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Arlines’ Perspectives

» Cost components
— Dominant cost is fuel

— Crew cost is second
» Cockpit crews
* Flight attendants

» Crew cost
— Minimize dollars (minutes)
— Minimize number of crews




Crew Processes

» A separate problem for each crew
compatible fleet family

Tactical Planning m




Crew Processes

Find generic Crew pairing
crew itineraries

Create individual
assignments

» Rostering
l » Preferential bidding
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set of flights
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contractual rules
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CREW
PAIRING
OPTIMIZATION

generic crew 1tineraries

regulation rules
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Crew Pairing

A set of flights of a fleet

-ind a set of crew itineraries
(pairings) that partition all of the legs such
that the airline incurs the least cost.
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Crew Pairing Model

» Assign a unique pairing to every flight
 Side constraints

— Manpower constraints
— Other constraints min Z Cptp
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The Last Two Decades




Complexity

« Complex regulatory rules
— 8-In-24 rule
— Maximum block time
* Intriguing union rules
— Cost maximum of three quantities

» Sheer size of the problem
— Highly degenerate




Early nineties at
American Airlines
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SPRINT

» Generate a few million promising
pairings
» Optimize over these pairings

— Solve the linear programming relaxation
« SPRINT: Add batches of pairings at once

— Select 10,000 pairings and solve the IP
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Drawbacks

Local viewpoint

— Consider only a limited view
* TRIP: legs; SPRINT: pairings
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For better solutions
— Global view
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State-of-the-art;

Algorithms




Challenges

* Not easy due to computational
complexity
» Generate pairings as need be

* Main approaches
— Branch-and-price
» Relax integrality

— Lagrangian relaxation
* Relax constraints _




Software Design Issues

* Robust design
— Many clients with different rules
— Rules frequently change even within an
airline
— Easy to integrate with other information
systems

« Computationally efficient




Branch-and-Price

» Branch-and-bound where LP
relaxations solved by delayed column
generation

» Pairings generated dynamically at each
iteration

» Challenge
— How to generate pairings
— Different branchinggstrategy
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Branching




Lagrangian Relaxation

max , min Zcpxp +Z/1i [I—pr]

p 1€ p

» Solve by subgradient algorithm
— Consider only a subset of pairings at once

« Generate pairings dynamically




State-of-the-art;

Linear Programming




Classical Column Generation

New pairings S
Low reduced cost (7)




Primal-dual Methods

* Major drawback is degeneracy

 Started with Dantzig, Ford, and
Fulkerson in 1956.

» Primal-Dual algorithm
— Primal step: Solve a primal subproblem.

— Dual step: Improve the dual feasible
solution. lterate.




Primal-dual Algorithm
S

A
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S 1s the set of
low reduced cost
pairings ()

Find a such that
T = op+(1-a)m ap+(l-a)mis a
dual feasible vector

7t = dual feasible vector




Primal-Dual Algorithm

e lterate

— Let p be a dual vector of S and let & be a dual
feasible vector.

— Find a scalar a such that ap+(1-a)w is a dual
feasible vector and the gain in the objective value
IS maximum.

— T:=0p+(1-0)7.
— Form a new LP by pricing out columns with best
reduced cost based on the new .

— Solve the LP and let p be an optimal dual solution.




Primal-Dual Algorithm

dual polyhedron
new dual feasible vector &t

_edual vector p

old dual feasible vector &t
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Maintaining Dual Feasibility

a(op+(1-a)r)<c,

|

oap—arx)<c,—arx

consider only if positive  always =0




Steepest Edge Algorithm

» Move the dual in the direction p

T =T +0p

How to select the direction?




 Consider

Direction

E:{i‘alﬂ:ci}

» Linear program A.x, =b
— |If feasible, we are optimal
— If infeasible, by Farkas there exists p such that

pPE<0,0b>0

* |tis an improving direction

b(m+tp)>brw




Steepest Edge Algorithm

Set E

Find o such that
T +OpP 1s a
dual feasible vector

7t = dual feasible vector

Solve
min{|Ex, b 1 x, >0}




Does it Work?

* Much improved convergence
— Degeneracy substantially reducead

* High performance implementations

« Embedded with pricing
— Instead of shortest path, rational shortest

path




State-of-the-art;

Pricing




Pricing

Given a dual vector, find pairings with low
reduced cost

— Not the shortest path problem

 Various rules impose restrictions on entire paths or
subpaths

 Nonlinear cost structure

Methodologies

— Constrained shortest path
— Enumeration

— K-th shortest path
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« Given source s and sink 1, find the
shortest s-f path among all paths
satisfying given constraints.

» Typical constraints

ying time In each duty
apsed time of a pairing
apsed time of each duty

T MNIV-ERS I TY T | I N DTS 4 T ITRA AN A H A MP A
UNIVERSITY OF [TLINDIS AT URBANA CHAMPATGHN




Constrained Shortest Path

» With each constraint keep a label (plus
a cost label)

« Each node has a list of label vectors

— A label vector corresponds to a path from
to the current node.

— We can discard a path if its labels are
dominated.




Constrained Shortest Path
-- Min cost subject to time less than 500

150 62
210 55

Dominated:
discard these labels
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Constrained Shortest Path

* Loop
— Select a node

— For all label vectors ik of i do

« Scan all neighbors | of
— Update the label vector
— Add it to the label vectors of
— Remove all dominated label vectors at
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Enumeration

» Use depth-first search to enumerate all
pairings
— Ad-hoc technigues to prune the search
« Lower bounds based on the reduced cost

« Easy to parallelize
* Robust software




K’th Shortest Path

* Find the shortest path
 |f feasible, celebrate
« Otherwise

— Find the second shortest path
« Can be done by modifying the network
 Various algorithms exist




Perspectives




Major Advances

» Optimally solve small to medium size
fleets

* For large fleets reduce the gap to less
than 1%

— Hardware and software advances
— Algorithmic advances




What is Ahead?

» Emerging models that require crew
pairing solutions over several fleets

— Integrate several models
« Aircraft routing and crew pairing

 Fleeting, routing, and crew pairing

 Robust models

— Do not simply minimize cost, but also
provide robust solutions
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Not the End of the Story

 More work

— Need for solving larger and larger
problems

— Airlines and vendors to use more
sophisticated models

* The human aspect
— Labor into the picture







