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Encryption of quantum states

* To encrypt qubit state p,
map to completely mixed state % |

* Scheme
* PickrandomPauli U e {I,XY,Z}
" Apply U to state p — UpU*

p — 7 (p+tXpX + YpY + ZpZ)

* Fact: above operation maps every state p to ‘2|



Size of key

Picked one of 4 Paulis: 22 bits to encrypt 2-dim state

Scheme generalizes to n quantum bits
" Apply independently chosen random Pauli to each qubit
" d? = (2")2 operators for d =2" dimensional states

Theorem [BR'03, AMTdW’00, Jain’05, NS'06]

d? unitaries are required for perfect randomization of d-
dimensional states

Relaxed notion [HLSW’04]
Target state close to completely mixed



Approximate encryption

* Theorem [HLSW’04]
If randomized state is & close to completely mixed state
O( dlog d/ &))
unitary operators suffice
key length = n +log n + O(log (1/¢))

Closeness in trace norm
M|, = TrNMM
characterizes distinguishability via measurements

 Efficient, explicit scheme [AS’04]
* Same parameters, or

* With O( d/e?)) unitaries, but cipher text has extra 2 log d
bits



Key size for approximate encryption

* (Observation [DN’06]
Improved efficient scheme
O(d/ &) unitary operators,
i.e., n + 2log(1/e) + 4 bits of key suffice
(No increase in length of cipher text)

Unitary operators used: Pauli operators

* This talk [DN’06; NS, ongoing]

Q(d/e)  Pauli operators are necessary

n + log (1/¢) — O(1) Dbits of key are necessary



Lower bound for key length

* Kind of randomizing map studied
* Connection to pseudo-randomness

* Lower bound for sample space of pseudo-random
distribution



Kind of randomizing map

Consider n qubit states; dimension d = 2"

Randomizing map defined by a distribution m over
n-qubit Pauli operators

Rlp) = 2, m PpP/

n-qubit Pauli operators:
P=P®P® QP
whereeach P. ¢ {I,XY,Z}



Single qubit Pauli operators

ot x= [T

(10 o
Z = |g - Y = iXZ

Form an orthogonal basis for matrices

(A,B) = Tr(B*A)

Unitary, Hermitian, self-inverse

X*=X, Xe=

X, Y, Z anti-commute:

|, etc.
XY = =YX, etc.

[
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Higher dimensions

n-qubit Pauli <« 2n-bit strings
(a,b) «> jlanbl Xa /b
where X2 = X1 X2 ® ..., etc.

Phase irrelevant
Form an orthogonal basis for matrices
Unitary, Hermitian, self-inverse

Commutation
(XaZP) (X¥Z¥)

(_1 )(a,b)o(u,v) (Xu Zv ) (Xa Zb )

(a,b)e(u,v) = av+bu ‘symplectic inner product”



Randomizing map

Randomizing map defined by a distribution ™ over
2n-bit strings
R(O) = Y T(@b) XZbp2Z°Xe

If m were uniform over all 2n-bit strings, R
would be perfectly randomizing

More efficient maps are constructed from sparse,
pseudo-random subsets of strings

We will connect arbitrary approximately randomizing
maps back to pseudo-random distributions



Connection to pseudo-randomness

Randomizing map
R() = Sunmab) XzbpzeXe

Let V Dbe the random variable over 2n-bit strings
corresponding to 1T

Let M bean n by 2n boolean matrix,
representing the n independent generators of a pure
Stabilizer state

Proposition 1
If R is ¢&-approximately randomizing,
then M-V is e&-close to uniform (in L, distance).



n-qubit Stabilizer states

« Stabilizer group G

group generated by a set of commuting Pauli operators

* Stabilizer subspace
= common +1 eigenspace of all operatorsin G

* dimension = 2" if G does notcontain —I, andis
generated by k independent generators

e Stabilizer state

" pure state in 1-dimensional subspace stabilized by group G
of order 27

G isgenerated by n independent commuting Paulis



Properties of Stabilizer states |

Let |w) be a stabilizer state, P any Pauli operator.
Then, P|y) is either parallel to |w) or perpendicular.

Proof: If P commutes with every stabilizer
generator g, then

gPly) = Pgly) = Ply)
So Ply) lies in the stabilizer subspace. Since the
subspace is one dimensional...

If not, then for some generator g

(WPly) = (wlgPly)y = —(wlPaly) = —(WIPly).
So Ply) is perpendicularto |y).



Properties ||

* If P+ (a,b),
Ply) is parallel to |w) iff Me(a,b) = 0.

* Let |@) be a stabilizer state, P and Q any Pauli
operators.

Then, Ply) and Q|y) are either parallel or
perpendicular.

* If P & (ab), Q « (uv), then
Ply) and Q|y) are parallel iff Me(a,b) = M-(u,v).



Properties Il

« For an n-bit string s, let |w,)) = Ply),
forsome P suchthat Me(a,b) = s.

« Since M has full rank, the states |g,) form an
orthonormal basis for n-qubit states



Proposition 1

R(P) = Y.pmab) XZ°pZ:Xe
V. random variable over 2n-bit strings given by 1.
M : n by 2n matrix representing a stabilizer state.

Then, if R is ¢g-approximately randomizing, then
M-V is e-close to uniform (in L, distance).

Proof: Consider state |w) generated by M.
Image under R = mixture of orthogonal states |y,).

Trace distance from completely mixed = distance of
the distribution over s = M-V.



Lower bound for key length

* Kind of randomizing map studied
* Connection to pseudo-randomness

* Lower bound for sample space of pseudo-random
distribution



Lower bound for sample space

Given V : anyrandom variable over 2n-bit strings.

Forany n by 2n boolean matrix M, rows
orthogonal with respect to symplectic inner product,
M-V is &-close to uniform (in L, distance).

Proposition 2
Sample space of V' has size at least Q(27/¢).

Implication:

Distribution 7 has support over the same number
of Pauli operators



Proof sketch for Proposition 2

Consider M of the following form:

* The first (n—m) rows are the same number of
standard basis vectors for Z,%".

* The next row Is chosen so that it determines the
parity of an arbitrary subset of 2m bits,

different from the first (n—m).

* The remaining rows are immaterial.



Proof sketch...

Pseudo-randomness condition on V' implies
* The first (n—m) bits of V are near uniform.

* (Informally) 2m bitsof V are ¢-biased, even
conditioned on those first bits.

(parity of every subset of bits is almost uniform)
* Let m = log(1/e).
Conditioned on any value of the first (n—m) bits of

V, the size of sample spaceis = 227 = 27/¢

* Net size of sample space = 277 - 2m[g = 27/¢.



Concluding remarks

* Q(27/€?) unitary operators likely optimal
Under investigation

» Explicit scheme takes time O(n?) with O(r*)
preprocessing

Faster encryption possible?

* Perfect encryption <> Unitary orthogonal basis
Characterization for approximate encryption?



