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Arlines’ Perspectives

• Cost components
– Dominant cost is fuel
– Crew cost is second

• Cockpit crews
• Flight attendants

• Crew cost 
– Minimize dollars (minutes)
– Minimize number of crews



Crew Processes

• A separate problem for each crew 
compatible fleet family

Execution

several months

Tactical Planning



Crew Processes

Find generic
crew itineraries

Create individual
assignments

• Rostering
• Preferential bidding

Crew pairing
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Crew Pairing

• Input: A set of flights of a fleet
• Objective: Find a set of crew itineraries 

(pairings) that partition all of the legs such 
that the airline incurs the least cost.
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Crew Pairing Model

• Minimize crew cost
• Assign a unique pairing to every flight
• Side constraints

– Manpower constraints
– Other constraints min
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The Last Two Decades



Complexity

• Complex regulatory rules
– 8-in-24 rule
– Maximum block time

• Intriguing union rules
– Cost maximum of three quantities

• Sheer size of the problem
– Highly degenerate



TRIP
• Early nineties at 

American Airlines
Orig Dept Time Dest Arrv Time Block Time
ABI 14:39 DFW 15:42 1:03
ABI 10:08 DFW 11:13 1:05
ABI 11:40 DFW 12:44 1:04
ABI 8:07 DFW 9:01 0:54
ABI 5:45 DFW 6:35 0:50
ABI 16:55 DFW 17:46 0:51
ACT 8:44 DFW 9:40 0:56
ACT 17:50 DFW 18:45 0:55
ACT 11:00 DFW 11:48 0:48
ACT 15:08 DFW 16:01 0:53
ACT 13:04 DFW 13:56 0:52
ACT 6:41 DFW 7:33 0:52
AGU 7:22 DFW 9:36 2:14
ALB 6:03 ORD 7:30 2:27
ALB 11:17 ORD 12:40 2:23
ALB 15:29 ORD 16:52 2:23
ALB 17:46 ORD 19:15 2:29
AMA 18:35 DFW 19:47 1:12
AMA 5:45 DFW 6:54 1:09
AMA 14:51 DFW 15:58 1:07
AMA 12:31 DFW 13:38 1:07
AMA 10:22 DFW 11:26 1:04
AMA 7:45 DFW 8:58 1:13
AMA 16:35 DFW 17:47 1:12
ANU 17:20 NEV 17:55 0:35
ANU 6:20 SJU 7:52 1:32
ATL 10:25 ORD 11:38 2:13
ATL 19:46 ORD 20:52 2:06

optimize

Orig Dept Time Dest Arrv Time Block Time
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ACT 17:50 DFW 18:45 0:55
ACT 11:00 DFW 11:48 0:48
ACT 15:08 DFW 16:01 0:53
ACT 13:04 DFW 13:56 0:52
ACT 6:41 DFW 7:33 0:52
AGU 7:22 DFW 9:36 2:14
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ALB 11:17 ORD 12:40 2:23
ALB 15:29 ORD 16:52 2:23
ALB 17:46 ORD 19:15 2:29
AMA 18:35 DFW 19:47 1:12
AMA 5:45 DFW 6:54 1:09
AMA 14:51 DFW 15:58 1:07
AMA 12:31 DFW 13:38 1:07
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AMA 7:45 DFW 8:58 1:13
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ANU 6:20 SJU 7:52 1:32
ATL 10:25 ORD 11:38 2:13
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SPRINT

• Generate a few million promising 
pairings

• Optimize over these pairings
– Solve the linear programming relaxation

• SPRINT: Add batches of pairings at once

– Select 10,000 pairings and solve the IP



Drawbacks

• Local viewpoint
– Consider only a limited view

• TRIP: legs; SPRINT: pairings

• For better solutions
– Global view



State-of-the-art:
Algorithms



Challenges

• Not easy due to computational 
complexity

• Generate pairings as need be
• Main approaches

– Branch-and-price
• Relax integrality

– Lagrangian relaxation
• Relax constraints



Software Design Issues

• Robust design
– Many clients with different rules
– Rules frequently change even within an 

airline
– Easy to integrate with other information 

systems

• Computationally efficient



Branch-and-Price

• Branch-and-bound where LP 
relaxations solved by delayed column 
generation

• Pairings generated dynamically at each 
iteration

• Challenge
– How to generate pairings
– Different branching strategy



Branching



Lagrangian Relaxation

• Solve by subgradient algorithm
– Consider only a subset of pairings at once

• Generate pairings dynamically
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State-of-the-art:
Linear Programming



