On Lattices,
Learning with Errors,
Random Linear Codes,
and Cryptography

Oded Regev Tel-Aviv University

Outline

- Introduction to lattices
- · Main theorem: a hard learning problem
- Application: a stronger and more efficient public key cryptosystem
- Proof of main theorem
 - Overview
 - Part I: Quantum
 - Part II: Classical

Lattices

Basis:

 v_1, \dots, v_n vectors in \mathbb{R}^n

The lattice L is

 $L=\{a_1v_1+...+a_nv_n|a_i \text{ integers}\}$

The dual lattice of L is

 $L^*=\{x \mid 8 \text{ y2L, hx,yi 2 Z}\}$

Shortest Vector Problem (SVP)

SVP: Given a lattice, find an approximately shortest vector

Closest Vector Problem (CVP_d)

 CVP_d: Given a lattice and a target vector within distance d, find the closest lattice point

Main Theorem

Hardness of Learning

Learning from parity with error

- Let $s2Z_2^n$ be a secret
- We have random equations modulo 2 with error (everything independent):

$$s_2+s_3+s_4+s_6+...+s_n \approx 0$$

 $s_1+s_2+s_4+s_6+...+s_n \approx 1$
 $s_1+s_3+s_4+s_5+...+s_n \approx 1$
 $s_2+s_3+s_4+s_6+...+s_n \approx 0$
 \vdots

Without error, it's easy!

Learning from parity with error

- More formally, we need to learn s from samples of the form (t,st+e) where t is chosen uniformly from \mathbb{Z}_2^n and e is a bit that is 1 with probability 10%.
- Easy algorithms need 2^{O(n)} equations/time
- Best algorithm needs 2^{O(n/logn)} equations/time [BlumKalaiWasserman'00]
- Open question: why is this problem so hard?

Learning modulo p

- Fix some p<poly(n)
- Let $s2Z_p^n$ be a secret
- We have random equations modulo p with error:

$$2s_1 + 0s_2 + 2s_3 + 1s_4 + 2s_5 + 4s_6 + \dots + 4s_n \approx 2$$

 $0s_1 + 1s_2 + 5s_3 + 0s_4 + 6s_5 + 6s_6 + \dots + 2s_n \approx 4$
 $6s_1 + 5s_2 + 2s_3 + 0s_4 + 5s_5 + 2s_6 + \dots + 0s_n \approx 2$
 $6s_1 + 4s_2 + 4s_3 + 4s_4 + 3s_5 + 3s_6 + \dots + 1s_n \approx 5$

Learning modulo p

• More formally, we need to learn s from samples of the form (t,st+e) where t is chosen uniformly from Z_p^n and e is chosen from Z_p

- Easy algorithms need 2^{O(nlogn)} equations/time
- Best algorithm needs 2^{O(n)} equations/time
 [BlumKalaiWasserman'00]

Main Theorem

Learning modulo p is as hard as worst-case lattice problems using a quantum reduction

 In other words: solving the problem implies an efficient quantum algorithm for lattices

Equivalent formulation

- For m=poly(n), let C be a random m£n matrix with elements in Z_p . Given Cs+e for some $s \in \mathbb{Z}_p^n$ and some noise vector $e \in \mathbb{Z}_p^m$, recover s.
- This is the problem of decoding from a random linear code

Why Quantum?

- As part of the reduction, we need to perform a certain algorithmic task on lattices
- We do not know how to do it classically, only quantumly!

Why Quantum?

- We are given an oracle that solves CVP_d for some small d
- As far as I can see, the only way to generate inputs to this oracle is:
 - Somehow choose x∈ L
 - Let y be some random vector within dist d of x
 - Call the oracle with y
- The answer is x. But we already know the answer!!
- Quantumly, being able to compute x from y is very useful: it allows us to transform the state |y,x> to the state |y,0> reversibly (and then we can apply the quantum Fourier transform)

Application:

New Public Key Encryption Scheme

Previous lattice-based PKES

[AjtaiDwork96,GoldreichGoldwasserHalevi97,R'03]

- Main advantages:
 - Based on a lattice problem
 - Worst-case hardness
- Main disadvantages:
 - Based only on unique-SVP
 - Impractical (think of n as 100):
 - Public key size O(n4)
 - Encryption expands by O(n²)

Ajtai's recent PKES [Ajtai05]

- Main advantages:
 - Practical (think of n as 100):
 - Public key size O(n)
 - Encryption expands by O(n)
- Main disadvantages:
 - Not based on lattice problem
 - No worst-case hardness

