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IntroductionIntroduction

From a market perspective, the increase in network security is the key driver 
for the development of QC
ð Scientific community focuses mainly on improving and challenging it

For customers, other factors are also vital, sometimes even more important:

Ø Simplicity – QC simplifies key management

Ø Interoperability

Ø Reliability

Ø Redundancy

Ø Total cost of ownership
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Ø Introduction

Ø Historical perspective on optical platforms and QKD experiments

Ø Vectis Link Encryptor – state-of-the-art encryption appliance

Ø Challenges facing the deployment in networks

Ø Future directions
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Ø Mach-Zehnder Interferometer
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Ø Stability of such system is problematic

Ø In practice
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PhasePhase--CodingCoding QKD QKD ApproachApproach
Double Double MachMach--ZehnderZehnder implementationimplementation
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Townsend, P., J. G. Rarity, and P. R. Tapster, 1993, ‘‘Single
photon interference in a 10 km long optical fiber interferometer,’’
Electron. Lett. 29, 634–639

Interferometers must be kept stable during key exchange
• Temperature stabilization of the interferometers
• Active system to compensate for drifts
• Polarization control 

Phase encoding between two time bins
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Ø Phase-coding scheme

• Path length adjustment requires classical communication

Motivation for Motivation for autocompensatingautocompensating QKDQKD

Ø Autocompensating approach

• Possibility to perform adjustment locally
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PlugPlug & & PlayPlay PhasePhase--CodingCoding SystemSystem

Source: 
faint laser pulses

Gisin’s group, GenevaBSPBS

Use of PM fibers



9

MF

SP

( 90 )°rotation de la polarisation de 

Poincaré sphere representation

Main advantage:

Output polarization state is orthogonal to the input state
ð Automatic and passive compensation for all polarization fluctuations in optical fibers
ð No adjustment necessary; stable system!

PlugPlug & & PlayPlay PhasePhase--CodingCoding SystemSystem
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PlugPlug & & PlayPlay PhasePhase--CodingCoding SystemSystem

Disadvantage #1:

Rayleigh backscattering
ð requires optical delay line using fiber spool
ð Bob emits trains of pulses
ð bit rate reduction

Source: 
faint laser pulses

BSPBS

Use of PM fibers
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Disadvantage #2:

Eve could send probe beam and recover it through reflections at the mirror (Trojan horse
attack)

PlugPlug & & PlayPlay PhasePhase--CodingCoding SystemSystem
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Solution:

Add an attenuator in Alice to reduce amount of light through her system,
and monitor incoming intensity using classical detector.
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Initial Initial experimentsexperiments

September 1996
August 1998
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ExtensivelyExtensively testedtested platformplatform

SingleSingle--PhotonPhoton InterferenceInterference overover 23 km23 km
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1998 1998 –– 20022002

From the breadboard… to Clavis…
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1998 1998 –– 20022002

Ø Features of Clavis

• Auto-compensating (patented) 
interferometric set-up

• Comprehensive software suite
• C++ library for system

programming
• Encrypted file transfer
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Key distillationKey distillation
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ClavisClavis softwaresoftware

USB Connection

QKD-A QKD-B
Dedicated

Optical Fiber

Quantum channel

USB Connection

Classical channel

CryptoMenuAlice CryptoMenuBobClavis

> >

Clavis

> >

Versatile product: allows to change all important system parameters.
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ExtensivelyExtensively testedtested platformplatform

Raw Key Production over 67 km, QBER ≈≈≈≈ 5%

D. Stucki et al., New Journal of Physics
4, 41.1-41.8, 2002. Quant-ph/0203118

RMP 74, 145-195, 2002, 
Quant-ph/0101098
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Ø Introduction

Ø Historical perspective on optical platforms and QKD experiments

Ø Vectis Link Encryptor – state-of-the-art encryption appliance

Ø Challenges facing the deployment in networks

Ø Future directions
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2002 2002 -- 20062006

From Clavis…

R&D Platform
Sifted key production

Users: physicist

To Vectis….

Network Appliance
Secret key exchange
Encryption engines

System management

Users: IT manager
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VectisVectis LinkLink EncryptorEncryptor –– keykey featuresfeatures

Ethernet 100Mbps link encryption (IEEE 802.3u)
• Encryption algorithms: AES 128-bit, 192-bit, 256-bit
• Authentication algorithms: HMAC-SHA-1, HMAC-SHA-256
• Layer 2 encryption
• RFC2544 compliant

Automated key management

QKD protocols: BB84 and SARG

Nondeterministic RNG: Quantis

Network management
• On-line monitoring: SNMP v3 MIB (RFC2274)
• Off-line management: web server; touch panel display
• Identity-based authentication

