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Why use response surfaces for optimization?

• Smooth “numerical jiggle”

• Identify important variables and 
visualize input-output relationships 
via functional ANOVA

• Solve variations of problem (e.g., 
different bounds, objective 
function) quickly, without 
additional simulations. 

• Exploit parallel processing

• Fast computation transmitted 
variance for robust design

� Reduce evaluations for 
optimization 

� Increase the likelihood of finding a 
global optimum
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Today’s talk

• We will present a taxonomy of existing 
approaches to using response surfaces for 
global optimization

• Key messages:
– Methods that seem “reasonable” often have 

non-obvious failure modes
– Developing a method that delivers on the intuitive 

promise of response surfaces is non-trivial
– The area abounds with interesting and exciting 

research issues
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The taxonomy 
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� Fit surface with regression, optimize surface, 
sample minimum, update surface, iterate
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Method 1 fails when the assumed functional form is 
wrong.   We therefore need a data-adaptive surface.
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Splines, radial-basis functions, and kriging 
are data-adaptive techniques that find a 
linear combination of n “basis functions” 
that interpolate the n data points.

Kriging stands out because:  (1) the  basis 
functions are tuned to the data and (2) its 
statistical derivation allows the estimation 
of confidence intervals. 
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� Fit kriging surface, optimize surface, sample 
minimum, update surface, iterate
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Method 2 may fail because critical point of surface may 
not be critical point of the true function
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Minimum of surface agrees with 
a data point, so further iterations 
will not change anything. 

We have converged, but do we 
have a local?

No, we may not have a local.
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Enhanced � — Same as � but force surface gradient to match 
that of true function whenever we tentatively converge

Start Iter 1

Iter 2 Iter 3

Looks like we’ve converged!
We therefore sample near the 
surface min (∆x =±2%) 
in the next iteration.

Function has not been 
sampled at the surface 
minimum, so we iterate.



slide 10

Enhanced Method � may not only miss a global 
optimum—it may also fail to find a local optimum

Possible causes of failure:

• Saddle points (as shown)

• Poor local approximation

– Without analytic 
gradient, proof of 
convergence must 
somehow insure that 
added points give 
good local 
approximation
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Relevant papers that show how can guarantee convergence to a local minimum:

• N. M. Alexandrov et. al.  “A trust region framework for managing the use of 
approximation models in optimization.”  Structural Optimization, 15(1):16-23, 1998.

• M.J.D. Powell.  “A direct search optimization method that models the objective and 
constraint functions by linear approximation.”  Dept. of Applied Math. and 
Theoretical Physics, Cambridge U., England, paper DAMTP 1992/NA5, April 1992.
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Key to making search global is to put some emphasis 
on sampling where the surface may be inaccurate

• The kriging predictor at x* 
is the best guess of y*

• The kriging standard error 
reflects much error there 
may be in the predictor, 
based on how far we are 
from the sampled points. 

• To be global, we must 
balance sampling where:

• surface is minimized 
(focus on predictor)

• surface may be 
inaccurate (focus on 
standard error)
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� Fit kriging surface, find minimum of  y(x)-kσ(x),
sample this point, update surface, iterate

Start Iter 1

Iter 2 Iter 3

Initial standard errors are 
small because sampled 
points do not reveal true 
variability of the function.

Sampled points now show more variability 
so standard errors are larger...

Here I show  mean - 3*sigma. 
Clearly, if k is this small, we 
might miss global min at 1.5
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� Fit kriging surface, find minimum of  y(x)-kσ(x),
sample this point, update surface, iterate  (continued)

Iter 4

1 2 3 4 5
0
1
2
3
4
5
6
7
8

Sampled Points
Kriging Predictor
Mean - 3*Sigma
Mimimum of Mean - 3*Sigma

Iter 5

1 2 3 4 5
0
1
2
3
4
5
6
7
8

Sampled Points
Kriging Predictor
Mean - 3*Sigma
Mimimum of Mean - 3*Sigma

Iter 6

1 2 3 4 5
0
1
2
3
4
5
6
7
8

Sampled Points
Kriging Predictor
Mean - 3*Sigma
Mimimum of Mean - 3*Sigma
True Function

Iter 7

Next iterate is close to the local 
min, but we will not go back to 
[1,2] which has the global min.
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Method 3 fails because it prematurely rules out entire 
regions. We need the search points to fill space

The Probability of 
Improvement criterion 
specifies a target value 
of the objective T 
(better than the current 
best point) and 
samples where the 
probability of 
exceeding T is 
maximized..

Under mild conditions, 
it will generate search 
points that fill the 
space (i.e., are dense).  
Hence it guarantees 
ultimate convergence.
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� Fit kriging surface, find maximum of Probability of 
Improvement, sample this point, update surface, iterate

Target objective function is computed using: with αααα = 0.25
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� Fit kriging surface, find maximum of Probability of 
Improvement, sample this point, update surface, iterate
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� Problem with Method 4 is the sensitivity to the target 
function value T (determined by choice of α)

Results of first 11 iterations of Method 4 using two values for α
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Enhanced � — Find the point that maximizes the 
probability of improvement for many targets
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Enhanced � — Find the point that maximizes the 
probability of improvement for many targets

Next iterates found by 
clustering solutions 
and picking 1 point 
from each cluster.
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Enhanced � — Find the point that maximizes the 
probability of improvement for many targets



slide 21

Enhanced � — Find the point that maximizes the 
probability of improvement for many targets
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Enhanced � — Example on two-variable problem
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Expected Improvement

0 2 4 6 8 10 12

f min

� ( )µ x

� ( )σ x  [exaggerated]

EI  =   
=0

x t
f t

dt
tbg b g

× F
HG

I
KJ −

− −L
NM

O
QP

+∞z 1
2 2πσ

µ
σ�

exp
�

�

min

The Expected Improvement
(EI) criterion does not force us 
to choose a single value for 
the target T in Method 4.  It is 
an alternative to using many 
values of T as just discussed. 

