Integration of a commercial quantum cryptography appliance into metropolitan area networks

Alexandre Pauchard, Olivier Gay, Olivier Guinnard, Ralph Hoffmann, Antonio Matteo, Laurent Monnat, Gregoire Ribordy, Patrick Trinkler

> Quantum Cryptography and Computing Workshop October 2-6, 2006

Introduction

From a market perspective, the increase in network security is the key driver for the development of QC

ð Scientific community focuses mainly on improving and challenging it

For customers, other factors are also vital, sometimes even more important:

- Ø Simplicity QC simplifies key management
- Ø Interoperability
- Ø Reliability
- Ø Redundancy
- ØTotal cost of ownership

Outline

- Ø Introduction
- Ø Historical perspective on optical platforms and QKD experiments
- ✓ Vectis Link Encryptor state-of-the-art encryption appliance
- Challenges facing the deployment in networks
- Future directions

Phase-Coding QKD Approach

Simple Mach-Zehnder implementation

Mach-Zehnder Interferometer

Basis choice: $\phi_B = 0$; $\pi/2$

Phase-Coding QKD Approach

Mach-Zehnder implementation

Stability of such system is problematic

$$10 \text{ km} \pm \lambda / 10 (100 \text{ nm})$$

Ø In practice

Phase-Coding QKD Approach Double Mach-Zehnder implementation

Phase encoding between two time bins

Interferometers must be kept stable during key exchange

- Temperature stabilization of the interferometers
- Active system to compensate for drifts
- Polarization control

Townsend, P., J. G. Rarity, and P. R. Tapster, 1993, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634–639

Motivation for autocompensating QKD

- Phase-coding scheme
 - Path length adjustment requires classical communication

- Ø Autocompensating approach
 - Possibility to perform adjustment locally

Source: faint laser pulses

Gisin's group, Geneva

Ø Birefringence compensation

Poincaré sphere representation

Main advantage:

Output polarization state is orthogonal to the input state

- ð Automatic and passive compensation for all polarization fluctuations in optical fibers
- ð No adjustment necessary; stable system!

Source: faint laser pulses

Disadvantage #1:

Rayleigh backscattering

- ð requires optical delay line using fiber spool
- ð Bob emits trains of pulses
- ð bit rate reduction

Use of PM fibers

Disadvantage #2:

Eve could send probe beam and recover it through reflections at the mirror (Trojan horse

attack)

Solution:

Add an attenuator in Alice to reduce amount of light through her system, and monitor incoming intensity using classical detector.

Time-of-flight Measurement

Initial experiments

September 1996 August 1998

Extensively tested platform

1998 - 2002

1998 - 2002

- Auto-compensating (patented) interferometric set-up
- Comprehensive software suite
- C++ library for system programming
- Encrypted file transfer

Technical Specifications

Key exchange		
Maximum transmission range	100	km
Raw key exchange rate ²	> 1500	bits/s
² : over 25 km		

Key distillation

BB84 and SARG protocols implemented Sifting Error correction (with confirmation) Privacy amplification Authentication

Data encryption

Automated key management Triple-DES (ANSI 9.52, 168 bits), AES 128-192-256 encryption Data authentication

Interfaces and Inputs/outputs

Optical connector (front panel)

Optical fiber type

USB interface (rear panel)

Output Sync signals connectors

- QKDS-A

Classical detector, phase modulator

Laser source, phase modulator

Key distillation

Versatile product: allows to change all important system parameters.

Extensively tested platform

RMP <u>74</u>, 145-195, 2002, Quant-ph/0101098

Raw Key Production over 67 km, QBER ≈ 5%

D. Stucki et al., New Journal of Physics 4, 41.1-41.8, 2002. Quant-ph/0203118

Outline Ø Introduction

- Ø Historical perspective on optical platforms and QKD experiments
- ✓ Vectis Link Encryptor state-of-the-art encryption appliance
- Challenges facing the deployment in networks
- Future directions

2002 - 2006

From Clavis...

R&D PlatformSifted key production

Users: physicist

To Vectis....

