UNIVERSITY OF LLLINOIS

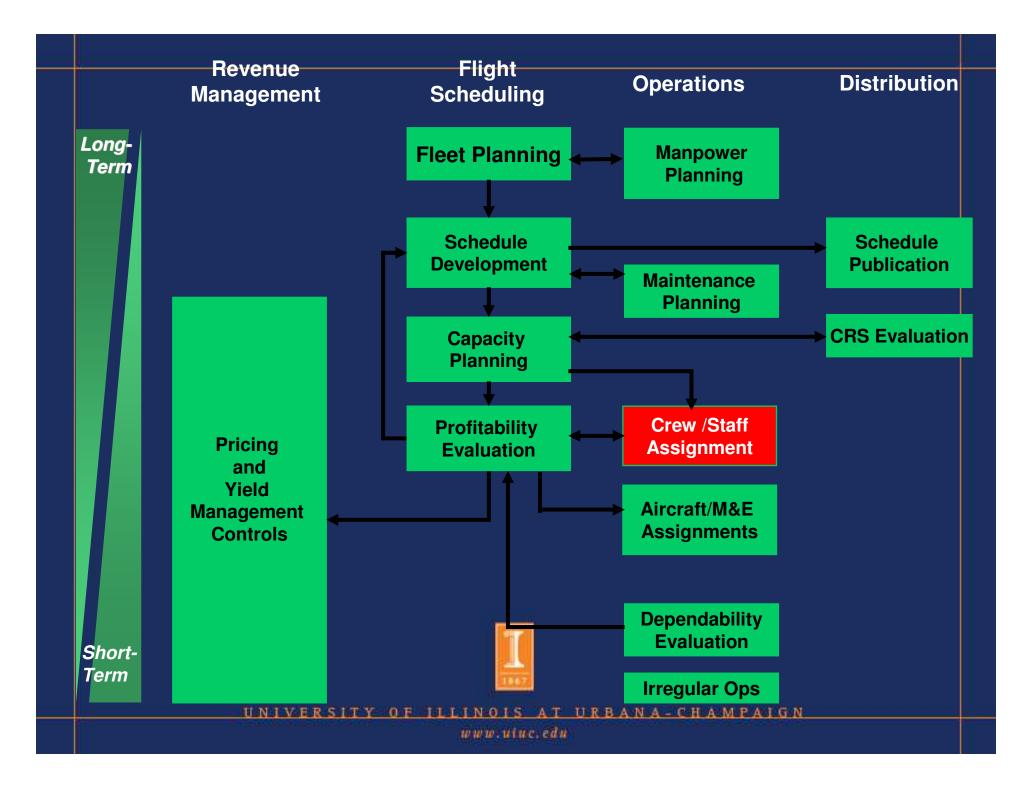
Recent Advances in Airline Crew Pairing Optimization

> Diego Klabjan Department of Civil and Environmental Engineering

www.ulue.edu

Crew Pairing Optimization

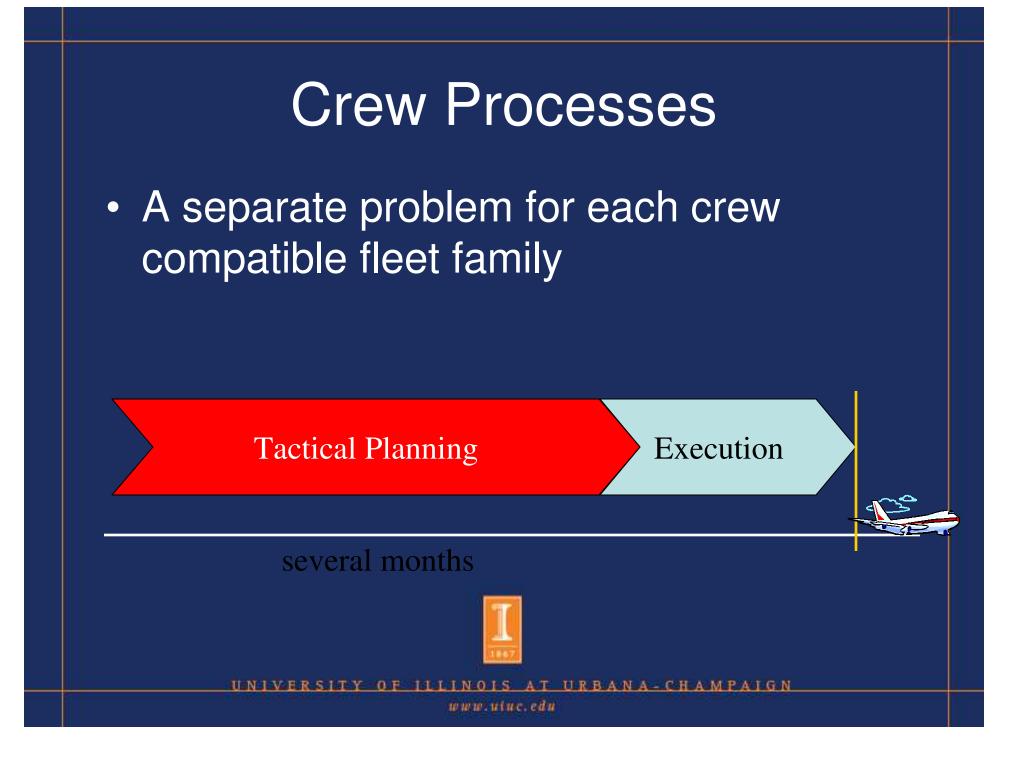
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