Intrusion detection
• Tamper detection system
• Tamper-evident chassis

Redundant power supply



23

VectisVectis LinkLink EncryptorEncryptor –– InterfacesInterfaces

LAN
full-duplex 100Mbps Ethernet port

RJ-45

Management
10/100 Ethernet (RJ-45)

RS-232
Indication LED

Secure Data Link
Bi-Di module for SMF

SC connector

Quantum Channel Link
SMF, SC connector
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Key Buffer

Supervisor

EncryptionNetwork interface

Key Distillation and
management

QC Hardware

System System IntegrationIntegration

QC Hardware

Key Distillation and
management

Key Buffer

EncryptionNetwork interface

Supervisor

Classical channel

Quantum channel
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From customer’s point of view, the system is completely symmetric. 
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Ø A single-photon constitutes an elementary quantum system
It cannot be split

Ø Semi-transparent mirror

?

?   

50%

50%

QuantisQuantis RNGRNG
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QuantisQuantis RNGRNG

Ø Quantum physics is fundamentally random

Ø Cannot be influenced by any external parameters

Ø Output is completely unpredictable

Ø High bit rate
• 4 or 16 Mbits/s
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BB84 vs. SARGBB84 vs. SARG
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ThreatThreat modelsmodels takentaken intointo accountaccount

1. Optimal incoherent attacks for the pulses with n = 1 photon 

2. Standard PNS attacks for the pulses with n >= 2 photons
3. Trojan horse attacks

For BB84, see: 

Photon-Number-Splitting versus Cloning Attacks in Practical
Implementations of the Bennett-Brassard 1984 protocol for Quantum 
Cryptography, A. Niederberger, V. Scarani, N. Gisin
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Key Buffer
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EncryptionEncryption Bridge Bridge PrinciplePrinciple

Frame Encapsulation

AES AES

Encrypt payload and headers, without impact on throughput
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TestingTesting ofof thethe encryptionencryption bridge bridge 

RFC 2544 benchmark tests: 

w/ standard frame sizes of 64, 128, 256, 512, 1024, 1280 and 1518 byte

FTB-8510G Packet Blazer
EXFO 
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Bridge Bridge throughputthroughput
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Layer 2 vs. Layer 3Layer 2 vs. Layer 3

Ø Layer 2 Encryption in high-speed networks provides significant
benefits

Significant frame lossesNo frame loss at all frame
sizes

Latency with potential
negative effects (≈ 40 us)

Negligable latency (< 5 us)

40% bandwidth available
(encryption tax)

100% bandwidth available

Layer 3Layer 2

Comparison performed on a SONET OC-48 link
(Safenet Encryptor vs. Cisco VPN Blade)
Rochester Institute of Technology
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SystemSystem Administration Administration –– User interfaceUser interface

Identity-based authentication

Three authorized roles:
1. User role
2. Crypto officer role
3. Maintenance role
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SystemSystem Administration Administration –– Log informationLog information
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SNMPv3 (simple network management protocol)

MIB::System

MIB::SNMP

IF-MIB

IDQ-MIB

Traps

Vectis traps

MIB::System

MIB::SNMP

IF-MIB

IDQ-MIB

Traps

Vectis traps

SystemSystem Administration Administration –– SNMPSNMP
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SystemSystem Administration Administration –– ProceduresProcedures

« What happens if power goes down and back up? »

« What happens if the chassis has been opened (e.g. during power outage)? »

« What happens if the QBER exceeds the security threshold? »

Use the keys in the buffer until none are left, then

Mode 1:   continue using the last key until the problem is fixed

Mode 2: disable the classical channel

Trade-off between security and link availability !

P
aranoid

« How do I exchange the initial secret required for authentication ? »

A&B need to share initial short secret; QC is a quantum secret growing protocol. 
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Field testing with a Swiss internet provider

Data saved on a farm of 30 servers of the Deckpoint Housing Center are replicated on 
servers located at the Cern Internet Exchange Point.

Distance: 10 km.

System worked for several weeks without interruption.

Ongoing:  test bed at the Center for Information Technology in Geneva.

Distance: 22.8 km, 5.8dB attenuation.

Field Field TestingTesting
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OutlineOutline

Ø Introduction

Ø Historical perspective on optical platforms and QKD experiments

Ø Vectis Link Encryptor – state-of-the-art encryption appliance

Ø Challenges facing the deployment in networks

Ø Future directions
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Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks

Problematic #1: need dedicated dark fibers
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Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks

Problematic #2: point-to-point link encryption
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The DARPA Quantum NetworkThe DARPA Quantum Network

Operating Continuously Across Cambridge Since 6/2004Operating Continuously Across Cambridge Since 6/2004

+ Entangled link
+ 2 x Freespace link

Harvard
University 51

Building the DARPA Quantum Network
Copyright © 2006 by BBN Technologies.
All Rights Reserved.
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Ø SECOQC =
• SEcure COmmunication based on Quantum Cryptography

