
Generating Set Search Methods for Nonlinear

Optimization

Robert Michael Lewis and Virginia Torczon, College of William & Mary

Collaborators:

• Tammy Kolda, Sandia National Laboratories, Livermore, California

• Anne Shepherd, College of William & Mary

• Chris Siefert, Sandia National Laboratories, Albuquerque, New Mexico

• Michael Trosset, Indiana University

The general nonlinear optimization/nonlinear

programming problem

minimize f(x)

subject to x ∈ S ⊆ R
n.

Categorization for nonlinear programming

Unconstrained: S = R
n.

Bound constrained: S = {x | ℓ ≤ x ≤ u}, where ℓ, u ∈ R
n.

Linearly constrained: S = {x | ℓ ≤ Ax ≤ u}, where A ∈ R
m×n and

ℓ, u ∈ R
m.

Nonlinearly constrained: S = { x ∈ R
n | ℓ ≤ c(x) ≤ u }, where

c : x → c(x) ∈ R
m.

Common features of nonlinear programming algorithms

Iterative: produce a sequence of iterates {xk}.

Greedy: for all k ≥ 0, f(xk+1) ≤ f(xk).

Certification desired for nonlinear optimization/nonlinear

programming algorithms:

• a guarantee that {xk} has a limit point that is a stationary point of the
nonlinear optimization/nonlinear programming problem,

• a quantitative measure for the quality of the solution obtained upon
termination of the search, and

• a rate of convergence.

Direct search algorithms for nonlinear programming:

• Assume that while f is differentiable, ∇f and ∇2f are either unavailable
or unreliable.

• Assume that the derivatives of the general equalities c are either
unavailable or unreliable.

• Instead, use the values of f(x) and c(x) directly to drive the search.

Generating set search (GSS) methods are a special class of direct search
algorithms that guarantee standard (first-order) convergence properties even
in the absence of explicit derivative information.

An objective function afflicted with numerical noise

deriving from an adaptive finite element scheme.

0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−5

0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−5

This example is a shape optimization problem for viscous channel flow.

Features of this problem:1

• The objective for this problem is to find a shape parameter to minimize
the difference between straight channel flow and obstructed channel flow.

• The underlying infinite-dimensional problem is smooth.

• An adaptive finite element scheme is used to solve the stationary Navier–
Stokes equations. Two adaptations were depicted.

• The oscillations diminish with successive adaptations, but the computed
objective never becomes smooth, even near the minimizer.

1Sources: J. Borggard, D. Pelletier, and K. Vugrin, On sensitivity analysis for problems with numerical

noise. AIAA Paper 2002–5553, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.
J. Burkardt, M. Gunzburger, and J. Peterson, Insensitive functionals, inconsistent gradients, spurious

minima, and regularized functionals in flow optimization problems, International Journal on Computational
Fluid Dynamics, 16 (2002), pp. 171–185.

GSS methods for unconstrained optimization

Look at one simple example applied to the modified Broyden tridiagonal
function:

minimize
x∈R2

f(x1, x2)

where

f(x) =
∣

∣(3 − 2x1)x1 − 2x2 + 1
∣

∣

7
3 +

∣

∣(3 − 2x2)x2 − x1 + 1
∣

∣

7
3 .

The initial configuration:

Identify improvement:

Move North; k ∈ S

Identify improvement:

Move East; k ∈ S

Identify improvement:

Move North; k ∈ S

No improvement identified

Reduce the lengths of the steps; k ∈ U

Identify improvement

Move East; k ∈ S....

First observation for the unconstrained case:

• At each iteration, a GSS method uses a set of search directions
D = {d1, d2, . . . , dr}.

• The set D forms a positive spanning set for R
n: for any y ∈ R

n

y = α1d
1 + · · · + αrd

r,

with αi ≥ 0 for all i ∈ {1, . . . , r}.

Second observation for the unconstrained case:

We can refine the requirement on the set of search directions D as follows:

D contains a subset G = {g1, g2, . . . , gp}, p ≤ r, where G forms a positive
basis for for R

n; i.e., for any y ∈ R
n

y = α1g
1 + · · · + αrg

p,

such that αi ≥ 0, for all i ∈ {1, . . . , p} and

gi 6=
∑

j∈{1,...,p}\{i}

α′
jg

j.

.

Fact: n + 1 ≤ |G| ≤ 2n.