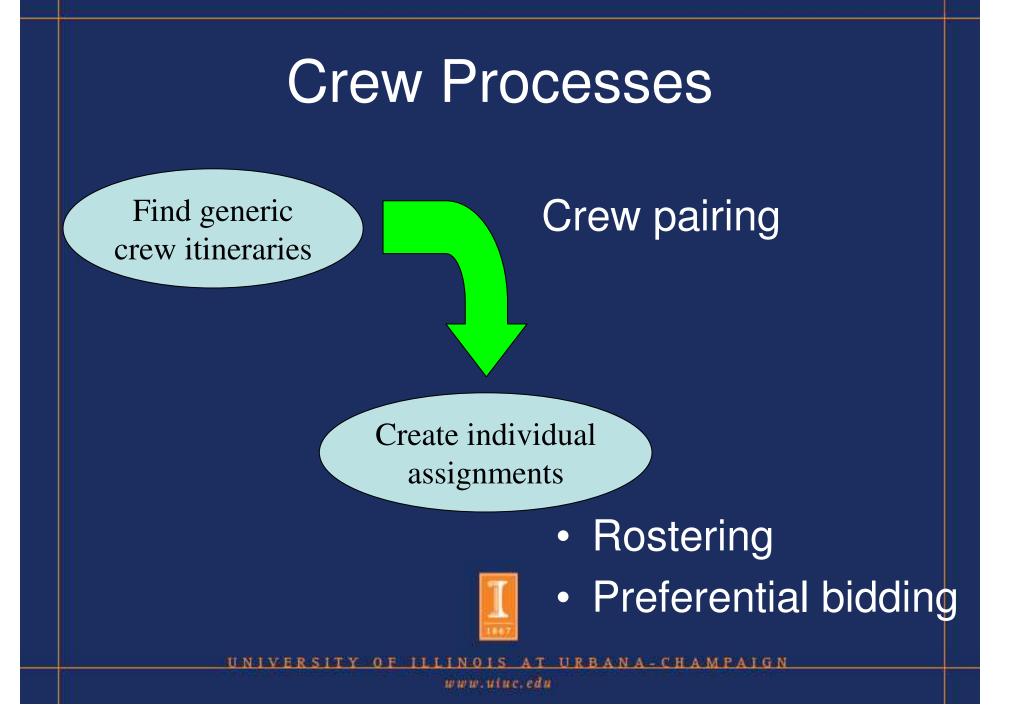


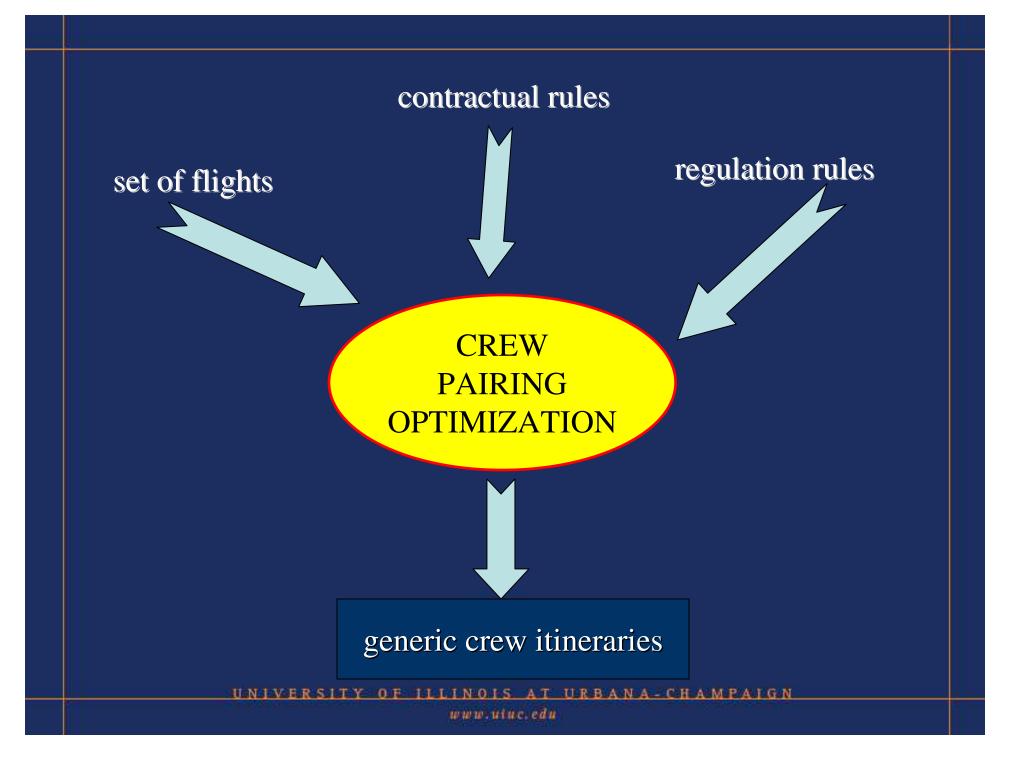
Arlines' Perspectives

- Cost components
 - Dominant cost is fuel
 - Crew cost is second
 - Cockpit crews
 - Flight attendants
- Crew cost
 - Minimize dollars (minutes)
 - Minimize number of crews

