the information of E (adversary) on S is not larger than ε .

Key S: uniformly distributed n-bit string

Informal definition of security

S is ε -secure if the information of E (adversary) on S is not larger than ε .

Questions

How to measure E's information?

Should we use, e.g., Shannon (mutual) information?

Key S: uniformly distributed n-bit string

Informal definition of security

S is ε -secure if the information of E (adversary) on S is not larger than ε .

Questions

- How to measure E's information?
 Should we use, e.g., Shannon (mutual) information?
- How to choose ε ?

```
Is \varepsilon := 2^{-1000} sufficient?
```

Key S: uniformly distributed n-bit string

Informal definition of security

S is ε -secure if the information of E (adversary) on S is not larger than ε .

Questions

- How to measure E's information?
 Should we use, e.g., Shannon (mutual) information?
- How to choose ε ?

 Is $\varepsilon := 2^{-1000}$ sufficient?

Goal of this talk

Answer these questions —— "good" security definition.

Key S: uniformly distributed n-bit string

Informal definition of security

S is ε -secure if the information of E (adversary) on S is not larger than ε .

Questions

- How to measure E's information?
 Should we use, e.g., Shannon (mutual) information?
- How to choose ε ?

 Is $\varepsilon := 2^{-1000}$ sufficient?

Goal of this talk

- Answer these questions "good" security definition.
- Generate fully secure keys from only partially secure data.

Notation

- *S* secret key
- Z (overall) information of adversary
- P_{SZ} joint distribution of S and Z

Notation

- *S* secret key
- Z (overall) information of adversary
- P_{SZ} joint distribution of S and Z

Definition

S is perfectly secure with respect to Z if

$$P_{SZ} = P_U \times P_Z$$

where P_U is the uniform distribution.

Notation

- *S* secret key
- Z (overall) information of adversary
- P_{SZ} joint distribution of S and Z

Definition

S is ε -secure with respect to Z if

$$||P_{SZ} - P_{U} \times P_{Z}|| \le \varepsilon$$

where P_U is the uniform distribution.

Notation

- secret key
- Z (overall) information of adversary
- P_{SZ} joint distribution of S and Z

Definition

S is ε -secure with respect to Z if

$$||P_{SZ} - P_U \times P_Z|| \le \varepsilon$$

where P_U is the uniform distribution.

Statistical distance:
$$||P_X - P_{X'}|| := \frac{1}{2} \sum_{x} |P_X(x) - P_{X'}(x)|$$

Classical situation: interpretation

Lemma

Let S_{ε} be an ε -secure key (with respect to Z).

Then there exists a key S_0 which is perfectly secure (with respect to Z) and

$$\Pr[S_{\varepsilon} \neq S_0] \leq \varepsilon$$
.

Classical situation: interpretation

Lemma

Let S_{ε} be an ε -secure key (with respect to Z).

Then there exists a key S_0 which is perfectly secure (with respect to Z) and

$$\Pr[S_{\varepsilon} \neq S_0] \leq \varepsilon$$
.

Main implication for applications

If we use an ε -secure key S_{ε} instead of a perfectly secure key S_0 , then the error probability cannot grow by more than ε .

 \longrightarrow parameter ε has a well-defined interpretation: failure probability

Notation

S secret key

 ρ_E state of adversary's quantum system E (might depend on S)

 ho_E

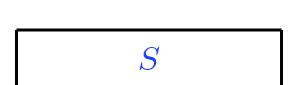
S

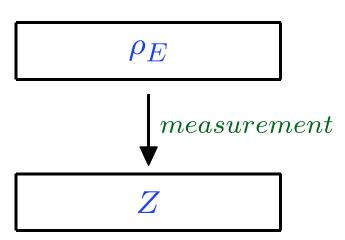
Notation

- S secret key
- ρ_E state of adversary's quantum system E (might depend on S)

Definition

S is *perfectly secure w.r.t.* E if $P_{SZ} = P_U \times P_Z$ for any measurment of E giving Z.