Network Appliance

Secret key exchange Encryption engines System management

Users: IT manager

Vectis Link Encryptor – key features

Ethernet 100Mbps link encryption (IEEE 802.3u)

- Encryption algorithms: AES 128-bit, 192-bit, 256-bit
- Authentication algorithms: HMAC-SHA-1, HMAC-SHA-256
- Layer 2 encryption
- RFC2544 compliant

Automated key management

QKD protocols: BB84 and SARG

Nondeterministic RNG: Quantis

Network management

- On-line monitoring: SNMP v3 MIB (RFC2274)
- Off-line management: web server; touch panel display
- Identity-based authentication

Intrusion detection

- Tamper detection system
- Tamper-evident chassis

Redundant power supply

Vectis Link Encryptor - Interfaces

LAN full-duplex 100Mbps Ethernet port RJ-45

Management 10/100 Ethernet (RJ-45) RS-232 Indication LED

Secure Data Link

Bi-Di module for SMF SC connector

Quantum Channel Link SMF, SC connector

System Integration

Measured visibility of 2 appliances

 $\mbox{Visibility} > 99.5\% \qquad \mbox{\o} \quad \mbox{QBER}_{\mbox{\scriptsize opt}} < 0.4\%$

QBER vs. attenuation

Stability

Stability

Raw key rate

$R_{raw} = q f_{rep} \mu t_{link} \eta$

$$\begin{split} & f_{rep} = pulse \ rate \\ & \mu = mean \ \# \ photons \ / \ pulse \\ & t_{link} = transmission \\ & \eta = probability \ photon \ detection \end{split}$$

Quantis RNG

Semi-transparent mirror

$$50\%$$

$$\Rightarrow \qquad \Rightarrow \qquad 50\%$$

Quantis RNG

- Quantum physics is fundamentally random
- Cannot be influenced by any external parameters
- Output is completely unpredictable
- High bit rate
 - 4 or 16 Mbits/s

Key generation

System Integration

Key distillation

Secret key rate

BB84 vs. SARG

Threat models taken into account

- 1. Optimal incoherent attacks for the pulses with n = 1 photon
- 2. Standard PNS attacks for the pulses with $n \ge 2$ photons
- 3. Trojan horse attacks

For BB84, see:

Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography, A. Niederberger, V. Scarani, N. Gisin

System Integration

Encryption Bridge Principle

Encrypt payload and headers, without impact on throughput

Testing of the encryption bridge

RFC 2544 benchmark tests:

EXFO

w/ standard frame sizes of 64, 128, 256, 512, 1024, 1280 and 1518 byte

Bridge throughput

Layer 2 vs. Layer 3

Comparison performed on a SONET OC-48 link (Safenet Encryptor vs. Cisco VPN Blade) Rochester Institute of Technology

∠ Layer 2 Encryption in high-speed networks provides significant benefits

System Integration

System Administration – User interface

Identity-based authentication

Three authorized roles:

- 1. User role
- 2. Crypto officer role
- 3. Maintenance role

Admin Monitoring IP configuration

Address

192.168.1.141

9 W e r t y u i o p

a s d f g h j k 1 CCL

9 X c v b n m UP BSP

350 ABC 0-9 ;; (E(SPC LF DW RT)

Status: ok

System Administration – Log information

System Administration – SNMP

SNMPv3 (simple network management protocol)

MIB::System

sysDescr	sysObjectID	sysUpTime	sysContact
sysName	sysLocation	sysServices	

MIB::SNMP

snmpInPkts	snmpOutPkts	snmpInBadVersions	snmpInASNParseErrs
snmpInTooBigs	snmpInNoSuchName	snmpInBadValues	snmpInReadOnlys
snmpInGenErrs	snmpInTotalReqVars	snmpInTotalSetVars	snmpInGetRequests
snmpInGetNexts	snmpInSetRequests	snmpInGetResponses	snmpInTraps
snmpOutTooBigs	snmpOutNoSuchNam es	snmpOutBadValues	snmpOutGenErrs
snmpOutGetRequests	snmpOutGetNexts	snmpOutSetRequests	snmpOutGetResponse s
snmpOutTraps	snmpEnableAuthenTr aps	snmpSilentDrops	snmpProxyDrops

IF-MIB

ifDescr	ifType	ifMtu	ifSpeed
ifPhysAddress	ifAdminStatus	ifAdminStatus	ifOperStatus
ifInOctets	ifInUcastPkts	ifInDiscards	ifInErrors
ifOutOctets	ifOutUcastPkts	ifOutDiscards	ifOutErrors
ifOutQLen			

IDQ-MIB

	CryptFramesCongesti onDropped	ClearDiscardedFrame s	ClearFramesCongesti onDropped
AuthErrors	Loss		

Traps

coldStart (0)	warmStart (1)	linkDown (2)	linkUp (3)
authenticationFailure (SNMP) (4)	egpNeigborLoss (5) (will not be used)	entrepriseSpecific (6)	

Vectis traps

System down	System up

System Administration – Procedures

« How do I exchange the initial secret required for authentication? »

A&B need to share initial short secret; QC is a quantum secret growing protocol.