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

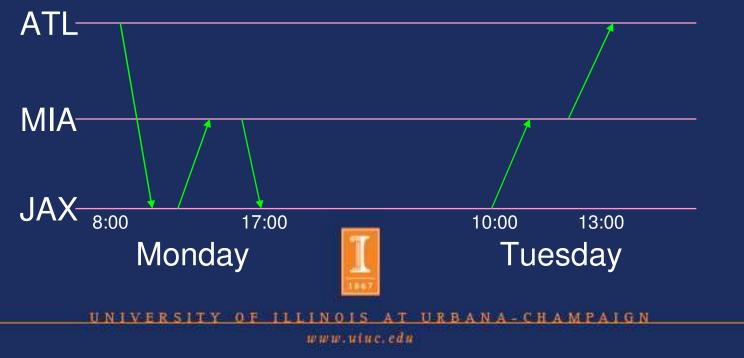






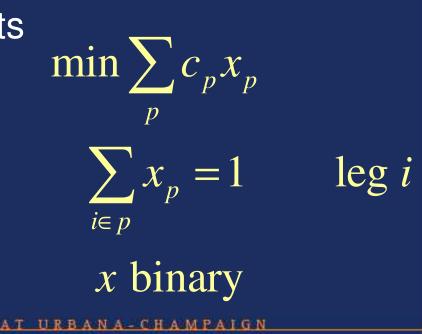
Crew Pairing

- Input: A set of flights of a fleet
- Objective: Find a set of crew itineraries (pairings) that partition all of the legs such that the airline incurs the least cost.



