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Abstract

Computing the
p-torsion of
curves in

CREtET  New invariants occur for the p-torsion of Jacobians of
P . "
curves in characteristic p, such as the p-rank and a-number.

Rachel Pries

lLtesteeey Some of these invariants are relevant for cryptography.

In this talk, | will describe these invariants and explain how
to compute them.

| will give some results about the construction of curves with
given invariants.

If time permits, | will describe the geometry of the moduli
spaces of curves with given invariants.



p-torsion in the complex case

Computing the
p-torsion of
curves in R .
characerisi Let E = C/L be a complex elliptic curve (genus 1).

Rachel Pries

The p-torsion E[p] is the kernel of multiplication by p.
Introduction
Then E[p] = $L/L~(Z/p)?.

More generally,

Let X be a Riemann surface of genus g with Jacobian Jx.

Then Jx is a p.p. abelian variety of dimension g.

Also Jx [p] ~ (Z/p)?9.




p-torsion in characteristic p

Computing the

p-torsioq of

curves in — ) ) L
characteritc Let k = IFp, an algebraically closed field of characteristic p.

Rachel Pries

If E is an elliptic curve over k, then |E[p](k)| < p2.

Introduction
Typically, |E[p](k)| = p and E is ordinary.
Otherwise, |E[p](k)| =1 and E is supersingular.

There are exactly (p —1)/2 choices of A for which the elliptic
curve y? = x(x —1)(x —A) is supersingular, Igusa.

The elliptic curve y2 = h(x) is supersingular iff the
coefficient of xP~1 in h(x)(P-1/2 s 0.



Example of points of order p collapsing mod p
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curves in E :y2:X3+aX2+bX+C.
B A point Q € E has order 3 iff x(2Q) = x(Q).

p

Rachel Pries

S This occurs iff x(Q) is a root of

Ws(x) = 3x* 4+ 4ax> 4 6bx? + 12cx 4 4ac — b2
Now Y3(x) has 4 distinct roots in C so |E¢[3]| = 9.
Let p = 3. Then y3(x) = ax®+ (ac —b?) mod 3

a triple root a0 mod 3
no roots a=0mod 3

Ws(x) has {

So |E[3](k)]| divides 3.



Supersingular elliptic curves in cryptography

Comput.ing the
el Due to Frey-Riick attack, supersingular elliptic curves are

sl weak for cryptography, Menezes-Okamato-Vanstone.
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Similar phenomenon occurs for supersingular abelian
varieties, Galbraith.

Introduction

Rubin/Silverberg: "For some cryptographic applications
[identity based encryption, short signhature schemes]
supersingular elliptic curves turn out to be very good."

There is active research on the security parameters of these
abelian varieties.

What are the invariants of the p-torsion for these abelian
varieties?



The p-rank of Jx [p]
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curves in Let X be a smooth projective k-curve of genus g.

characteristic

P Its Jacobian Jy is a p. p. abelian variety of dimension g.
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Then |Jx [p](k)| = p* for some 0 < fx <g.
Invariants We say that fx is the p-rank of X.

Note: we count the number of points over k not over Fy.

Also, fx = dimy, Hom(Lp, Ix [P]).
Hp >~ Spe¢k[x]/(xP —1)) is the kernel of Frobenius on Gp.

Def: X is ordinary if f = g and this happens generically.

The p-rank can only go down under specialization, Katz.



Supersingularity and points of order p

Comput.ing the
el Def: An abelian variety A is supersingular if A is isogenous

Bl to < E; where E; are supersingular elliptic curves.
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A supersingular iff the slopes of Newton polygon are all 1/2.

Invariants

The p-rank is an isogeny invariant.

If A is supersingular, then the p-rank of A is 0.

The converse is false for g > 3.

Letp=2andg=2"-1.

Lety? +y = h(x) with h(x) € k[x] and degh(x)) = 2g + 1.

This has genus g and p-rank 0, but there are no
supersingular hyperelliptic curves of this genus (Zhu).