The inclusion of a positive basis means that GSS

methods are gradient-related:

Minimal requirements for GSS methods for

unconstrained minimization:

• At each iteration the set of search directions Dk includes a positive basis
Gk for R

n.

• The step-length control parameter ∆k is reduced only when no descent
is identified for the step of length ∆k along the directions gi

k ∈ Gk; i.e.,
f(xk) ≤ f(xk + ∆kg

i
k) for all gi

k ∈ Gk (i.e., when k ∈ U).

These are the requirements that make certification possible.

Certification for GSS methods for unconstrained

optimization:

• lim infk→∞, k∈U ‖∇f(xk) ‖ = 0.

• ‖∇f(xk) ‖ = O(∆k) for k ∈ U .

• Rate of convergence is linear for {xk }k∈U .

Flexibility in devising GSS methods for unconstrained

minimization:

• At each iteration the set of search directions Dk may include directions
in additional to a positive basis Gk of R

n; e.g., Dk = Gk ∪Hk.

• For any di
k ∈ Dk, it is possible to consider steps of the form ci

k ∆k di
k.

• So long as f(xk+c∗k ∆k d∗
k) < f(xk)+ρ(∆k) (i.e., sufficient improvement

on f(xk) is found), either d∗
k ∈ Gk or d∗

k ∈ Hk is acceptable.

• The direction d∗
k need not be a descent direction.

This is the flexibility that allow heuristics both for acceleration schemes and
for global optimization.

Fundamental strategy for incorporating heuristics:

At each iteration, divide the search into two phases:

Phase 1. Undertake exploration based on the search directions in Hk.

This is the phase that supports the incorporation of heuristics.

Phase 2. Poll the steps defined by the search directions in Gk.

This is the phase that ensures the convergence results hold.

Phase 1:

• Choose Hk.

• Evaluate f(xk + ci
k ∆k hi

k) for some finite number of hi
k ∈ Hk.

• If an hi
k for which

f(xk + ci
k ∆k hi

k) < f(xk) + ρ(∆k)

is found, it is possible to set xk+1 = xk +ci
k ∆k hi

k, k ∈ S, and k = k+1
(i.e., skip Phase 2).

• Else, go to Phase 2.

Phase 2:

• Choose Gk.

• Evaluate f(xk + ci
k ∆k gi

k) until either find a gi
k for which

f(xk + ci
k ∆k gi

k) < f(xk) + ρ(∆k) (1)

or determine that there no such gi
k ∈ Gk satisfying (1).

• If find at least one gi
k ∈ Gk satisfying (1), then set xk+1 = xk + ci

k ∆k gi
k

and k ∈ S.

• Else set xk+1 = xk, k ∈ U , and ∆k+1 = θ∆k, θ ∈ (0, 1).

• Set k = k + 1.

Examples of points to consider in Phase 1

x
k

x
k

Two examples in R
2 of using oracles to try to predict successful steps.

GSS methods for bound constrained optimization

Again look at one simple example applied to the modified Broyden
tridiagonal function:

minimize
x∈R2

f(x1, x2)

where

f(x) =
∣

∣(3 − 2x1)x1 − 2x2 + 1
∣

∣

7
3 +

∣

∣(3 − 2x2)x2 − x1 + 1
∣

∣

7
3 ,

But now add bound (“box”) constraints.

Use a feasible iterates approach.

The initial configuration:

Ω

Identify feasible improvement

Ω

Move East; k ∈ S

Ω

No feasible improvement identified

Ω

Contract; k ∈ U

Ω

Identify feasible improvement

Ω

Move North; k ∈ S

Ω

No feasible improvement identified

Ω

Contract; k ∈ U

Ω

Identify feasible improvement

Ω

Move East; k ∈ S....

Ω

“Minimal” requirements for GSS methods for bound

constrained minimization:

• the set of search directions Dk includes the set G = {±ei | i = 1, . . . , n}.

• the step-length control parameter ∆k is reduced only when no feasible
descent is identified for the step of length ∆k along the directions gi ∈ G
(i.e., when k ∈ U).

Certification for GSS methods for bound constrained optimization is
equivalent to that for the unconstrained case, with an appropriately chosen
measure for bound-constrained stationarity.

Flexibility in devising GSS methods for bound

constrained minimization:

• At each iteration the set of search directions Dk may include directions
in addition to the set G = {±ei | i = 1, . . . , n}; e.g., Dk = G ∪ Hk.