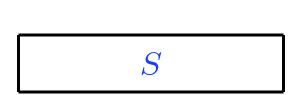


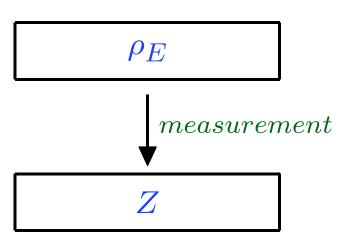
Notation

- S secret key
- ρ_E state of adversary's quantum system E (might depend on S)

Definition

S is *perfectly secure w.r.t.* E if $P_{SZ} = P_U \times P_Z$ for any measurment of E giving $Z \longleftrightarrow \rho_E$ completely independent of S.

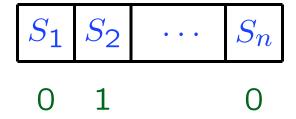




Example

adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S



adversary's state ρ_E

$$|R_1\rangle_{S_1} |R_2\rangle_{S_2} \qquad \cdots \qquad |R_n\rangle_{S_n}$$
 $|R_1\rangle_{+} |R_2\rangle_{\times} \qquad |R_n\rangle_{+}$

$$S_i = 0$$
 rectilinear basis + $S_i = 1$ diagonal basis \times

Example

adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_n \end{bmatrix}$$

adversary's state ρ_E

$$|R_1\rangle_{S_1} |R_2\rangle_{S_2} \qquad \dots \qquad |R_n\rangle_{S_n}$$

$$|R_1\rangle_{+} |R_2\rangle_{\times} \qquad |R_n\rangle_{+}$$

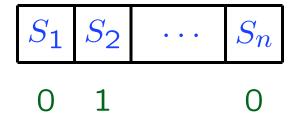
$$S_i = 0$$
 rectilinear basis + $S_i = 1$ diagonal basis \times

Observation: S and ρ_E are completely independent.

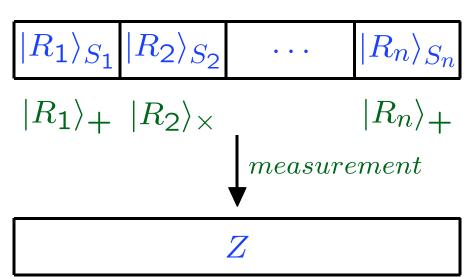
Example

adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S



adversary's state ρ_E



Observation: S and ρ_E are completely independent.

In particular: $P_{SZ} = P_U \times P_Z \longrightarrow S$ is perfectly secure w.r.t. E.

Example

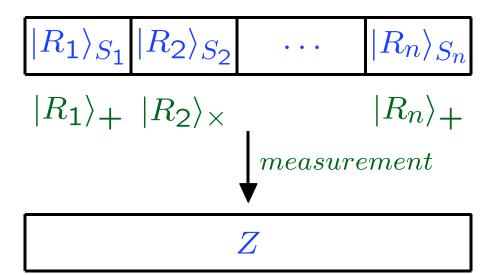
adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_n & S_{n+1} \\ 0 & 1 & 0 \end{bmatrix}$$

$$S_{n+1} := R_1 \oplus \cdots \oplus R_n$$

adversary's state ρ_E

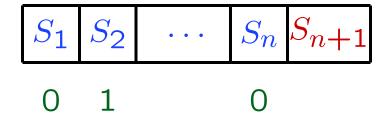


Consider additional key bit S_{n+1} .

Example

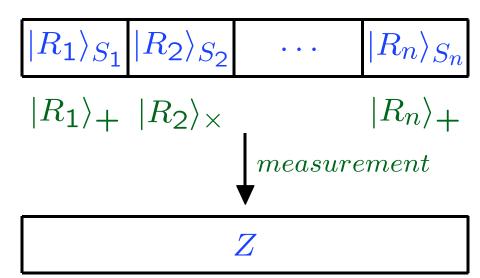
adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S



$$S_{n+1} := R_1 \oplus \cdots \oplus R_n$$

adversary's state ρ_E



Observation: S is still ε -secure w.r.t. Z, for $\varepsilon \leq 2^{-\gamma n}$.

