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The General Global
Optimization Problem

Mathematical Description

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,

where ϕ : R
n → R and ci , gi : R

n → R.

• We refer to the region defined by the constraints as D.

• Often bounds on the search region are given by
x = ([x1, x1], . . . [xn, xn]).
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Local Versus Global
Optimization

Local Optimization

• The model is steepest descent and locally convergent
methods (such as Newton’s method) with univariate
line searches (for monotone decrease of the objective
function). (Start a ball on a hill and let it roll to the
bottom of the nearest valley.)

• Algorithm developers speak of “globalization,” but
mean only the design of algorithm variants that
increase the domain of convergence. (See J. E.
Dennis and R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Least
Squares, Prentice–Hall, 1983.)

• Algorithms contain many heuristics, and do not always
work. However, many useful implementations exist.
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Do We Want Local or Global
Optima?

Examples

• ϕ is the cost of running a (nominally) $50,000,000 per
month plant:
The plant manager would like the smallest possible
operating cost, but would be happy with a 5% lower
cost than before.

• ϕ represents the potential energy of a particular
conformation of a molecule:
The globally lowest value for ϕ gives the most
information, but local minima give some information,
and finding the global minimum may not be practical.

• A mathematician has reduced a proof to showing that
ϕ ≥ 1 everywhere:
The global minimum must not only be found, but also
must be rigorously proven to be so.
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Global Algorithms

• Global optimization is NP hard, meaning that no
general algorithm is known that solves all large
problems efficiently.

• Thus, barring monumental discoveries, any general
algorithm will fail for some high-dimensional problems.

• Some low-dimensional problems are also difficult, but
many can be solved.

• Successes have occurred for large problems of
practical interest by taking advantage of structure.

• Useful results have also been obtained by replacing
guarantees by heuristics.

• Advances in computer speed and algorithm
construction allow ever more practical problems to be
solved.
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Classes of Global Optimization
Algorithms

• There are two types of algorithms: stochastic and
deterministic.

• Deterministic algorithms can be either rigorous or
heuristic.
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Stochastic Algorithms

Monte-Carlo search: Random points are generated in the
search space. The point with lowest objective
value is taken to be the global optimum.

Simulated annealing: is similar to a local optimization
method, although larger objective values are
accepted with a probability that decreases as
the algorithm progresses.

Genetic algorithms: Attributes, such as values of a
particular coordinate, correspond to particular
“genes.” “Chromosomes” of these genes are
recombined randomly, and only the best
results are kept. Random “mutations” are
introduced.
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Deterministic Algorithms

• These either
• involve using problem-specific structure to be assured

that computed points are global optimizers, or else
• involve some kind of systematic global search over the

domain, generally branch and bound processes.

• The various branch and bound algorithms rely on
estimates of ranges of the objective and constraints
over subdomains.

• The estimates on the range can be either
mathematically exact or heuristic.

• The mathematically exact estimates can be either
rigorous (taking account of roundoff error) or
non-rigorous (using floating point arithmetic and other
approximation algorithms without taking account of
numerical errors).
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The Abstract Algorithm

Initialization: Establish an upper bound ϕ on the global
optimum over the feasible set.

Branching: Subdivide the initial region D into two or more
subregions D̃. (branching step, where we
branch into subregions.)

Bounding: Bound the range of ϕ below over each D̃, to
obtain

ϕ(D̃) ≤
{

ϕ(x) | x ∈ D̃, c(x) = 0, g(x) ≤ 0.

}

.

Fathoming: IF ϕ > ϕ THEN discard D̃,
ELSE IF the diameter of D̃ is smaller than a
specified tolerance THEN put D̃ onto a list of
boxes containing possible global optimizers,
ELSE Put D̃ is put onto a list for further
branching and bounding.
END IF
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Obtaining ϕ

• Some algorithms rely on Lipschitz constants to obtain
ϕ. These constants can be determined rigorously or
heuristically.

• ϕ may also be obtained with
outwardly rounded interval arithmetic or
non-rigorous interval arithmetic, explained below.

• Recent algorithms (especially during the past decade)
involve relaxations of the global optimization problem
to obtain ϕ. For example, the relaxation can be a
linear program, solvable by commercial technology.
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Obtaining ϕ

One of János Pintér’s Techniques

• For a general algorithm, János uses a statistical
model to estimate approximations to local Lipschitz
constants.

• This is used in the structure of a deterministic
algorithm, but is only heuristic.

• The technique nonetheless leads to success at
obtaining useful results for many very large practical
problems, in the successful GAMS / LGO software.

• It may be possible to make this process rigorous or
more efficient for particular problems by taking
advantage of structure.
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Obtaining ϕ

• In principle, ϕ can be set to the smallest value of ϕ(x)
found, where x is any feasible point.

• Appropriate x can be found by running a constrained
local optimizer.