Crew Pairing Model

- Minimize crew cost
- Assign a unique pairing to every flight
- Side constraints
 - Manpower constraints
 - Other constraints



The Last Two Decades

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Complexity

- Complex regulatory rules

 8-in-24 rule
 Maximum block time

 Intriguing union rules

 Cost maximum of three quantities

 Sheer size of the problem
 - Highly degenerate

TRIP

• Early nineties at American Airlines

	k Time	Arrv Time Blo	Dest	Dept Time	Orig
	1:03	15:42	DFW	14:39	ABI
	1:05	11:13	DFW	10:08	ABI
	1:04	12:44	DFW	11:40	ABI
	0:54	9:01	DFW	8:07	ABI
	0:50	6:35	DFW	5:45	ABI
	0:51	17:46	DFW	16:55	ABI
	0:56	9:40	DFW	8:44	ACT
	0:55	18:45	DFW	17:50	ACT
	0:48	11:48	DFW	11:00	ACT
	0:53	16:01	DFW	15:08	ACT
	0:52	13:56	DFW	13:04	ACT
	0:52	7:33	DFW	6:41	ACT
	2:14	9:36	DFW	7:22	AGU
ontimiza	2:27	7:30	ORD	6:03	ALB
optimize	2:23	12:40	ORD	11:17	ALB
	2:23	16:52	ORD	15:29	ALB
	2:29	19:15	ORD	17:46	ALB
, P	1:12	19:47	DFW	18:35	AMA
	1:09	6:54	DFW	5:45	AMA
	1:07	15:58	DFW	14:51	AMA
	1:07	13:38	DFW	12:31	AMA
	1:04	11:26	DFW	10:22	AMA
	1:13	8:58	DFW	7:45	AMA
	1:12	17:47	DFW	16:35	AMA
	0:35	17:55	NEV	17:20	ANU
	1:32	7:52	SJU	6:20	ANU
	2:13	11:38	ORD	10:25	ATL
	2:06	20:52	ORD	19:46	ATL

Orig	Dept Time	Dest	Arrv Time	Block Time
ABI	14:39	DFW	15:42	1:03
ABI	10:08	DFW	11:13	1:05
ABI	11:40	DFW	12:44	1:04
ABI	8:07	DFW	9:01	0:54
ABI	5:45	DFW	6:35	0:50
ABI	16:55	DFW	17:46	0:51
ACT	8:44	DFW	9:40	0:56
ACT	17:50	DFW	18:45	0:55
ACT	11:00	DFW	11:48	0:48
ACT	15:08	DFW	16:01	0:53
ACT	13:04	DFW	13:56	0:52
ACT	6:41	DFW	7:33	0:52
AGU	7:22	DFW	9:36	2:14
ALB	6:03	ORD	7:30	2:27
ALB	11:17	ORD	12:40	2:23
ALB	15:29	ORD	16:52	2:23
ALB	17:46	ORD	19:15	2:29
AMA	18:35	DFW	19:47	1:12
AMA	5:45	DFW	6:54	1:09
AMA	14:51	DFW	15:58	1:07
AMA	12:31	DFW	13:38	1:07
AMA	10:22	DFW	11:26	1:04
AMA	7:45	DFW	8:58	1:13
AMA	16:35	DFW	17:47	1:12
ANU	17:20	NEV	17:55	0:35
ANU	6:20	SJU	7:52	1:32
ATL	10:25	ORD	11:38	2:13
ATL	19:46	ORD	20:52	2:06

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

SPRINT

- Generate a few million promising pairings
- Optimize over these pairings
 - Solve the linear programming relaxation
 - SPRINT: Add batches of pairings at once
 - Select 10,000 pairings and solve the IP

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Drawbacks

Local viewpoint

 Consider only a limited view
 TRIP: legs; SPRINT: pairings

For better solutions

- Global view

Restances Conception Concepting Concepting Concepting Concepting Concepting Concepting C

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

State-of-the-art: Algorithms

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Challenges

- Not easy due to computational complexity
- Generate pairings as need be
- Main approaches
 - Branch-and-price
 - Relax integrality
 - Lagrangian relaxation
 - Relax constraints