Example

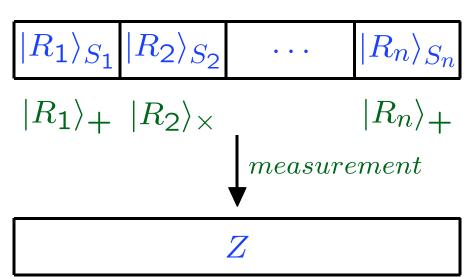
adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_n & S_{n+1} \\ 0 & 1 & 0 \end{bmatrix}$$

$$S_{n+1} := R_1 \oplus \cdots \oplus R_n$$

adversary's state ρ_E



Observation: S is still ε -secure w.r.t. Z, for $\varepsilon \leq 2^{-\gamma n}$.

Remark: Shannon (mutual) information is small as well: $I(S; Z) \leq \varepsilon$.

Example

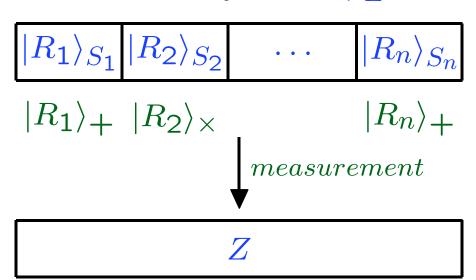
adv. E has encodings of rand. bits R_i w.r.t. basis depending on key bits S_i

uniform key S

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_n & S_{n+1} \\ 0 & 1 & 0 \end{bmatrix}$$

$$S_{n+1} := R_1 \oplus \cdots \oplus R_n$$

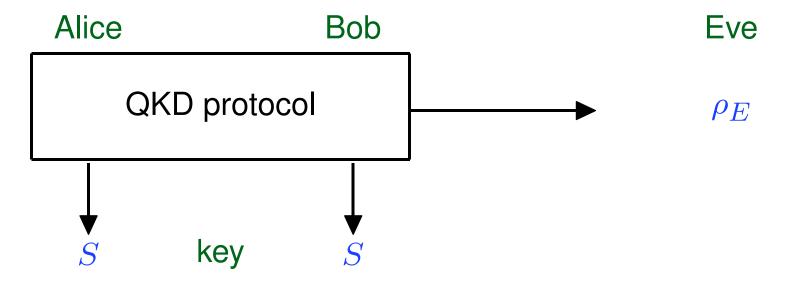
adversary's state ρ_E

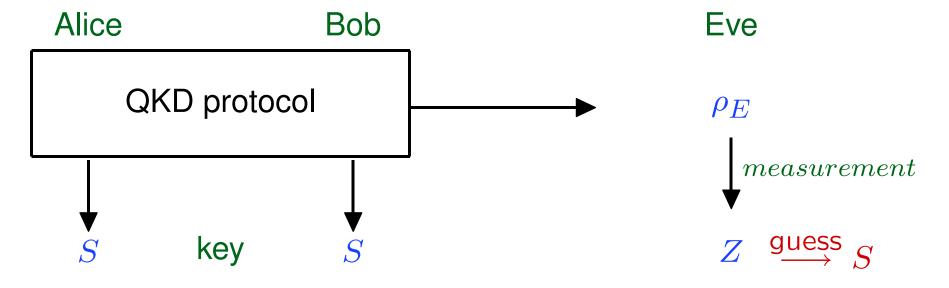


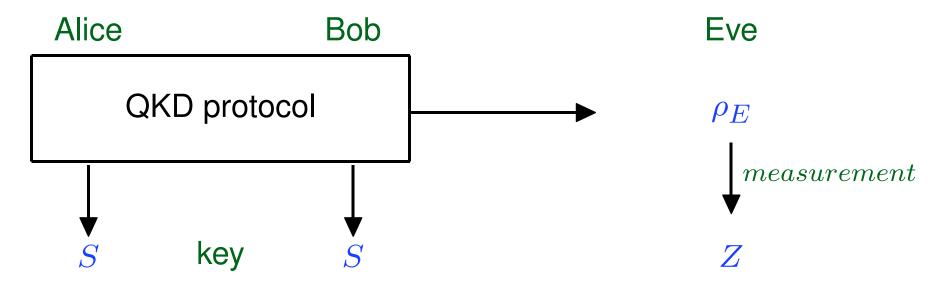
Observation: S is still ε -secure w.r.t. Z, for $\varepsilon \leq 2^{-\gamma n}$.