• For any di
k ∈ Dk, it is possible to consider steps of the form ci

k ∆k di
k.

• So long as f(xk+c∗k ∆k d∗
k) < f(xk)+ρ(∆k) (i.e., sufficient improvement

on f(xk) is found) and (xk + c∗k ∆k d∗
k) ∈ Ω (i.e., the step is feasible),

either d∗
k ∈ G or d∗

k ∈ Hk is acceptable.

• The direction d∗
k need not be a feasible descent direction.

This admits heuristics for both acceleration schemes and global optimization.

One strategy for trying to “globalize” the search:

• Use approximations f̂k of the objective f to accelerate generating set
search.

• Use search criteria Sk to encourage a wider exploration of the feasible
region.

• Choose both f̂k and Sk in a way that preserves the theoretical guarantees
of generating set search provided by the large body of analysis and takes
advantage of our growing computational experience.

The objective f graphed over the feasible region

Simulated Annealing I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

The initial design sites x1, . . . , x5, selected from the feasible region

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Latin Hypercube Initial Design

The initial approximation f̂0 graphed over the feasible region

MAPS(Constant Trend, CompassSearch) Approximation - 5 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0.5

1

1.5

2

2.5

3

3.5

4

The objective f and the initial approximation f̂0

MAPS(Constant Trend, CompassSearch) Approximation w/ Objective Function - 5 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

The initial search criterion S0 graphed over the feasible region

MAPS(Constant Trend, CompassSearch) Search Criterion w/ Next Site - 5 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0.5
1

1.5
2

2.5
3

3.5
4

4.5

The first update of the approximation f̂1

MAPS(Constant Trend, CompassSearch) Approximation - 6 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0.5

1

1.5

2

2.5

3

3.5

4

The objective f and the first update of the approximation f̂1

MAPS(Constant Trend, CompassSearch) Approximation w/ Objective Function - 6 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

The first update of the search criterion S1

MAPS(Constant Trend, CompassSearch) Search Criterion w/ Next Site - 6 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0.5
1

1.5
2

2.5
3

3.5
4

4.5

The second update of the approximation f̂2

MAPS(Constant Trend, CompassSearch) Approximation - 7 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

4

The objective f and the second update of the approximation f̂2

MAPS(Constant Trend, CompassSearch) Approximation w/ Objective Function - 7 points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

GSS methods for linearly constrained optimization

Return to to the the modified Broyden tridiagonal function:

minimize
x∈R2

f(x1, x2)

where

f(x) =
∣

∣(3 − 2x1)x1 − 2x2 + 1
∣

∣

7
3 +

∣

∣(3 − 2x2)x2 − x1 + 1
∣

∣

7
3 ,

—now augmented with three linear constraints.

Again use a feasible iterates approach.

Start with the same initial configuration:

No feasible improvement identified

Contract; k ∈ U

No feasible improvement identified

Contract; k ∈ U

No feasible improvement identified

Contract; k ∈ U

Oops!!! The problem:

No feasible direction of descent.

Doomed from the start with this configuration:

The fix:

Choose a set Gk that ensures feasible directions along the “nearby”
constraints.

Identifying the nearby constraints

Find the outward-pointing normals within distance ε of the current iterate.

ε
x

1
a

1

a
2

Ω

ε
x

2a
2 a

3

Ω

ε
x

3
Ω

The conditions on ε depend on the convergence analysis in effect.

We use results from Kolda/Lewis/Torczon, 2006.

Obtaining a set of search directions: Part I

Translate the outward-pointing normals within distance ε of the current
iterate x to obtain

• the ε-normal cone N(x, ε) and

• its polar, the ε-tangent cone T (x, ε).

T(x,ε
1
)

N(x,ε
1
)

ε
1

x

Ω

T(x,ε
2
)

N(x,ε
2
)

ε
2

x

Ω

T(x,ε
3
)

ε
3

x

Ω

Critical observation:

• If ε > 0, then the set x + T (x, ε) approximates the feasible region near
x, where “near” is in terms of ε.

• If T (x, ε) 6= {0}, then the search can proceed from x along all directions
in T (x, ε) for a distance of at least ε and still remain inside the feasible
region.

T(x,ε
1
)

N(x,ε
1
)

ε
1

x

Ω

T(x,ε
2
)

N(x,ε
2
)

ε
2

x

Ω

T(x,ε
3
)

ε
3

x

Ω

Obtaining a set of search directions: Part II

Require that the set Gk consist of generators for the ε-tangent cone T (x, εk).

