Optimality of approximate encryption schemes

Ashwin Nayak

University of Waterloo, and Perimeter Institute for Theoretical Physics

Joint work with Paul Dickinson, Leonard Schulman

Encryption of quantum states

- To encrypt qubit state ρ , map to completely mixed state $\frac{1}{2}$ I
- Scheme
 - Pick random Pauli $U \in \{I, X, Y, Z\}$
 - Apply U to state $\rho \rightarrow U\rho U^*$

$$\rho \rightarrow \frac{1}{4} (\rho + X\rho X + Y\rho Y + Z\rho Z)$$

• Fact: above operation maps every state ρ to $\frac{1}{2}$ I

Size of key

- Picked one of 4 Paulis: 2² bits to encrypt 2-dim state
- Scheme generalizes to n quantum bits
 - Apply independently chosen random Pauli to each qubit
 - $d^2 = (2^n)^2$ operators for $d = 2^n$ dimensional states
- Theorem [BR'03, AMTdW'00, Jain'05, NS'06]

*d*² unitaries are required for perfect randomization of *d*-dimensional states

Relaxed notion [HLSW'04]
 Target state close to completely mixed

Approximate encryption

• Theorem [HLSW'04]

If randomized state is ε close to completely mixed state

O($d \log d / \varepsilon^2$))

unitary operators suffice

key length = $n + \log n + O(\log (1/\epsilon))$

Closeness in trace norm

$$||M||_{tr} = \operatorname{Tr} \sqrt{M^*M}$$

characterizes distinguishability via measurements

- Efficient, explicit scheme [AS'04]
 - Same parameters, or
 - With $O(d/\varepsilon^2)$ unitaries, but cipher text has extra 2 log d bits

Key size for approximate encryption

• Observation [DN'06]
Improved efficient scheme $O(d/\epsilon^2) \quad \text{unitary operators,}$ i.e., $n + 2 \log (1/\epsilon) + 4$ bits of key suffice (No increase in length of cipher text)

Unitary operators used: Pauli operators

• This talk [DN'06; NS, ongoing] $\Omega(d/\varepsilon)$ Pauli operators are necessary

 $n + \log(1/\epsilon) - O(1)$ bits of key are necessary

Lower bound for key length

- Kind of randomizing map studied
- Connection to pseudo-randomness
- Lower bound for sample space of pseudo-random distribution

Kind of randomizing map

- Consider n qubit states; dimension $d = 2^n$
- Randomizing map defined by a distribution π over n-qubit Pauli operators

$$R(\rho) = \sum_{s} \pi_{s} P_{s} \rho P_{s}^{*}$$

• *n*-qubit Pauli operators:

$$P = P_1 \otimes P_2 \otimes \cdots \otimes P_n$$

where each $P_i \in \{I, X, Y, Z\}$

Single qubit Pauli operators

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad Y = iXZ = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Form an orthogonal basis for matrices

$$(A,B) = Tr(B*A)$$

Unitary, Hermitian, self-inverse

$$X^* = X$$
, $X^2 = I$, etc.

• X, Y, Z anti-commute: XY = -YX, etc.

Higher dimensions

• *n*-qubit Pauli \leftrightarrow 2*n*-bit strings (a,b) \leftrightarrow $i^{|a \cap b|} X^a Z^b$ where $X^a = X^{a_1} \otimes X^{a_2} \otimes ...,$ etc.

- Phase irrelevant
- Form an orthogonal basis for matrices
- Unitary, Hermitian, self-inverse
- Commutation

$$(X^a Z^b) (X^u Z^v) = (-1)^{(a,b)\circ(u,v)} (X^u Z^v) (X^a Z^b)$$

$$(a,b)\circ(u,v) = a\cdot v + b\cdot u \qquad \text{"symplectic inner product"}$$

Randomizing map

• Randomizing map defined by a distribution π over 2n-bit strings

$$R(\rho) = \sum_{(a,b)} \pi(a,b) X^a Z^b \rho Z^b X^a$$

- If π were uniform over all 2n-bit strings, R would be perfectly randomizing
- More efficient maps are constructed from sparse, pseudo-random subsets of strings
- We will connect arbitrary approximately randomizing maps back to pseudo-random distributions

Connection to pseudo-randomness

Randomizing map

$$R(\rho) = \sum_{(a,b)} \pi(a,b) X^a Z^b \rho Z^b X^a$$

- Let V be the random variable over 2n-bit strings corresponding to π
- Let M be an n by 2n boolean matrix, representing the n independent generators of a pure stabilizer state
- Proposition 1