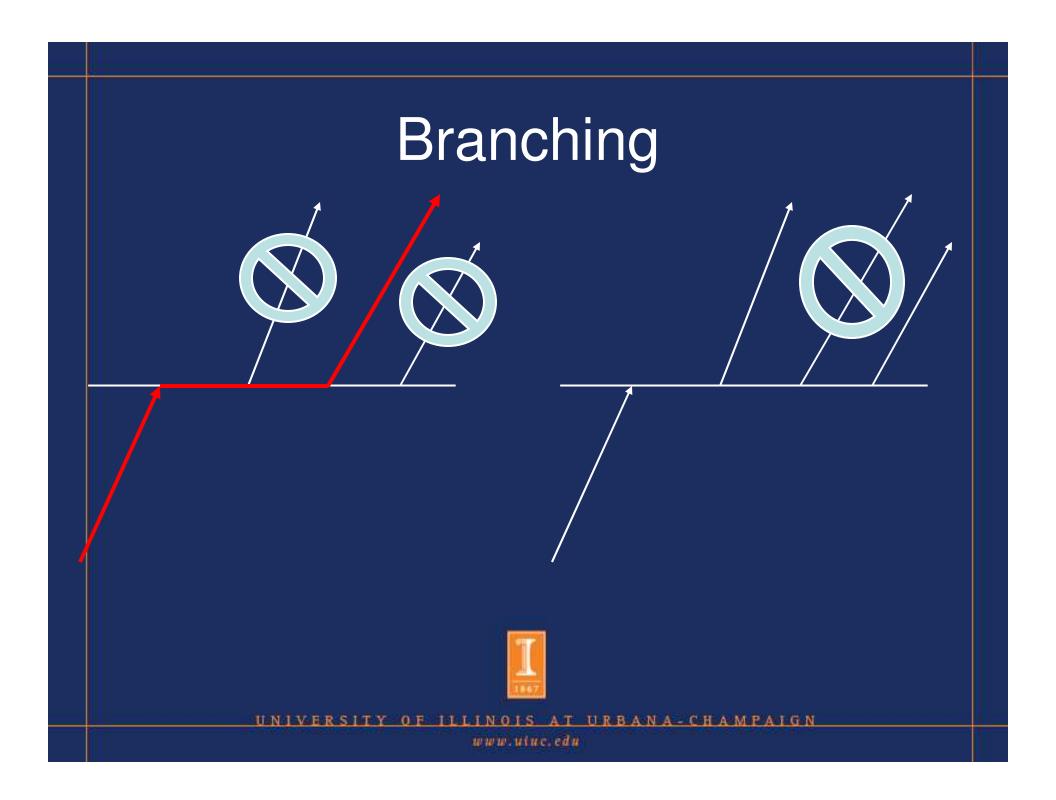
Software Design Issues

- Robust design
 - Many clients with different rules
 - Rules frequently change even within an airline
 - Easy to integrate with other information systems
- Computationally efficient

Branch-and-Price

- Branch-and-bound where LP relaxations solved by delayed column generation
- Pairings generated dynamically at each iteration
- Challenge
 - How to generate pairings
 - Different branching strategy

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Lagrangian Relaxation

$$\max_{\lambda} \min_{x} \sum_{p} c_{p} x_{p} + \sum_{i} \lambda_{i} \left(1 - \sum_{i \in p} x_{p} \right)$$

Solve by subgradient algorithm

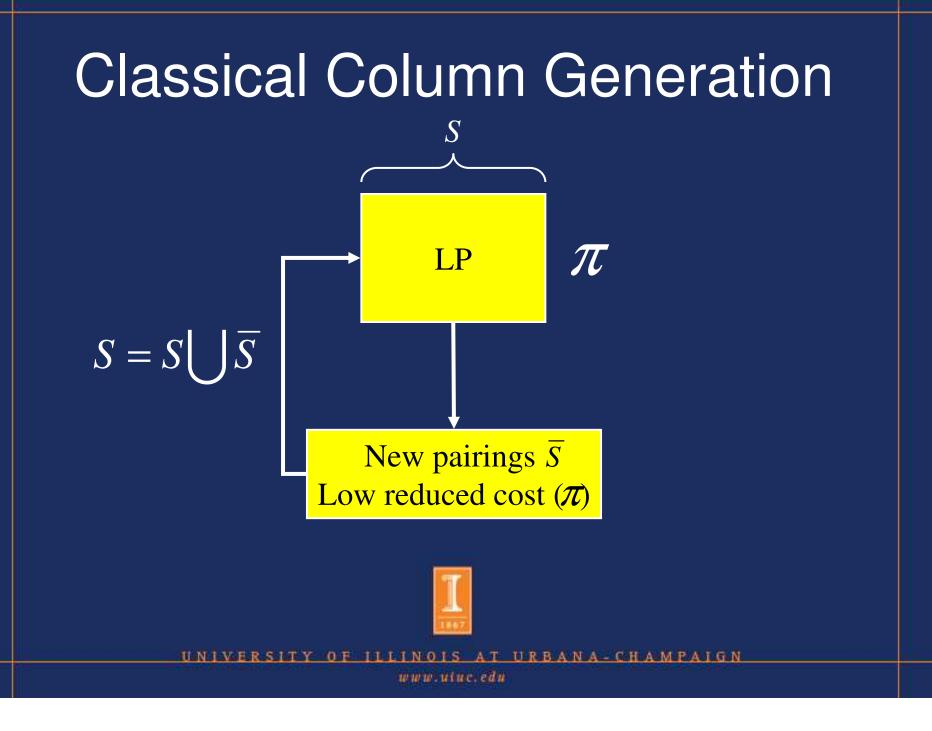
Consider only a subset of pairings at once