New lattice-based PKES [This work]

Main advantages:

quantum

- Worst-case hardness
- Based on the main lattice problems (SVP, SIVP)
- Practical (think of n as 100):
 - Public key size O(n)
 - Encryption expands by O(n)
- Breaking the cryptosystem implies an efficient quantum algorithm for lattices
- In fact, security is based on the learning problem (no quantum needed here)

The Cryptosystem

- Everything modulo 4
- Private key: 4 random numbers

```
1 2 0 3
```

Public key: a 6x4 matrix and approximate inner product

Encrypt the bit 0:

$$3 \cdot ? + 2 \cdot ? + 1 \cdot ? + 0 \cdot ? \approx 1$$

Encrypt the bit 1:

$$3 \cdot ? + 2 \cdot ? + 1 \cdot ? + 0 \cdot ? \approx 3$$

Proof of the Main Theorem

Overview

Gaussian Distribution

 Define a Gaussian distribution on a lattice (normalization omitted)

$$\forall x \in L, \ D_r(x) = e^{-\|x/r\|^2}$$

We can efficiently sample from D_r for large

 $r=2^n$

The Reduction

- Assume the existence of an algorithm for the learning modulo p problem for p=2√n
- Our lattice algorithm:
 - r=2n
 - Take poly(n) samples from D_r
 - Repeat:
 - Given poly(n) samples from D_r compute poly(n) samples from D_{r/2}
 - Set r←r/2
 - When r is small, output a short vector

Obtaining D_{r/2} from D_r

p=2√n

• Lemma 1:

Given poly(n) samples from D_r , and an oracle for 'learning modulo p', we can solve $CVP_{p/r}$ in L^*

- No quantum here J
- Lemma 2:

Given a solution to CVP_d in L^* , we can obtain samples from $D_{\sqrt{n/d}}$

- Quantum K
- Based on the quantum Fourier transform

Samples from D_r in L

Solution to CVP_{p/r} in L*

Samples from $D_{r/2}$ in L

Solution to CVP_{2p/r} in L*

Samples from D_{r/4} in L

Solution to CVP_{4p/r} in L*

Fourier Transform

Primal world (L)

Dual world (L*)

Fourier Transform

The Fourier transform of D_r is given by

$$f_{1/r}(x) pprox e^{-\|r\cdot \mathsf{dist}(x,L^*)\|^2}$$

- Its value is
 - 1 for x in L*,
 - e⁻¹ at points of distance 1/r from L*,
 - 1/40 at points far away from L*.

Proof of the Main Theorem

Lemma 2: Obtaining D $_{\sqrt{n/d}}$ from **CVP** $_d$

From CVPd to Dyn/d

- Assume we can solve CVP_d ; we'll show how to obtain samples from $D_{\sqrt{n/d}}$
- <u>Step 1:</u> Create the quantum state

$$\sum_{m{x} \in \mathbb{R}^n} f_{d/\sqrt{n}}(m{x}) |m{x}
angle$$

by adding a Gaussian to each lattice point and uncomputing the lattice point by using the CVP algorithm

From CVPd to Dyn/d

Step 2:

Compute the quantum Fourier transform of

$$\sum_{x\in\mathbb{R}^n} f_{d/\sqrt{n}}(x)|x
angle$$

It is exactly D_{\n/d}!!

- Step 3: Measure and obtain one sample from $D_{\sqrt{n/d}}$
- By repeating this process, we can obtain poly(n) samples

From CVPd to Dyn/d

* More precisely, create the state $\sum_{y \in L^*} |y\rangle$

• And the state $\sum_{x\in \mathbb{R}^n} e^{-\|(\sqrt{n}/d)x\|^2}|x
angle$

Tensor them together and add first to second

$$\sum_{y \in L^*, x \in \mathbb{R}^n} e^{-\|(\sqrt{n}/d)x\|^2} |y, x+y\rangle$$

• Uncompute first register by solving $extit{CVP}_{ extstyle p/r}$ $\sum_{m{x} \in \mathbb{R}^n} e^{-\|(\sqrt{n}/d) \cdot \mathbf{dist}(m{x}, L^*)\|^2} |m{x}\rangle pprox \sum_{m{x} \in \mathbb{R}^n} f_{d/\sqrt{n}}(m{x}) |m{x}\rangle$

Proof of the Main Theorem

Lemma 1: Solving $CVP_{p/r}$ given samples from D_r and an oracle for learning mod p