Remark: Shannon (mutual) information is small as well: $I(S; Z) \leq \varepsilon$.

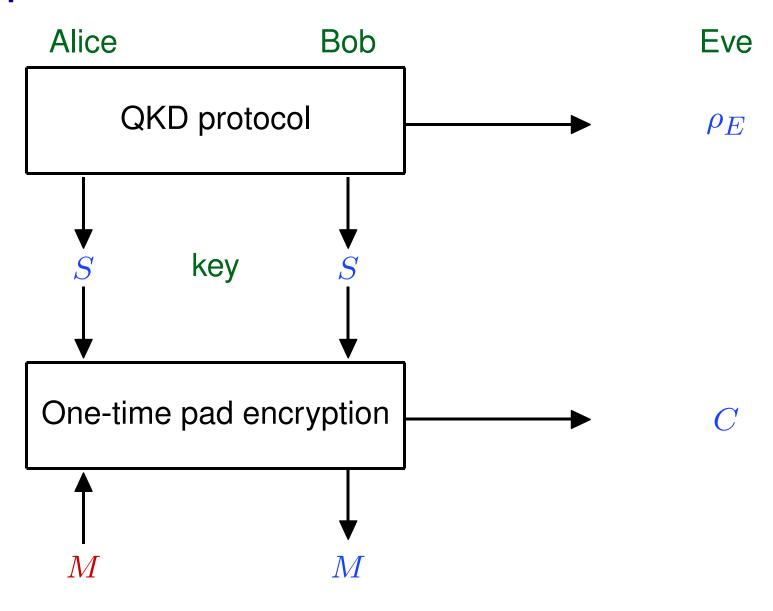
But: Given S_1, \ldots, S_n , the bit S_{n+1} is completely insecure w.r.t. E!

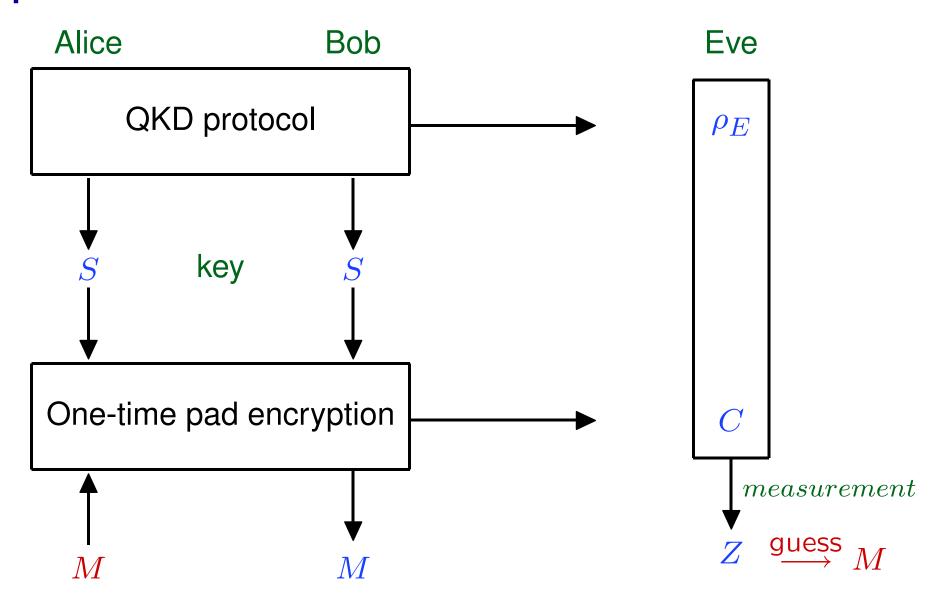






$$I(Z;S) \le \varepsilon \iff \text{guessing of } S \text{ not possible} \iff S \text{ secure}$$





Example

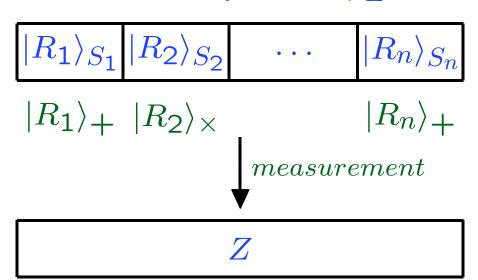
adversary has encodings of random bits R_i w.r.t. basis dep. on key bits S_i

uniform key S

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_n & S_{n+1} \\ 0 & 1 & 0 \end{bmatrix}$$

$$S_{n+1} := R_1 \oplus \cdots \oplus R_n$$

adversary's state ρ_E



Observation: S and Z almost independent: $I(S; Z) \leq 2^{-\Omega(n)}$.