Generate pairings dynamically

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

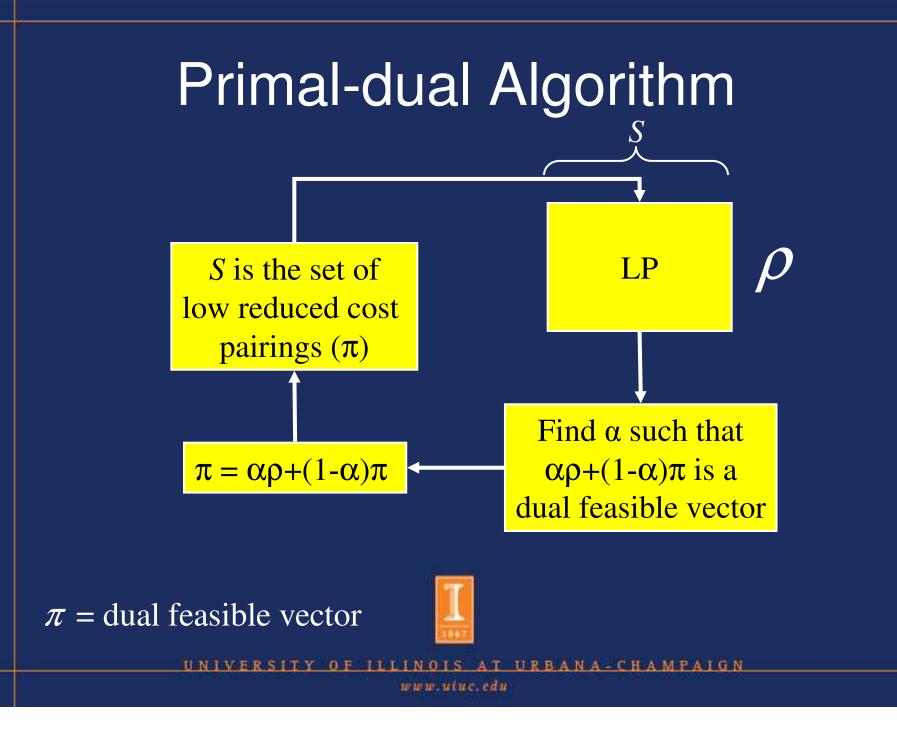
State-of-the-art: Linear Programming

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Primal-dual Methods

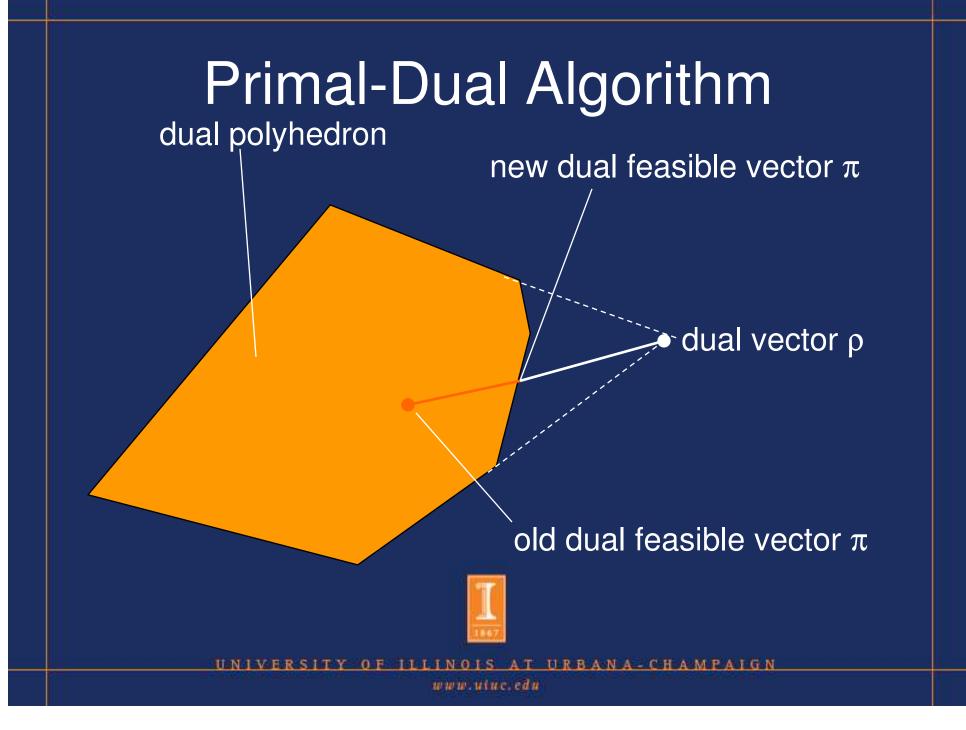
- Major drawback is degeneracy
- Started with Dantzig, Ford, and Fulkerson in 1956.
- Primal-Dual algorithm
 - Primal step: Solve a primal subproblem.
 - Dual step: Improve the dual feasible solution. Iterate.

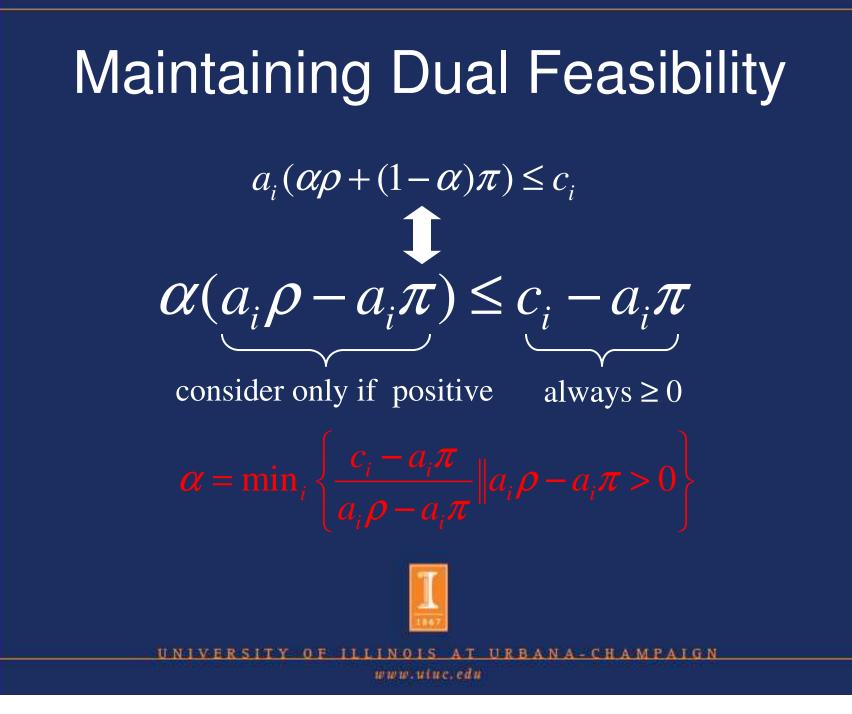


Primal-Dual Algorithm

Iterate

- Let ρ be a dual vector of S and let π be a dual feasible vector.
- Find a scalar α such that $\alpha \rho + (1-\alpha)\pi$ is a dual feasible vector and the gain in the objective value is maximum.
- $-\pi := \alpha \rho + (1 \alpha)\pi$.
- Form a new LP by pricing out columns with best reduced cost based on the new π .
- Solve the LP and let ρ be an optimal dual solution.





Steepest Edge Algorithm

• Move the dual in the direction ρ

 $\pi = \pi + \alpha \rho$

$$\alpha = \min_{i} \left\{ \frac{c_{i} - a_{i}\pi}{a_{i}\rho} \| a_{i}\rho > 0 \right\}$$

How to select the direction?