• In practice, this is a difficult part of the algorithm to
make rigorous:

• It must be proven that x is feasible, not possible if
equality constraints or active inequality constraints are
present.

• ϕ may be rigorously obtained by first proving a feasible
point exists within small bounds x̌ centered at x , then
computing a rigorous upper bound on ϕ over x̌ .
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Acceleration Procedures

Various other procedures are used (and indeed are
necessary in many cases to make the algorithm practical)
to reduce the size of the region D and to possibly reject D
before the branching step. To a large extent, this is what
makes branch and bound codes unique, and determines
overall efficiency. Some such procedures include

• various forms of constraint propagation;

• interval Newton methods;

• proofs of infeasibility of linear programs in combination
with linear relaxations (to be briefly explained).

The practicality of a particular code depends on
implementation details of these acceleration procedures.
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Bounding Ranges with Interval
Arithmetic

• Each basic interval operation ⊙ ∈ {+,−,×,÷, etc.} is
defined by

x ⊙ y = {x ⊙ y | x ∈ x and y ∈ y} .

• This definition can be made operational; for example,
for x = [x , x ] and y = [y , y ], x + y = [x + y , x + y ];
similarly, ranges of functions such as sin, exp can be
computed.

• Evaluation of an expression with this interval
arithmetic gives bounds on the range of the
expression.

• With directed rounding (e.g. using IEEE standard
arithmetic), the computer can give mathematically
rigorous bounds on ranges.
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Bounding Ranges with Interval
Arithmetic

A Pitfall: Dependency and Overestimation

• The interval values contain the actual ranges, but are
possibly significantly larger. For example, if
f (x) = (x + 1)(x − 1), then

f ([−2, 2]) =
(

[−2, 2] + 1
)(

[−2, 2] − 1
)

= [−1, 3][−3, 1] = [−9, 3],

whereas the exact range is [−1, 3].
• However, if we write f equivalently as f (x) = x2 − 1,

and we suppose we compute the range of x2 exactly,
we obtain

f ([−2, 2]) = [−2, 2]2 − 1 = [0, 4] − 1 = [−1, 3],

the exact range.
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Dependency and
Overestimation

Consequences

• The range overestimation above is caused by the
arithmetic not taking account of the fact that, when
x = 2 in (x + 1), x must also equal 2 in (x − 1).

• This phenomenon is at the root of many failures of
interval arithmetic.

• For this reason, interval arithmetic should be used
with skill, only in appropriate places.

• However, there are some notable successes.
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Proving Existence and
Uniqueness

Interval Newton Methods

Let f (x) = 0, f : R
n → R

n represent a system of nonlinear
equations. Think of an interval Newton method as an
operator sending x to x̃ :

x̃ = N(f ; x , x̌) = x̌ + v , where Σ
(

A,−f (x̌)
)

⊂ v ,

where A is a Lipschitz matrix for f over x and Σ
(

A,−f (x̌)
)

is that set {x ∈ R
n} such that there exists an A ∈ A with

Ax = −f (x̌).

Theorem

Suppose x̃ is the image of x under an interval Newton
method. If x̃ ⊆ x , it follows that there exists a unique
solution of f (x) = 0 within x .



(slide 39)

Introduction
Local versus Global
Optimization

Theoretical and
Practical Considerations

Alternate Approaches to
Global Optimization

General Branch and
Bound Algorithms

Interval
Techniques
Bounding Ranges

Proving Existence and
Uniqueness

Constraint Propagation
and Relaxations

Current
Software and
Prospects

Interval Newton Methods
A Practical Summary

• N(f ; x , x̌) can be computed similarly to a classical
point multivariate Newton step, but with interval
arithmetic.

• Any solutions of f (x) = 0 in x must be in N(f ; x , x̌).
(Hence, an interval Newton can be used to reduce the
volume of x , an acceleration procedure.)

• N(f ; x , x̌) ⊂ x implies there is a unique solution to
f (x) = 0 in N(f ; x , x̌), and hence in x .

• Another consequence: N(f ; x , x̌) ∩ x = ∅ implies x is
fathomed, and x may be discarded.

• Interval Newton methods are locally quadratically
convergent.
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Interval Newton Methods
Pitfalls

• For a given width of x , the width of N(f ; x , x̌) is
proportional to the condition number of the Jacobi
matrix of f .

• For large widths of x , overestimation in evaluation of
the Jacobi matrix may cause the interval extension of
the Jacobi matrix to contain singular matrices.

• Hence, existence / uniqueness verification is
sometimes problematical unless a good approximation
to an optimum is known; even then, it may not be
possible to eliminate a large region.