But: Given S_1, \ldots, S_n , the bit S_{n+1} is completely insecure w.r.t. E!

Recall the classical definition

S is ε -secure with respect to Z if $\|P_{SZ} - P_U \times P_Z\| \le \varepsilon$ for P_U uniform.

Recall the classical definition

S is ε -secure with respect to Z if $\|P_{SZ}-P_U\times P_Z\|\leq \varepsilon$ for P_U uniform.

Idea: Translate this definition to quantum states.

Recall the classical definition

S is ε -secure with respect to Z if $\|P_{SZ} - P_U \times P_Z\| \le \varepsilon$ for P_U uniform.

Idea: Translate this definition to quantum states.

Let
$$ho_{SE}:=\sum_{s}P_{S}(s)\cdot|s\rangle\langle s|\otimes
ho_{E}^{s}$$
 where

- $|s\rangle$ orthogonal states representing the value of S
- ρ_E^s state of *E* conditioned on S = s.

Recall the classical definition

S is ε -secure with respect to Z if $\|P_{SZ} - P_U \times P_Z\| \le \varepsilon$ for P_U uniform.

Idea: Translate this definition to quantum states.

Let
$$ho_{SE}:=\sum_{s}P_{S}(s)\cdot|s\rangle\langle s|\otimes
ho_{E}^{s}$$
 where

- $|s\rangle$ orthogonal states representing the value of S
- ρ_E^s state of *E* conditioned on S = s.

Definition [BHLMO04, RK04]

S is ε -secure with respect to E if $\|\rho_{SE}-\rho_{U}\otimes\rho_{E}\|\leq \varepsilon$.

- ho_U fully mixed state
- trace norm

Generating secure keys

Question

Is the definition achievable?

(Can we generate ε -secure keys, e.g., by QKD?)

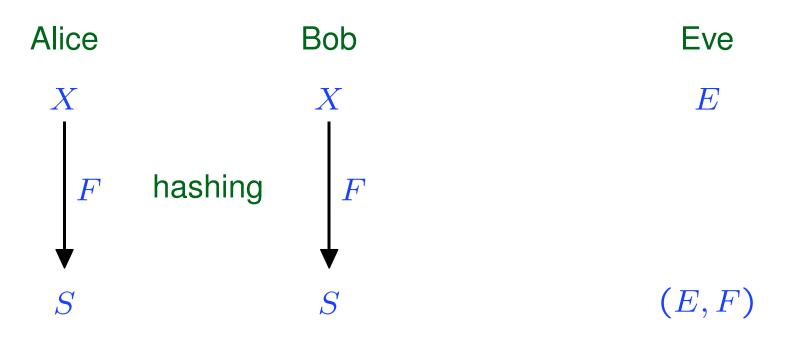
If yes, how?

Generating secure keys

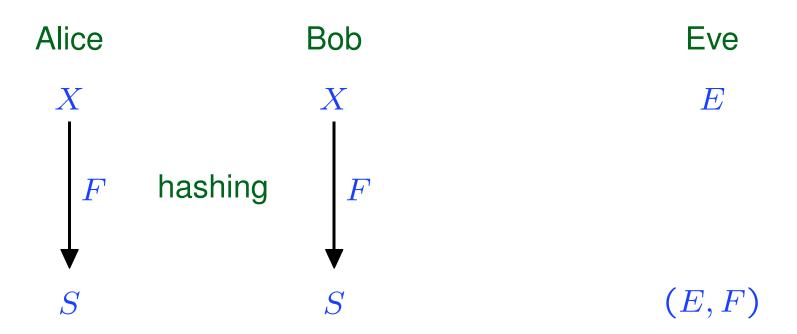
Transforming partially secure data X into a fully secure key S