Under mild conditions, it will 
generate search points that fill 
the space (i.e., are dense).  
Hence it guarantees ultimate 
convergence.
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� Fit kriging surface, find maximum of EI, sample this 
point, update surface, iterate

Start Iter 1

Iter 2 Iter 3

Initial EI values 
are small 
because sampled 
points do not 
reveal true 
variability.
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� Fit kriging surface, find maximum of EI, sample this 
point, update surface, iterate (continued)

Iter 4 Iter 5

Iter 6 Iter 7
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� Fit kriging surface, find maximum of EI, sample this 
point, update surface, iterate (continued)

Iter 8 Iter 9

Iter 10 Iter 11
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Method 5 can be slow or prematurely converge if initial 
sample causes gross underestimation of standard error
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• In the example, the standard error— and 
hence EI—would be 0 everywhere.

• To guarantee convergence, must force 
strictly positive standard errors estimates

• Can be slow if initial sample is deceptive 
and errors therefore underestimated

• Maximization of EI is difficult but can be 
done exactly via a branch-and-bound 
algorithm in low dimensions (< 6)

• Can vary local/global balance by 
maximizing E[ I g ] and varying g

• Fundamental problem

• it is a two-stage method:  fit 
surface, then use surface to 
compute iterate

• Possible errors in first stage are not 
acknowledged in the second stage

Relevant papers on the Expected Improvement algorithm

• D. Jones, M. Schonlau, W. Welch.  “Efficient global optimization
of expensive black-box functions.”  Journal of Global 
Optimization, 13:455-492, 1998. 

• M. Schonlau, W. Welch, D. Jones.  “Global versus local search in
constrained optimization of computer models.”  In New 
Developments and Applications in Experimental Design, Lecture 
Notes—Monograph Series Volume 34, Institute for Mathematical 
Statistics, 1998.
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� Assuming optimal value f* known, find point (x, f*)
that gives best surface fit if added to the sample

Possible measures of “credibility”:

— Likelihood of sampled points conditional on surface passing through (x, f *)
— Leave-one-out cross-validated error when point (x, f *) is added to sample
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� Assuming optimal value f* known, find point (x, f*)
that gives best surface if added to sample (continued)
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� Assuming optimal value f* known, find point (x, f*)
that gives best surface if added to sample (continued)
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The one-stage approach in a sound bite

Ask not what the surface implies about the minimum. 

Ask what the minimum implies about the surface.
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Obvious problem with Method 6

What if we don’t know the value f*? 

The answer should now be obvious:

Use several values for f*!  

Maximize “credibility” for each one, getting a candidate 
next point.  Then cluster all the candidates and sample 
one point from each cluster.

This gives Method 7
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	 Maximize “credibility” for many values of f*, cluster 
solutions, and sample one point from each cluster
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	 Maximize “credibility” for many values of f*, cluster 
solutions, and sample one point from each cluster
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New developments

• Local optimization using radial basis functions and 
trust region, with convergence proof
– R. Oeuvray and M. Bierlaire,  “A New Derivative-free 

Algorithm for the Medical Image Registration Problem,” From 
Proceeding (429) Modeling, Simulation, and Optimization -
2004

• Study using kriging for local optimization with trust 
region approach.  Promising numerical results!
– Rommel Regis, Stefan Wild, Christine Shoemaker, “A 

Derivative-Free Trust-Region Method for Engineering 
Optimization,” presented at INFORMS Pittsburg 2006.
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New developments

• Fresh and extremely promising way to do constrained
global optimization with radial basis functions, without 
using the kriging standard error.
– Rommel Regis and Christine Shoemaker, (2005), 

“Constrained Global Optimization sing Radial Basis 
Functions,” Journal of Global Optimization, vol. 31, 153-171. 

• Extension of Expected Improvement approach to 
handle noisy functions that require non-interpolating 
(smoothing) suraces
– A. I. J. Forrester, N. W. Bressloff, A. J. Keane, “Design and 

analysis of ‘noisy’ computer experiments,” AIAA journal, 
44(10), 2331-2339
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New developments

• Extremely interesting approach where next point is 
selected not to be the most likely to “be” the optimum 
as in this presentation.  Instead, the next point is 
selected to be the one that is expected to provide the 
“most information” on where the optimum is. 
– J. Villemontieix, E. Vazquez, and E. Walter.  “An 

informational approach to the global optimization of 
expensive to evaluate functions.”  Submitted to the Journal 
of Global Optimization.  Available on the web at 
http://arxiv.org/PS_cache/cs/pdf/0611/0611143.pdf



slide 38

Summary

• The use of radial basis functions or kriging for efficient local search 
is very promising

• For global search, two-stage methods can perform poorly if the 
initial surface underestimates the error.  This is especially true for 
the expected improvement approach.

• Drawback of two-stage approaches seems to be greatly reduced 
by forcing the surface to suggest iterates that look promising under 
some constraints — even if it “thinks” these values are unlikely.  All 
the promising approaches do this in some way other.

• Handling constraints is difficult, because it is not clear how to 
combine the objective and constraints into a single criterion that 
can be optimized to find the next iterate.  Regis/Shoemaker nicely 
finesse this issue, but more options are possible and need to be
explored
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BACKUP SLIDES
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Kriging compared to other methods
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