• Nonetheless, interval Newton methods can sometimes
be coaxed to narrow some coordinates, even in the
presence of singularities and x large.
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Constraint Propagation

In simple terms, constraint propagation is based on

1 solving a relation for a selected variable in terms of the
other variables;

2 using the bounds on the other variables (e.g. by
evaluating the expression with interval arithmetic) to
determine new bounds for the selected variable;

3 iterating the process (in some order and with some
stopping criteria) to narrow bounds on as many
variables as is practical.
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Relaxations

• A relaxation to a global minimization problem is a
related problem whose global minimum is less than or
equal to the global minimum of the original problem.

• Relaxations can be formed by
• replacing the objective ϕ by a simpler function that is

less than or equal to ϕ on the feasible set;
• replacing each function gi corresponding to an

inequality constraint by a simpler function that is less
than or equal to gi on the feasible set;

• replacing each equality constraint by two inequality
constraints, then handling these.

• Several successful commercial global optimization
packages use linear relaxations (i.e. the relaxation is a
linear program).
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Relaxations
Non-Verified versus Verified

• Commercial packages have used approximate
solutions to linear relaxations, so, although
deterministic, are not rigorous.

• In 2002, Neumaier and Scherbina showed how, given
an approximate solution to a linear program, a
mathematically rigorous lower bound on the solution
can be computed by a technique involving the duality
gap.

• Similarly, Neumaier and Scherbina presented a simple
computation to rigorously show that a linear program
is infeasible. (If a relaxation is infeasible, then the
original problem must also be infeasible.)

• This enables several successful techniques for
non-verified (non-interval) algorithms to be
incorporated into rigorous algorithms.
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BARON
The Branch And Reduce Optimization Navigator, due to
Nick Sahinidis et al, is highly competitive and commercial
(available through GAMS, with a version on NEOS).
BARON:

• uses interval arithmetic in selected places to compute
ranges;

• is effective at using linear relaxations, constraint
propagation, and associated techniques, but in a
non-rigorous fashion;

• is successful apparently partly due to the astute
combination of various basic techniques, and partly
due to state-of-the-art components (such as a good
linear program solver);

• is non-rigorous overall, but possibly can be made
rigorous without undue loss of efficiency;

• has some limitations.
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ICOS

The Interval COnstraints Solver, from Yahia Lebbah et al at
INRIA Sophia Antipolis, is a fully mathematically rigorous
constrained optimizer. ICOS:

• is built upon decades of research in constraint
propagation languages;

• uses linear relaxations in conjunction with the
commercial ILOG CPLEX solver;

• is totally mathematically rigorous;

• is pointing the way to how mathematically rigorous
solvers might be made overall competitive.
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GlobSol

GlobSol is our own Fortran-90 based research code for
global optimization. GlobSol:

• is self-contained and totally mathematically rigorous;

• grew out of a 1980’s code (INTBIS) for rigorous
solution of nonlinear systems of equations;

• it heavily-based on interval Newton technology, but
also includes a version of constraint propagation;

• has linear relaxations and other experimental
techniques in a non-released version.

• can possibly be made more competitive with
restructuring and rewriting;

• can possibly benefit from partnerships that supply
commercial components (such as a commercial LP
solver).
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GlobSol
Some History and Successes

• GlobSol was put into its present form with a SunSoft
Cooperative Research contract.

• During the term of that contract, collaborations with
various persons, especially through George Corliss,
led to some notable successes.

• The best successes concerned portfolio analysis, and
led one of the graduate students involved to form a
consulting firm based on the technology.
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GAMS / LGO

• As mentioned, GAMS / LGO utilizes a hybrid
combination of branch and bound and statistical
techniques.

• János Pintér should best be able to address
• the practical aspects of LGO and
• the relationship of LGO to rigorous computations.
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Other Packages

There are numerous other packages we have not
mentioned.

• We have only mentioned the packages we have
perceived to presently be major players in real-world
applications. For a slightly more complete listing, see
Arnold Neumaier’s page at
http://www.mat.univie.ac.at/~neum/
glopt/software_g.html

• We have not attempted to discuss purely
stochastically-based packages (simulated annealing,
genetic algorithms, etc.)

• For a listing of general interval-based software, see
http://www.cs.utep.edu/interval-comp/
intsoft.html.
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Prospects for Rigorous
Software

Summary

• Continued study of successful non-rigorous
techniques, of their interaction in specific
implementations, and of how they can be made
rigorous will lead to more competitive totally rigorous
codes.

• Emerging theoretical developments (such as newly
proposed necessary and sufficient conditions for
global optima) may be useful in mathematically
rigorous algorithms.

• There is much evidence that successful codes are
built upon successful local optimizers and successful
linear program solvers. This includes mathematically
rigorous codes.
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Prospects for Rigorous
Software

Possible Limitations

• There is strong evidence that the most practical (or the
only practical) codes for challenging applications will
be designed specifically for those applications.

• Perhaps total mathematical rigor is out of reach for
certain problems (for which heuristics or stochastic
elements must be used).
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