Alice Bob Eve X

Transforming partially secure data X into a fully secure key S



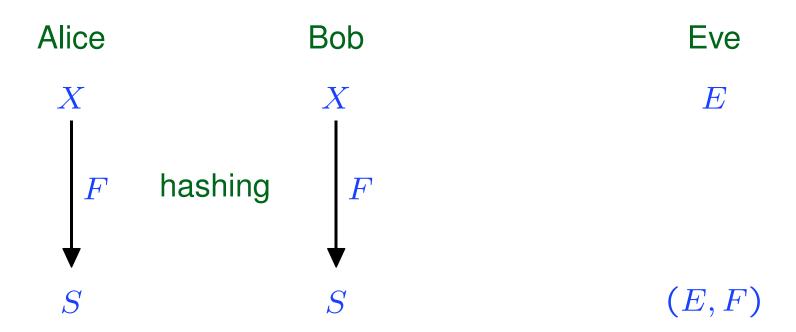
Transforming partially secure data X into a fully secure key S



Informal result (Privacy amplification)

If X has sufficient entropy given E and if F is a two-universal hash funct. then S = F(X) is ε -secure with respect to (E, F).

Transforming partially secure data X into a fully secure key S



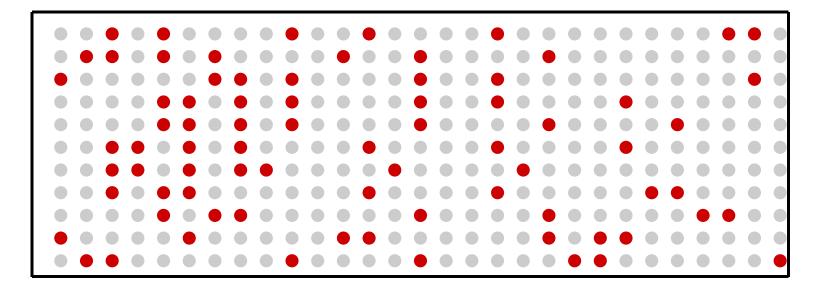
Result [BBR88,ILL89,BBCM95] (for class. adv.); [RK05] (for quant. adv.)

If X has sufficient entropy given E and if F is a two-universal hash funct. then S = F(X) is ε -secure with respect to (E, F).

How does privacy amplification work?

(random) hash function $F: \mathcal{X} \mapsto \{0, 1\}$

 \mathcal{X} (range of X)

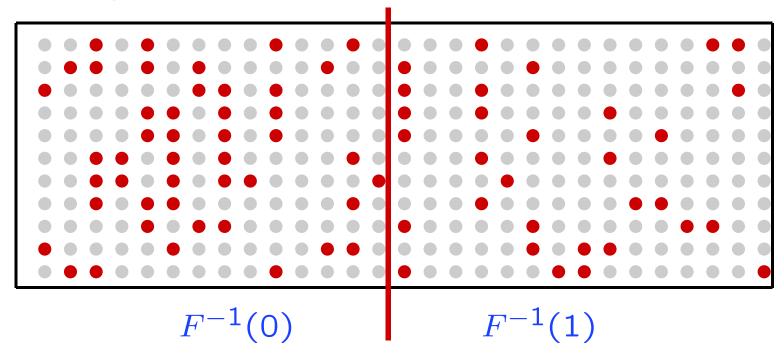


• $x \in \mathcal{X}$ with $P_{X|Z=z}(x) > 0$

How does privacy amplification work?

(random) hash function $F: \mathcal{X} \mapsto \{0, 1\}$

 \mathcal{X} (range of X)



• $x \in \mathcal{X}$ with $P_{X|Z=z}(x) > 0$

Definition

A family \mathcal{F} of functions from \mathcal{X} to \mathcal{Y} is called two-universal if

$$\Pr_{F \leftarrow \mathcal{F}} [F(x) = F(x')] \le \frac{1}{|\mathcal{Y}|}$$

for all $x \neq x'$.

Definition

A family \mathcal{F} of functions from \mathcal{X} to \mathcal{Y} is called two-universal if

$$\Pr_{F \leftarrow \mathcal{F}} [F(x) = F(x')] \le \frac{1}{|\mathcal{Y}|}$$

for all $x \neq x'$.