T(x,ε
1
)

N(x,ε
1
)

x

Ω

T(x,ε
2
)

N(x,ε
2
)

x

Ω

T(x,ε
3
)

x

Ω

We use results from Lewis/Torczon, 1999 and Kolda/Lewis/Torczon, 2006.

Obtaining a set of search directions: Part III

As a practical matter, include the set of generators for the ε-normal cone
N(x, εk) in the set of search directions Dk.

T(x,ε
1
)

N(x,ε
1
)

x

Ω

T(x,ε
2
)

N(x,ε
2
)

x

Ω

T(x,ε
3
)

x

Ω

This necessarily means that Dk is a positive spanning set for R
n.

Returning to our example with the initial configuration:

Identify feasible improvement:

Move Northeast and keep the set of search directions

Identify feasible improvement:

Move Northeast and change the set of search directions

No feasible improvement:

Contract and change the set of search directions

Identify feasible improvement:

Move Northeast and change the set of search directions

No feasible improvement:

Contract and change the set of search directions

Why augment the set of directions and allow ci
k ∆k di

k:

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

T(x,ε
2
)

N(x,ε
2
) −∇ f(x)

x

Ω

T(x,ε
3
)

−∇ f(x)

Ω

For this example, the minimalist approach requires at least 5 function
evaluations (over three iterations) to identify a better point.

Why augment the set of directions and allow ci
k ∆k di

k:

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

If, instead, include the generators of N(xk, εk) in Dk—and allow exact
steps to the boundary—may take as few as three function evaluations to
identify a better point.

Minimal requirements for GSS methods for linear

minimization:

• the set of search directions Dk include a generating set Gk for the
ε-tangent cone T (xk, εk).

• the step-length control parameter ∆k is reduced only when no feasible
descent is identified for the step of length ∆k along the directions
gi

k ∈ Gk.

Certification for GSS methods for linearly constrained optimization is
equivalent to that for the unconstrained case, with an appropriately chosen
measure for linearly-constrained stationarity.

Flexibility in devising GSS methods for linearly

constrained minimization:

• At each iteration the set of search directions Dk may include directions
in addition to the set Gk; e.g., Dk = Gk ∪Hk.

• For any di
k ∈ Dk, it is possible to consider steps of the form ci

k ∆k di
k.

• So long as f(xk+c∗k ∆k d∗
k) < f(xk)+ρ(∆k) (i.e., sufficient improvement

on f(xk) is found) and (xk + c∗k ∆k d∗
k) ∈ Ω (i.e., the step is feasible),

either d∗
k ∈ Gk or d∗

k ∈ Hk is acceptable.

• The direction d∗
k need not be a feasible descent direction.

This admits heuristics for both acceleration schemes and global optimization.

The general nonlinear programming problem:

minimize f(x)

subject to c(x) = 0
Ax ≥ b.

Note:

• explicit linear constraints (including bounds) and

• general equalities with

• nonlinear inequalities converted to nonlinear equalities by introducing
nonnegative slack variables.

Our approach to solving the general nonlinear

programming problem:

Use an augmented Lagrangian approach adapted from by Conn, Gould,
Sartenaer, and Toint (SIOPT, 1996) which involves

successive linearly constrained minimization of an augmented Lagrangian.

Goals:

• develop a deterministic generating set search algorithm and

• preserve the convergence properties of the original augmented Lagrangian
algorithm.

Why leave the linear constraints explicit?

• If we have explicit linear constraints, then we have gradients for the
explicit linear constraints: the rows aT

i of the linear constraint matrix A.

• GSS methods can make effective computational use of this additional
information and obtain good convergence behavior in both

theory [Kolda, Lewis, and Torczon (SIOPT, 2006)] and
practice [Lewis, Shepherd, and Torczon (SISC, to appear)].

General mantra for nonlinear programming: if you have problem
structure to exploit, by all means do so!

One consequence of this handling linear constraints:

Theorem 6.3 (Kolda/Lewis/Torczon, 2006) Suppose that the gradient of
f is Lipschitz continuous with constant M on the feasible region. Consider
the linearly constrained GSS algorithms given in Kolda/Lewis/Torczon,
2006. If k ∈ U and εk satisfies εk = βmax∆k, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤

(

Mβmax

κmin

)

∆k +

(

1

κminβmin

)

ρ(∆k)

∆k

,

where ρ(·) satisfies

lim
∆k↓0

ρ(∆k)

∆k

= 0.