It's enough to approximate $f_{p/r}$

- Lemma: being able to approximate $f_{p/r}$ implies a solution to $CVP_{p/r}$
- Proof Idea walk uphill:
 - $f_{p/r}(x)$ for points x of distance < p/r
 - Keep making small modifications to x as long as $f_{p/r}(x)$ increases
 - Stop when $f_{p/r}(x)=1$ (then we are on a lattice point)

What's ahead in this part

- For warm-up, we show how to approximate $f_{1/r}$ given samples from D_r
 - No need for learning
 - This is main idea in [AharonovR'04]
- Then we show how to approximate $f_{2/r}$ given samples from D_r and an oracle for the learning problem
- Approximating f_{p/r} is similar

Warm-up: approximating f_{1/r}

• Let's write $f_{1/r}$ in its Fourier representation:

$$egin{aligned} f_{1/r}(x) &= \sum_{w \in L} \widehat{f_{1/r}}(w) \cos(2\pi \langle w, x
angle) \ &= \sum_{w \in L} D_r(w) \cos(2\pi \langle w, x
angle) \ &= E_{w \sim D_r} \left[\cos(2\pi \langle w, x
angle)
ight] \end{aligned}$$

• Using samples from D_r , we can compute a good approximation to $f_{1/r}$ (this is the main idea in [AharonovR'04])

Fourier Transform

Consider the Fourier representation again:

$$f_{1/r}(x) = E_{w \sim D_r} \left[\cos(2\pi \langle w, x \rangle) \right]$$

- For $x2L^*$, hw,xi is integer for all w in L and therefore we get $f_{1/r}(x)=1$
- For x that is close to L*, hw,xi is distributed around an integer. Its standard deviation can be (say) 1.

- Main idea: partition D_r into 2ⁿ distributions
- For $t \in (\mathbb{Z}_2)^n$, denote the translate t by D_r^{\dagger}
- · Given a lattice point we can compute its t
- The probability on $(Z_2)^n$ obtained by sampling from D_r and outputting t is close to uniform

- Hence, by using samples from D_r we can produce samples from the following distribution on pairs (t,w):
 - Sample $t \in (\mathbb{Z}_2)^n$ uniformly at random
 - Sample w from D[†]_r
- Consider the Fourier transform of D[†]_r

$$f_{2/r}^t(x) = E_{w \sim D_r^t} \left[\cos(\pi \langle w, x \rangle) \right]$$

- The functions f[†]_{2/r} look almost like f_{2/r}
- Only difference is that some Gaussians have their sign flipped
- Approximating $f^{\dagger}_{2/r}$ is enough: we can easily take the absolute value and obtain $f_{2/r}$
- For this, however, we need to obtain several pairs (t,w) for the same t
- The problem is that each sample (t,w) has a different t!

- Fix x close to L*
- The sign of its Gaussian is ± 1 depending on hs,ti mod 2 for $s \in (\mathbb{Z}_2)^n$ that depends only on x
- The distribution of $\langle x,w \rangle$ mod 2 when w is sampled from D_r^{\dagger} is centred around $\langle s,t \rangle$ mod 2
- Hence, we obtain equations modulo 2 with error:

hs, t_1 i ¼dhx, w_1 ic mod 2 hs, t_2 i ¼dhx, w_2 ic mod 2 hs, t_3 i ¼dhx, w_3 ic mod 2

- Using the learning algorithm, we solve these equations and obtain s
- Knowing s, we can cancel the sign
- ullet Averaging over enough samples gives us an approximation to $f_{2/r}$

Open Problems 1/4

- Dequantize the reduction:
 - This would lead to the 'ultimate' latticebased cryptosystem (based on SVP, efficient)
 - Main obstacle: what can one do classically with a solution to CVP_d?
- Construct even more efficient schemes based on special classes of lattices such as cyclic lattices
 - For hash functions this was done by Micciancio

Open Problems 2/4

- Extend to learning from parity (i.e., p=2) or even some constant p
 - Is there something inherently different about the case of constant p?
- Use the 'learning mod p' problem to derive other lattice-based hardness results
 - Recently, used by Klivans and Sherstov to derive hardness of learning problems

Open Problems 3/4

- Cryptanalysis
 - Current attacks limited to low dimension [NguyenStern98]
 - New systems [Ajtai05,R05] are efficient and can be easily used with dimension 100+
- Security against chosen-ciphertext attacks
 - Known lattice-based cryptosystems are not secure against CCA

Open Problems 4/4

- Comparison with number theoretic cryptography
 - E.g., can one factor integers using an oracle for n-approximate SVP?
- Signature schemes
 - Can one construct provably secure latticebased signature schemes?