The a-number

Computing the . .
oeel  The a-number of X is ax = dimg Hom(ap, Jx [p]).
characteristi

. ap =~ Spegk[x]/xP) is the kernel of Frobenius on Ga.
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The a-number measures the intersection of the image of F
Invariants and V on the Dieudonné module.

The a-number can only increase under specialization, Oort.
Iff =0,thena>1. Alsoa+f <qg.

Let Eq,...,Eq be supersingular elliptic curves.
Thena=giff A~ X?:1Ei (A superspecial).

Superspecial curves are rare.
They occur only if g < (p? —p)/2, Ekedahl (see also Re).



More about the a-number

Computing the
p-torsion of
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characteristic
p

LN Let Eq,E, be supersingular elliptic curves.

Invariants If A~ El X EZ, thena=2.
If Alisogenousto E; x E; but A£ E; x E, thena=1.

The p-rank and the a-number do not determine the
isomorphism class of the group scheme A[p].

The group scheme A[p] can be described using Dieudonné
modules, Ekedahl-Oort types v, Young diagrams 4, or cycle
classes.
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i L 0 |1]/0][[1]]0

Rachel Pries

| cycle class |
Ao

l11 1 JO|1[[O][{1}] (P—1)\
IS Group schemes:
L=Z/p®Wp.

l11 given by O — ap — 111 — dp — O (non-split).

Occur as p-torsion:
If E is an ordinary elliptic curve then E[p] ~ L.
If E is a supersingular elliptic curve, then E[p] ~ 11 ;.

Dieudonné modules:
D(Z/p @) ~K[F,V]/(F,1-V),@k[F,V]/(V,1-F),.
D(|171) ~ k[F,V]/(F +V)g
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5 fla cycle class |
Rachel Pries L2 0 210 [1, 2] 0 A0
Lel,a | 1 |1)1][1,1] {1} (P—1)A;
Invariants |271 2 01 [O7 1] {2} (p — 1)(p2 — 1))\2
171 3 [of2][0.01]{2,1} [ (p—D(P*+ 1)\,

Group scheme:
Here ap CH C 1 where H /o, ~ap @ ap, and I 1 /H ~ ap.

Dieudonné module:
D(l21) ~Kk[F,V]/(F2+V?),.

Newton polygons:
2Gy 1 (supersingular) occurs for both (|1,1)2 and Iy .



Computing the
p-torsion of
curves in
characteristic
p

Rachel Pries

Invariants
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If A[p] ~ I31, then NP(A) = G2+ G2 1 (slopes 1/3 and 2/3)
usually but NP (A) = 3G1 1 (supersingular) also occurs.

D(lz1) ~K[F,V]/(F3+V?3),.

D(l32) =k[F,V]/(F?=V) @ k[F,V]/(VZ - F).



S There are 16 possibilities for A[p] if g = 4.

p-torsion of

gumesin Here are the ones with f = 0.
p
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lg=4,f=0]codim|[f]a] v [u |
Invariants |411 4 O 1 [07 1727 3] {4}
42 5 0|2][0,1,2,2] | {4,1}
l11 @131 6 0|2|[0,1,1,2] | {4,2}
l11 @132 7 0|3/|[0,1,1,1] | {4,2,1}
lo1®121 7 0|2/][0,0,1,2] | {4,3}
la3 8 0|3/[0,0,1,1] | {4,3,1}
Il,l Dlyq 9 0|3/][0,0,0,1] | {4,3,2}
Iil 10 |0|4]]0,0,0,0]|{4,3,2,1}

It is not known if these occur for all p as the p-torsion Jx [p]
of a curve X of genus 4.



Computing the p-rank and a-number
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p-torsion of Let C be the Cartier (semi-linear) operator on H°(X,Q1).
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The p-rank is f = dim(imC9), Manin.
The a-number is a =g —r where r is the rank of C.

Computing Thus, for fixed p and X, one can compute fx and ay.

invariants

Yui worked out C when X hyperelliptic.