Classical Column Generation
S

LP π

New pairings 
Low reduced cost (  )

S
π

S S S= �



Primal-dual Methods

• Major drawback is degeneracy
• Started with Dantzig, Ford, and 

Fulkerson in 1956.
• Primal-Dual algorithm

– Primal step: Solve a primal subproblem.
– Dual step: Improve the dual feasible 

solution. Iterate.



Primal-dual Algorithm
S

LP ρ

Find � such that
αρ+(1-α)π is a 

dual feasible vector

 = dual feasible vectorπ

π = αρ+(1-α)π

S is the set of
low reduced cost 

pairings (π)



Primal-Dual Algorithm
• Iterate

– Let ρ be a dual vector of S and let π be a dual 
feasible vector.

– Find a scalar α such that αρ+(1-α)π is a dual 
feasible vector and the gain in the objective value 
is maximum.

– π:=αρ+(1-α)π.
– Form a new LP by pricing out columns with best 

reduced cost based on the new π.
– Solve the LP and let ρ be an optimal dual solution.



Primal-Dual Algorithm
dual polyhedron

old dual feasible vector π

dual vector ρ

new dual feasible vector π



Maintaining Dual Feasibility
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Steepest Edge Algorithm

• Move the dual in the direction ρ

π = π +αρ
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How to select the direction?



Direction

• Consider

• Linear program
– If feasible, we are optimal
– If infeasible, by Farkas there exists ρ such that

• It is an improving direction 
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Steepest Edge Algorithm

Solve

Find � such that
π +αρ is a 

dual feasible vector

 = dual feasible vectorπ

π = π +αρ
{ }2
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Does it Work?

• Much improved convergence
– Degeneracy substantially reduced

• High performance implementations
• Embedded with pricing

– Instead of shortest path, rational shortest 
path



State-of-the-art:
Pricing



Pricing

• Given a dual vector, find pairings with low 
reduced cost
– Not the shortest path problem

• Various rules impose restrictions on entire paths or 
subpaths

• Nonlinear cost structure

• Methodologies
– Constrained shortest path
– Enumeration
– K-th shortest path



• Given source s and sink t, find the 
shortest s-t path among all paths 
satisfying given constraints.

• Typical constraints
– Flying time in each duty 
– Elapsed time of a pairing
– Elapsed time of each duty



Constrained Shortest Path

• With each constraint keep a label (plus 
a cost label)

• Each node has a list of label vectors
– A label vector corresponds to a path from s

to the current node.
– We can discard a path if its labels are 

dominated.



Constrained Shortest Path
timecost Min cost subject to time less than 500
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Constrained Shortest Path

• Loop
– Select a node i
– For all label vectors k of i do

• Scan all neighbors j of i
– Update the label vector k
– Add it to the label vectors of j
– Remove all dominated label vectors at j

k

i
j

c+cij, t+tij



Enumeration

• Use depth-first search to enumerate all 
pairings
– Ad-hoc techniques to prune the search

• Lower bounds based on the reduced cost

• Easy to parallelize
• Robust software



K’th Shortest Path

• Find the shortest path
• If feasible, celebrate
• Otherwise

– Find the second shortest path
• Can be done by modifying the network
• Various algorithms exist



Perspectives



Major Advances

• Optimally solve small to medium size 
fleets

• For large fleets reduce the gap to less 
than 1%
– Hardware and software advances
– Algorithmic advances



What is Ahead?

• Emerging models that require crew 
pairing solutions over several fleets
– Integrate several models

• Aircraft routing and crew pairing
• Fleeting, routing, and crew pairing

• Robust models
– Do not simply minimize cost, but also 

provide robust solutions



Not the End of the Story

• More work
– Need for solving larger and larger 

problems
– Airlines and vendors to use more 

sophisticated models

• The human aspect
– Labor into the picture