« What happens if the QBER exceeds the security threshold? »

Use the keys in the buffer until none are left, then

Mode 1: continue using the last key until the problem is fixed

Mode 2: disable the classical channel

Trade-off between security and link availability!

- « What happens if power goes down and back up? »
- « What happens if the chassis has been opened (e.g. during power outage)? »

Field Testing

Field testing with a Swiss internet provider

Data saved on a farm of 30 servers of the Deckpoint Housing Center are replicated on servers located at the Cern Internet Exchange Point.

Distance: 10 km.

System worked for several weeks without interruption.

Ongoing: test bed at the Center for Information Technology in Geneva.

Distance: 22.8 km, 5.8dB attenuation.

Outline Ø Introduction

- Ø Historical perspective on optical platforms and QKD experiments
- Ø Vectis Link Encryptor − state-of-the-art encryption appliance
- Challenges facing the deployment in networks
- Future directions

Problematic #1: need dedicated dark fibers

Problematic #2: point-to-point link encryption

- Ø SECOQC =
 - <u>SE</u>cure <u>CO</u>mmunication based on <u>Quantum Cryptography</u>
- European project
- Goal: design and implement a complete QKD network
- From April 2004 to April 2008
- Actors: 41 participants from 12 countries
 - Including 8 private companies (incl. idQ)

q Network in Vienna

Problematic #3: customer has only 2 strands of fiber

Solution: 1 strand for quantum channel

1 strand for classical channel (bidi)

Solution: 1 strand for quantum channel

1 strand for classical channel (bidi)

Problematic #4: customers use different protocols Solution: offer encryptors with main protocols

Problematic #6: customers need higher throughput Solution: aggregate traffic

id Quantique SA - Marc Hentsch - july 2006

Problematic #7: distance larger than 80km

Solution: daisy-chain systems (short-term)

Quantum Cryptography Range

Outline Ø Introduction

- Ø Historical perspective on optical platforms and QKD experiments
- Ø Vectis Link Encryptor − state-of-the-art encryption appliance
- Ø Challenges facing the deployment in networks
- Future directions

Future Directions

Standardization

Inter-operability

Possibility to compare and evaluate QKD systems

Coherent one-way QKD (COW) (patent pending)

quant-ph/0411022, APL <u>87</u>, 194105, 2005

- simplicity: measure time of arrival of pulse
 ð insensitive to optical errors
- rapidity: low loss at Bob's side
- security: check occasionally quantum coherence within and across the bit separation
- reliability by using standard telecom components
- no need for single-photon source since resistant to PNS attacks

Security of the system

- Security by checking the coherence of successive pulses
 - □ additional interferometer

Results - Gisin's group

- Pulse rate 434MHz
- Repetition rate 600kHz
- Raw bit rate 17kHz
- \emptyset QBER_{tot}=5.2%
- Raw visibility of 92%
- Met visibility of 98%

quant-ph/0411022 APL <u>87</u>, 194105, 2005

Coherent one-way QKD

Coherent one-way QKD (part of Secogo project)

Quantum Cryptography is ready for the market

- Resurgence of layer 2 encryption
 - Strong market growth for high-speed encryption
 - ATM, Sonet/SDH, Ethernet, Fibre Channel
 - Market drivers
 - « Encryption tax » and latency of Layer 3 devices
 - Availability of more bandwidth at a lower cost and in more applications
 - Regulatory intervention forcing security standards
 - More secure posture taken by governments due to war on terrorism
 - Business realizing that security is a business enabler
- Quantum Cryptography can enhance security in high-bit rate applications over MANs and SANs
 - Span of 100km possible
 - High bandwidth means key management is more important
 - Better understanding of security risks associated with public key cryptography by customers

The QKD world is expanding...

Thank you for your attention

Chemin de la Marbrerie 3 CH-1227 Carouge – Geneva Switzerland

Info@idquantique.com

www.idquantique.com

A Quantum Leap for Cryptography