This means
‖ [−∇f(xk)]T (xk,εk) ‖ = O(∆k).

Now let’s look at the augmented Lagrangian approach

From Conn, Gould, Sartenaer, and Toint, given the original problem,

minimize f(x)

subject to c(x) = 0
Ax ≥ b,

a classic solution technique is to minimize a suitable sequence of augmented
Lagrangian functions. Including only the general equality constraints yields:

Φ(x, λ, µ) = f(x) +

m
∑

i=1

λici(x) +
1

2µ

m
∑

i=1

ci(x)2,

where the components λi of the vector λ are the Lagrange multiplier
estimates and µ is the penalty parameter.

Important:

The linear constraints Ax ≥ b are

• kept outside the augmented Lagrangian and

• handled at the level of the subproblem minimization,

thus allowing the use of specialized packages to solve linearly constrained
problems.

Furthermore, the theory handles the linear inequality constraints in a purely
geometric way. The same theory applies without modifications if linear
equality constraints also are imposed and all the iterates are assumed to
stay feasible with respect to these constraints.

The Conn, Gould, Sartenaer, and Toint inner iteration:

Find xk ∈ B = {x |Ax ≥ b} 6= ∅ that approximately solves:

min
x∈B

Φ(x, λk, µk) ≡ Φk,

where the values of the Lagrangian multipliers λk and the penalty parameter
µk are fixed for the subproblem.

By “approximately solved” it is meant that

‖PT (xk,ωk)(−∇xΦk)‖ ≤ ωk,

where PV (·) is the projection onto the convex set V and ωk is a suitable
tolerance at iteration k.

Key “Ah, ha!”:

We do not have:
‖PT (xk,ωk)(−∇xΦk)‖ ≤ ωk.

But using our linearly constrained GSS algorithms means we do have:

‖ [−∇f(xk)]T (xk,εk) ‖ = O(∆k).

for any sufficiently smooth function f—including Φk.

In addition, recall that we set εk equal to βmax∆k.

The Kolda, Lewis, and Torczon inner iteration:

Find xk ∈ B = {x |Ax ≥ b} 6= ∅ that approximately solves:

min
x∈B

Φ(x, λk, µk) ≡ Φk,

where the values of the Lagrangian multipliers λk and penalty parameter
µk are fixed for the subproblem.

By “approximately solved” it is meant that we stop the solution of the kth
subproblem at an unsuccessful (inner) iteration s ∈ U for which

∆k,s ≤ δk,

where δk → 0 is updated at each iteration k.

Our key result:

With the stopping criterion we have substituted, the asymptotic behavior of

‖PT (xk,ωk)(−∇xΦk)‖

is like its behavior in the original Conn, Gould, Sartenaer, and Toint
algorithm.

=⇒ the convergence analysis for the original algorithm can be applied and
the original proofs still hold (e.g., any limit point of the sequence x∗ is a
Karush–Kuhn–Tucker point—a first-order stationary point—for the general
nonlinear programming problem).

Current and future work:

• Investigate multiple algorithmic options within the augmented Lagrangian
framework. The devil is in the details, including:

• Lagrange multiplier updates,
• active set identification, and
• assorted other tweaks for acceleration.

• Explore other approaches to solving general nonlinear programming
problems in the absence of derivatives.

• Devise effective variants for distributed computation.

Conclusions:

• The analysis gives insight and enables the design of effective algorithms.

• The devil is in the details.

• Papers are available from http://www.cs.wm.edu/~va/research/

• Implementations are available from The MathWorks in the Genetic
Algorithm and Direct Search Toolbox http://www.mathworks.com/

products/gads/

Some references:

• Kolda, Lewis, and Torczon, Optimization by direct search: new perspectives on some

classical and modern methods, SIREV, 2003.

• Kolda, Lewis, and Torczon, Stationarity results for generating set search for linearly

constrained optimization, SIOPT, 2006.

• Lewis, Shepherd, and Torczon, Implementing generating set search methods for linearly

constrained minimization, SISC, to appear.

• Kolda, Lewis, and Torczon A generating set search augmented Lagrangian algorithm for

optimization with a combination of general and linear constraints, in revision.

• Conn, Gould, Sartenaer, and Toint, Convergence properties of an augmented Lagrangian

algorithm for optimization with a combination of general equality constraints and linear

constraints, SIOPT, 1996.