Examples

- The set of all functions from \mathcal{X} to \mathcal{Y} .
- $\{F_a\}_{a \in \mathsf{GF}(2^M)}$, where $F_a(x) := [a \cdot x]_n$ (computed in $\mathsf{GF}(2^M)$).

How to measure the entropy?

How to measure the entropy?

Classical case

```
X initial key
```

Z information of adversary on S

 P_{XZ} joint distribution of X and Z

How to measure the entropy?

Classical case

- X initial key
- \mathbf{Z} information of adversary on \mathbf{S}
- P_{XZ} joint distribution of X and Z

Definition

The *min-entropy* of X given Z is defined by

$$H_{\min}(X|Z) := -\log \max_{x,z} \frac{P_{XZ}(x,z)}{P_{Z}(z)}$$

Remark: There are alternative definitions (e.g., Dodis, Smith).

Classical case

- X initial key
- Z information of adversary on S
- P_{XZ} joint distribution of X and Z

Definition

The *min-entropy* of X given Z is defined by

$$H_{\min}(X|Z) := -\log \max_{x,z} \frac{P_{XZ}(x,z)}{P_{Z}(z)}$$

Theorem (Privacy amplification) [ILL89,BBCM95]

Two-universal hashing gives a secure key of length $n \approx H_{\min}(X|Z)$.

Quantum case

- X initial key
- E information of adversary on S

$$ho_{XE} \quad \sum_{x} P_{X}(x) \cdot |x\rangle\langle x| \otimes \rho_{E}^{x}$$

Definition

The *min-entropy* of X given E is defined by

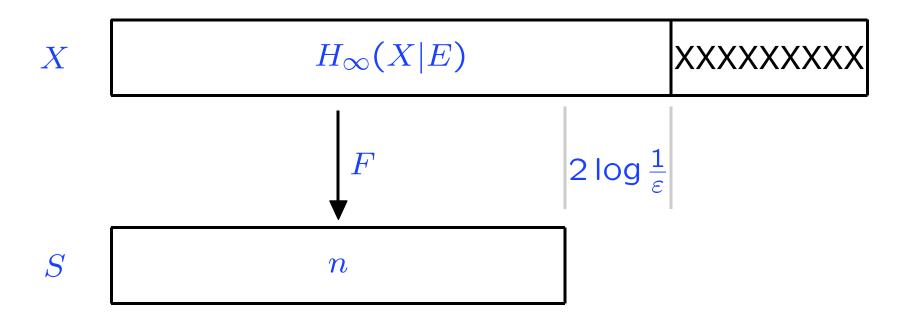
$$H_{\mathsf{min}}(X|E) := -\log\max \mathsf{ev} \big[(\mathsf{id}_X \otimes \rho_E)^{-1/2} \rho_{XE} (\mathsf{id}_X \otimes \rho_E)^{-1/2} \big]$$

Theorem (Privacy amplification) [R05]

Two-universal hashing gives a secure key of length $n \approx H_{\min}(X|E)$.

Theorem (Privacy amplification against quantum adv.) [R05]

S=F(X) is ε -secure with respect to (E,F), for $\varepsilon=2^{-\frac{1}{2}\left(H_{\infty}(X|E)-n\right)}$.



Conclusions

Main points

- Definition of ε -security where ε is a finite and well-defined parameter (ε : failure probability).
- ε -secure keys can be generated from partially secure data X with sufficiently large entropy $H_{\infty}(X|E)$ (two-universal hashing).

Conclusions

Main points

- Definition of ε -security where ε is a finite and well-defined parameter (ε : failure probability).
- ε -secure keys can be generated from partially secure data X with sufficiently large entropy $H_{\infty}(X|E)$ (two-universal hashing).

Remarks related to QKD

- definitions based on Shannon information are not sufficient (even if the security parameter is exponentially small)
- use two-universal hashing as a last protocol step to get ε -secure keys (choice of ε might be left to the user).

For more details: quant-ph/0512021, quant-ph/0512258.

For more details: quant-ph/0512021, quant-ph/0512258.

I would like to thank my collaborators

- Andor Bariska
- Robert König
- Ueli Maurer

Thanks.