If R is ε -approximately randomizing, then $M \circ V$ is ε -close to uniform (in L_1 distance).

n-qubit Stabilizer states

Stabilizer group G

group generated by a set of commuting Pauli operators

Stabilizer subspace

- common +1 eigenspace of all operators in G
- dimension = 2^{n-k} if G does not contain -I, and is generated by k independent generators

Stabilizer state

- pure state in 1-dimensional subspace stabilized by group G
 of order 2ⁿ
- G is generated by n independent commuting Paulis

Properties of Stabilizer states I

Let $|\psi\rangle$ be a stabilizer state, P any Pauli operator. Then, $P|\psi\rangle$ is either parallel to $|\psi\rangle$ or perpendicular.

Proof: If *P* commutes with every stabilizer generator *g*, then

$$g P |\psi\rangle = P g |\psi\rangle = P |\psi\rangle$$

So $P|\psi\rangle$ lies in the stabilizer subspace. Since the subspace is one dimensional...

If not, then for some generator g $\langle \psi | P | \psi \rangle = \langle \psi | g P | \psi \rangle = - \langle \psi | P g | \psi \rangle = - \langle \psi | P | \psi \rangle.$ So $P | \psi \rangle$ is perpendicular to $| \psi \rangle.$

Properties II

- If $P \leftrightarrow (a,b)$, $P|\psi\rangle$ is parallel to $|\psi\rangle$ iff $M \circ (a,b) = 0^n$.
- Let $|\psi\rangle$ be a stabilizer state, P and Q any Pauli operators.
 - Then, $P|\psi\rangle$ and $Q|\psi\rangle$ are either parallel or perpendicular.
- If $P \leftrightarrow (a,b)$, $Q \leftrightarrow (u,v)$, then $P|\psi\rangle$ and $Q|\psi\rangle$ are parallel iff $M\circ(a,b)=M\circ(u,v)$.

Properties III

- For an *n*-bit string s, let $|\psi_s\rangle = P|\psi\rangle$, for some P such that $M \circ (a,b) = s$.
- Since M has full rank, the states $|\psi_s\rangle$ form an orthonormal basis for n-qubit states

Proposition 1

 $R(\rho) = \sum_{(a,b)} \pi(a,b) X^a Z^b \rho Z^b X^a$

V: random variable over 2n-bit strings given by π .

M: n by 2n matrix representing a stabilizer state.

Then, if R is ε -approximately randomizing, then $M \circ V$ is ε -close to uniform (in L_1 distance).

Proof: Consider state $|\psi\rangle$ generated by M. Image under R = mixture of orthogonal states $|\psi_s\rangle$.

Trace distance from completely mixed = distance of the distribution over $s = M \circ V$.

Lower bound for key length

- Kind of randomizing map studied
- Connection to pseudo-randomness
- Lower bound for sample space of pseudo-random distribution

Lower bound for sample space

Given *V*: any random variable over 2*n*-bit strings. For any *n* by 2*n* boolean matrix *M*, rows orthogonal with respect to symplectic inner product,

 $M \circ V$ is ε -close to uniform (in L₁ distance).

Proposition 2

Sample space of V has size at least $\Omega(2^n/\varepsilon)$.

Implication:

Distribution π has support over the same number of Pauli operators

Proof sketch for Proposition 2

Consider *M* of the following form:

- The first (n-m) rows are the same number of standard basis vectors for \mathbb{Z}_2^{2n} .
- The next row is chosen so that it determines the parity of an arbitrary subset of 2m bits, different from the first (n-m).
- The remaining rows are immaterial.

Proof sketch...

Pseudo-randomness condition on V implies

- The first (n-m) bits of V are near uniform.
- (Informally) 2m bits of V are ε-biased, even conditioned on those first bits.
 (parity of every subset of bits is almost uniform)
- Let $m = \log(1/\varepsilon)$. Conditioned on any value of the first (n-m) bits of V, the size of sample space is $\geq 2^{2m} = 2^m/\varepsilon$
- Net size of sample space $\geq 2^{n-m} \cdot 2^m/\varepsilon = 2^n/\varepsilon$.

Concluding remarks

- $\Omega(2^n/\varepsilon^2)$ unitary operators likely optimal Under investigation
- Explicit scheme takes time Õ(n²) with Õ(n⁴) preprocessing
 Faster encryption possible?