Ø European project
Ø Goal: design and implement a complete QKD network
Ø From April 2004 to April 2008
Ø Actors : 41 participants from 12 countries 

• Including 8 private companies (incl. idQ) 

Ø Financing: 11.4 millions euros
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Ø Node + QKD links q Network in Vienna
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Primary or Secondary Data Centre

Backup/archive centre (SAN)

Branch office

Business Partner

Problematic #3: customer has only 2 strands of fiber

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Primary or Secondary Data Centre

Backup/archive centre (SAN)

Branch office

Business Partner

Quantum Channel

Classical Channel (bi-directional)
WDM (1310nm and 1550nm): up to 60km
CWDM (close to 1550nm): up to 120km 

Solution : 1 strand for quantum channel
1 strand for classical channel (bidi)

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Solution : 1 strand for quantum channel
1 strand for classical channel (bidi)

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Data Center - 2

Secure perimeter

Data Center - 1

Secure perimeter

Fibre Channel

Gigabit Ethernet

Problematic #4: customers use different protocols
Solution: offer encryptors with main protocols

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks

Problematic #5: customers need redundancy
Solution: duplicate encrypted links
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Problematic #6: customers need higher throughput
Solution: aggregate traffic

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Problematic #7: distance larger than 80km
Solution: daisy-chain systems (short-term)

Challenges Challenges facingfacing thethe deploymentdeployment in networksin networks
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Quantum Quantum CryptographyCryptography RangeRange
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OutlineOutline

Ø Introduction

Ø Historical perspective on optical platforms and QKD experiments

Ø Vectis Link Encryptor – state-of-the-art encryption appliance

Ø Challenges facing the deployment in networks

Ø Future directions
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Standardization

Future DirectionsFuture Directions

Key Buffer

Supervisor

EncryptionNetwork interface

Key Distillation and
management

QC HardwareQC Hardware

Key Distillation and
management

Key Buffer

EncryptionNetwork interface

Supervisor

Bandwidth

Range, Bit rate
+ Cost reduction

Inter-operability

Possibility to compare
and evaluate QKD systems

QuantisQuantis
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• simplicity: measure time of arrival of pulse
ð insensitive to optical errors

• rapidity: low loss at Bob’s side
• security: check occasionally quantum coherence within and across the bit separation
• reliability by using standard telecom components
• no need for single-photon source since resistant to PNS attacks

CoherentCoherent oneone--wayway QKD (COW) QKD (COW) 
(patent (patent pendingpending))

GAP Optique Geneva University

tB DB

DM1
DM2

Laser IM

bit 0
bit 1

decoy
sequence

quant-ph/0411022, APL 87, 194105, 2005

Data line

Monitoring line

Alice produces a train of equally-spaced coherent pulses.
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Security of the systemSecurity of the system

Ø Security by checking the coherence of successive pulses

� additional interferometer

GAP Optique Geneva University
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Results Results –– GisinGisin’’ss groupgroup

Ø Pulse rate 434MHz

Ø Repetition rate 600kHz

Ø Raw bit rate 17kHz

Ø 5dB link losses (25km)

Ø QBERtot=5.2%

Ø Raw visibility of 92%

Ø Net visibility of 98%

quant-ph/0411022
APL 87, 194105, 2005

GAP Optique Geneva University
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GAP Optique Geneva University

CoherentCoherent oneone--wayway QKDQKD
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GAP Optique Geneva University

CoherentCoherent oneone--wayway QKD (part QKD (part ofof SecoqcSecoqc projectproject))
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Quantum Quantum CryptographyCryptography isis readyready for for thethe marketmarket

Ø Resurgence of layer 2 encryption
• Strong market growth for high-speed encryption

– ATM, Sonet/SDH, Ethernet, Fibre Channel

• Market drivers
– « Encryption tax » and latency of Layer 3 devices
– Availability of more bandwidth at a lower cost and in more applications
– Regulatory intervention forcing security standards
– More secure posture taken by governments due to war on terrorism
– Business realizing that security is a business enabler

Ø Quantum Cryptography can enhance security in high-bit rate applications 
over MANs and SANs
• Span of 100km possible
• High bandwidth means key management is more important
• Better understanding of security risks associated with public key cryptography by 

customers
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QKD TheoryQKD Theory

TheThe QKD QKD worldworld isis expandingexpanding……

QKD ExperimentsQKD Experiments

ComponentsSystems

Components for QKDComponents for QKD

Physical Layer
QKD Systems

Physical Layer
QKD Systems

QKD
System Integration

QKD
System Integration

QKD NetworkingQKD Networking

High-Speed
Cryptography

High-Speed
Cryptography
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ThankThank youyou for for youryour attentionattention

Chemin de la Marbrerie 3
CH-1227 Carouge – Geneva
Switzerland

Info@idquantique.com

www.idquantique.com