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Direction

Consider

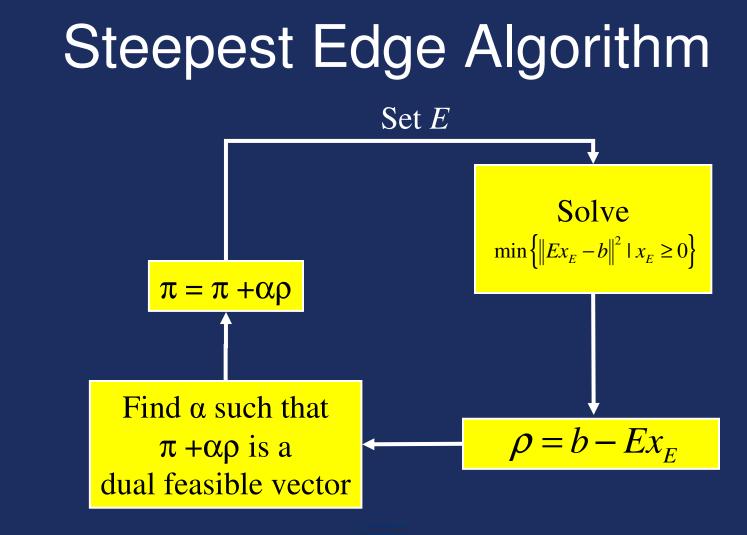
$$E = \left\{ i \| a_i \pi = c_i \right\}$$

- Linear program $A_E x_E = b$
 - If feasible, we are optimal
 - If infeasible, by Farkas there exists ρ such that

 $\rho E \leq 0, \rho b > 0$

• It is an improving direction

 $b(\pi + t\rho) > b\pi$



 π = dual feasible vector

1107

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Does it Work?

- Much improved convergence
 Degeneracy substantially reduced
- High performance implementations
- Embedded with pricing
 - Instead of shortest path, rational shortest path

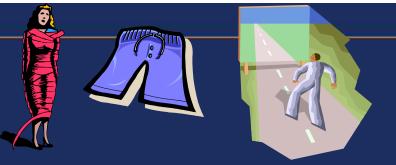
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

State-of-the-art: Pricing

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Pricing

- Given a dual vector, find pairings with low reduced cost
 - Not the shortest path problem
 - Various rules impose restrictions on entire paths or subpaths
 - Nonlinear cost structure
- Methodologies
 - Constrained shortest path
 - Enumeration
 - K-th shortest path



- Given source s and sink t, find the shortest s-t path among all paths satisfying given constraints.
- Typical constraints
 - Flying time in each duty
 - Elapsed time of a pairing
 - Elapsed time of each duty

Constrained Shortest Path

- With each constraint keep a label (plus a cost label)
- Each node has a list of label vectors
 - A label vector corresponds to a path from s to the current node.
 - We can discard a path if its labels are dominated.

Constrained Shortest Path

Min cost subject to time less than 500

, i					
	200	60			
	300	70			
	150	62			
s	210	55			
	Dominated: discard these labels				

time

cost

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Constrained Shortest Path

Loop

- Select a node *i*
- For all label vectors k of i do
 - Scan all neighbors j of i
 - Update the label vector k
 - Add it to the label vectors of j
 - Remove all dominated label vectors at j

www.winc.edu

 $C+C_{ii}$, l+

Enumeration

- Use depth-first search to enumerate all pairings
 - Ad-hoc techniques to prune the search
 - Lower bounds based on the reduced cost
- Easy to parallelize
- Robust software

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

K'th Shortest Path

- Find the shortest path
- If feasible, celebrate
- Otherwise

- Find the second shortest path
 - Can be done by modifying the network
 - Various algorithms exist

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Perspectives

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Major Advances

- Optimally solve small to medium size fleets
- For large fleets reduce the gap to less than 1%
 - Hardware and software advances
 - Algorithmic advances

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

What is Ahead?

 Emerging models that require crew pairing solutions over several fleets

Integrate several models

- Aircraft routing and crew pairing
- Fleeting, routing, and crew pairing
- Robust models
 - Do not simply minimize cost, but also provide robust solutions

Not the End of the Story

- More work
 - Need for solving larger and larger problems
 - Airlines and vendors to use more sophisticated models
- The human aspect
 - Labor into the picture

Thank you

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN