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Lattices

Basis:
Vq,...,V, vectors in R" o o
The lattice L is o o o

[ ) ® ®

L={avi*...+a,vp| ajintegers} |, | 2v,y,
The dual lattice of L is

L*={x | 8 y2L, hx,yi 2 Z}




Shortest Vector Problem (SVP)

- SVP: Given a lattice, find an approximately shortest
vector




Closest Vector Problem (CVP )

. CVP,: Given a lattice and a target vector within
distance d, find the closest lattice point




Main Theorem

Hardness of Learning




Learning from parity with error

* Let s2Z," be a secret

* We have random equations modulo 2 with
error (everything independent):
Sy+S;+s,+ Sc+...+s, =0
S;+Sy+ S+  Sct...+s, =
S;+  Syts;+sct  ...4s, =

S,+Sy+Sy+  Set...+S,

* Without error, it's easy!




Learning from parity with error

* More formally, we need to learn s from
samples of the form (t,st+e) where t is chosen
uniformly from Z,"and e is a bit that is 1
with probability 10%.

* Easy algorithms need 2°M equations/time

* Best algorithm needs 29("/lean) equations/time
[BlumKalaiWasserman'00]

* Open question: why is this problem so hard?




Learning modulo p

* Fix some p<poly(n)
® | et SZZP“ be a secret

* We have random equations modulo p with
error:

25,+0s,+28;+15,+238-+45 +...+4s_
0s,+1s,+58;+0s,+68:+68.+...+2s
6S,+58,+28,+08,+58:+2S+...

6s,+4s,+4s,+4s,+35:+35.+. ..




Learning modulo p

* More formally, we need to learn s from
samples of the form (t,st+e) where t is chosen
uniformly from Z " and e is chosen from Z,

* Easy algorithms need 2°logn) equations/time

* Best algorithm needs 2°(" equations/time
[BlumKalaiWasserman'00]




Main Theorem

Learning modulo p is as hard as worst-case
lattice problems using a quantum reduction

® Tn other words: solving the problem implies
an efficient quantum algorithm for lattices




Equivalent formulation

* For m=poly(n), let C be a random m£n matrix
with elemen’rs in Z Given Cs+e for some
= Z and some nmse vector ee Z m pecover
S.

® This is the problem of decoding from a
random linear code




Why Quantum?

® As part of the reduction, we need to
perform a certain algorithmic task on
lattices

* We do not know how to do it classically, only
quantumly!




Why Quantum?

We are given an oracle that solves CVP4 for some
small d

As far as I can see, the only way to generate
inputs to this oracle is:

* Somehow choose xe L
* Let y be some random vector within dist d of x
* Call the oracle with'y
The answer is x. But we already know the answer !

Quantumly, being able to compute x fromy is very
useful: it allows us to transform the state |y, x> to
the state |y,0> reversibly (and then we can apply
the quantum Fourier transform)




New Public Key Encryption Scheme




Previous lattice-based PKES

[AjtaiDwork96 GoldreichGoldwasserHalevi97 R'03]

* Main advantages:
* Based on a lattice problem
* Worst-case hardness

* Main disadvantages:
* Based only on unique-SVP
* Impractical (think of n as 100):
* Public key size O(n%)
* Encryption expands by O(n?)




Ajtai’s recent PKES [Ajtai05]

* Main advantages:

* Practical (think of n as 100):
® Public key size O(n)
* Encryption expands by O(n)

* Main disadvantages:
* Not based on lattice problem
* No worst-case hardness




New lattice-based PKES
[This work]

* Main advantages:
quantum
* Worst-case hardness
* Based on the main lattice problems (SVP, SIVP)
* Practical (think of n as 100):
* Public key size O(n)
* Encryption expands by O(n)

* Breaking the cryptosystem implies an efficient
quantum algorithm for lattices

* In fact, security is based on the learning problem
(no quantum needed here)




The Cryptosystem

Everything modulo 4
Private key: 4 random numbers
1 2 0 3
Public key: a 6x4 matrix and approximate inner product
-2 +1-6 + 2-3 =010

.2 + 3.

Encrypt the bit O:
3-? + 2-7%

Encrypt the bit 1:
3-2 + 2-




Proof of the Main Theorem
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The Reduction

* Assume the existence of an algorithm for
the learning modulo p problem for p=2Vn

* Our lattice algorithm:
* r=2"
* Take poly(n) samples from D,
* Repeat:
* Given poly(n) samples from D, compute
poly(n) samples from D,.,
* Set rr/2
* When r is small, output a short vector










Obtaining D,,, from D, [p=2Vn

* Lemma 1:

Given poly(n) samples from D,, and an oracle
for 'learning modulo p’, we can solve

CVP,.inL
* No quantum here J
* Lemma 2:

Given a solution to CVP, in L*, we can obtain
samples from D, /4

* Quantum K
* Based on the quantum Fourier transform




— Classical, uses learning oracle
Quantum

Samples from D, in L
e Solution to CVP,,.in L

Samples from D/, in L

- Solution to CVP,,,. in L

Samples from D, 4 in L

" Solution to CVP,,. in L




Fourier Transform

Dual world (L™)

Primal world (L)




Fourier Transform

* The Fourier transform of D, is given by

(z) ~ o—||7-dist(z,L7) I&

fl/’r’

* Its value is
*1forxinlL’,
* el at points of distance 1/r from L,
* Y0 at points far away from L".




Proof of the Main Theorem

Lemma 2: Obtaining D, . from CUP,




From CVP, to Dy, /4

* Assume we can solve CVP; we'll show how to
obtain samples from D, 4

* Step 1
Create the quantum state

Z fd/\/ﬁ(x)‘37>

TR

by adding a Gaussian to each lattice point
and uncomputing the lattice point by using
the CVP algorithm
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* Step 2

Z fd/\/ﬁ(ic)‘fl?)

reR"

ier transform of
is exactly Dy, 4!

Compute the quantum

Four

It

* Step 3

Measure and obtain one

sample from Dy, 4

* By repeating this process,
we can obtain poly(n)




From CVPd to D\/n/d

* More precisely, create the state Z )

yel”

* And the state WS Dl
Y e | GVn/d)zl|<| 1y

rERM

* Tensor them together and add first to second

3 e—ll(\/ﬁ/d)xllﬂy,x + )

yeL*,xcR"”

* Uncompute first register by solving CVP,,
S e Iv/d)dist(@, L% ) o Z Jaa@le)

iTI'"hm

:!- | H
A




Proof of the Main Theorem

Lemma 1: Solving GUP,, , given
samples from D, and an oracle for
learning mod p




It's enough to approximate f

* Lemma: being able o approximate f,,.
implies a solution to CVP,,,

* Proof Idea - walk uphill:
* f,/(x)>% for points x of distance < p/r

* Keep making small modifications to x as
long as f,,.(x) increases

* Stop when f_,.(x)=1 (then we are on a
lattice point)




What’s ahead in this part

* For warm-up, we show how to approximate
f,/. given samples from D,

* No need for learning
* This is main idea in [AharonovR'04 ]

* Then we show how to approximate f,,. given
samples from D, and an oracle for the
learning problem

* Approximating f,,. is similar




War'm-up: approximating fl/r

* Let's write f,. in its Fourier representation:

f1/:(x) = > f1/(w) cos(2m(w, z))

we L

= Y Dy(w) cos(27(w, z))
wel

= Ey~p, [cOs(27(w, z))]

* Using samples from D,, we can compute a
good approximation to f,,. (this is the main
idea in [AharonovR'04])







Fourier Transform

* Consider the Fourier representation again:

fl/r(m) = Liy~D, [cos(2m(w, z))]

* For x2L", hw xi is integer for all w in L and
therefore we get f;,.(x)=1

* For x that is close to L™, hw xi is distributed
around an integer. Its standard deviation can be

(say) 1.




Approximating f,,.

* Main idea: partition D, into 2" distributions
* For te(Z,)", denote the translate t by D',
* Given a lattice point we can compute its T

* The probability on (Z,)" obtained by sampling
from D, and outputting t is close to uniform




Approximating f,,.

* Hence, by using samples from D.we can
produce samples from the following
distribution on pairs (t,w):

* Sample te (Z,)" uniformly at random
* Sample w from D,

* Consider the Fourier transform of D,

f%/r,.(ﬂ?) — EwNDf» [cos(m{w, z))]










Approximating f,,.

The functions ft,,. look almost like f,,.

Only difference is that some Gaussians have their
sign flipped

Approximating f',,. is enough: we can easily take
the absolute value and obtain f5,.

For this, however, we need to obtain several pairs
(t ,w) for the same t

The problem is that each sample (+,w) has a
different t |




Approximating f,,.

* Fix x close to L™

* The sign of its Gaussian is +1 depending on hs,ti mod
2 for se(Z,)" that depends only on x

* The distribution of (x,w) mod 2 when w is sampled
from D', is centred around (s,t) mod 2

* Hence, we obtain equations modulo 2 with error:

ns, i Vadhx,w,ic mod 2
s, t,i adhx,w,ic mod 2
ns,t5i adhx,wsic mod 2




Approximating f,,.

* Using the learning algorithm, we solve these
equations and obtain s

* Knowing s, we can cancel the sign

* Averaging over enough samples gives us an
approximation to f,,.




Open Problems 1/4

* Dequantize the reduction:

* This would lead to the 'ultimate’ lattice-
based cryptosystem (based on SVP,
efficient)

* Main obstacle: what can one do classically

with a solution to CVP?

* Construct even more efficient schemes
based on special classes of lattices such as
cyclic lattices

* For hash functions this was done by
Micciancio




Open Problems 2/4

* Extend to learning from parity (i.e., p=2) or
even some constant p

* Is there something inherently different
about the case of constant p?

* Use the 'learning mod p' problem to derive
other lattice-based hardness results

* Recently, used by Klivans and Sherstov to
derive hardness of learning problems




Open Problems 3/4

* Cryptanalysis

* Current attacks limited to low dimension
[NguyenStern98]

* New systems [Ajtai05,R05] are efficient
and can be easily used with dimension 100+

* Security against chosen-ciphertext attacks

* Known lattice-based cryptosystems are
not secure against CCA




Open Problems 4/4

* Comparison with number theoretic
cryptography
* E.g., can one factor integers using an
oracle for n-approximate SVP?

* Sighature schemes

* Can one construct provably secure lattice-
based signature schemes?