Consider Y :y2 = h(x) where h(x) = [17%5 *(x = Ai).
Let ¢, be the coefficient of x" in the expansion of h(x)(P~1)/2,
Let Ay be the g x g matrix whose ijth entry is Cip_;.

Yui: Y is ordinary if and only if D = def(Ag) # 0.
The p-rank of Y is fy = rankM) where M = 17 (A (p))



An example of the Cartier operator when p = 2.

Computing the

ANl Let X : y2+y = h(x) with h(x) € k[x] of odd degree j.
characteristic
p

All hyperelliptic curves with 2-rank O have this form.
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This includes some supersingular curves whose security
comnu parameters are as good as possible.

omputini .
Rt Galbraith: y2+y =x5+x3, y2+y =x%+x*+1.

Then g =(j —1)/2 and f = 0 by Deuring-Shafarevich.
A basis for HO(X, Q%) is {dx,xdx,...,x9 tdx}.
C(x?Pdx) =0 and C(x?**1dx) = xPdx.

C nilpotentsof =0,anda=[(g+1)/2].



More examples

Computing the
p-torsion of
curves in
characteristic

0 Curves found in Galbraith, a-number computed by Elkin.
S p=3,y?=x%+x+2hasg=2,f=0a=1.
p=3,y?=x"+1hasg=3,f=0anda=1.

5,y2=x4+2x*+x%4+x+3hasg=2,f=0,a=1.
=2,y3=x>+1hasg=4,f=0,anda=2.
2,y3=x%+x+1hasg=4,f=0anda=2.

invariants

p
Computing p

p
The curve yP —y = xP*1 is related to error-correcting codes.
lthasg=p(p—1)/2,f =0,anda=g.

(P)lfp=1modjandyP -y =xI,thena=(p—1)j/4if]
evenanda=(p—1)(j—1)(j+1)/4jifj odd.



Geometric existence results

Computing the

p-torsion of For every p > 2, for every g > 1, for every 0 < f < g there

curves in

characteristic eXIStS a curve X over k - ﬁp Wlth
P

Al genus g and p-rank f, Faber-van der Geer.
genus g and p-rank f with X hyperelliptic if p > 3, Glass-P.
genus g and p-rank f with X hyperelliptic if p = 2, Zhu.

Qomputing

e P: existence results for curves with large p-rank:
genusg >2withf=g—-2and a=1.

genusg >2withf=g—2anda=2ifp>5.

genusg >3 withf=g—3anda=1.

Only Zhu’s proof is constructive.

The other proofs are all geometric. There are families of
these curves and the results include the dimension of the
families.



Construction forf =g —2 and a = 2:

SIS et ¢4 - C; — P! be a hyperelliptic cover branched at B; for

p-torsion of

curves in i =1,2. Let @3 : C3 — P! be the hyperelliptic cover branched

characteristic
P at BgZ(BlLJBz)—(BlﬁBz).
Rachel Pries

Let @: D — P! be the normalized fibre product of @¢; and @,.
Itis a (Z/2)?-cover.

Prop. If p > 2, then Jp[p] = Jc, [P] @ Jc, [P] © e, [P]
Constructing (isomorphism, not isogeny as in Kani-Rosen)

curves

(Glass, P): For p > 5 and g > 2, we construct a hyperelliptic
curve D with p-rank g — 2 and a-number 2.

Proof. For g even, there exist By # B, s.t. gc, =9c, =09/2
and gc, =0 and fc, =fc, = g/2 -1 (uses Yui, Igusa).
If g is odd, the proof is similar.



Fun approach for constructingg =5anda=3
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P (i.e. each Ej : y2 = x(x — 1)(x — ;) is supersingular).
SCEEN  There are ((p’é)/ 2) ways to choose {\i}2_;.

Which of the 4 possibilities for Jy [p] occur for the resulting
genus two curve Y :y2 = x(x —1)(x —Ag)(X —A2)(X —A3)?

Constructing

curves For all p, we expect {\;}_; exists so Y is ordinary;
(this is verified by Ritzenthaler for 7 < p < 100).

If so, the fibre product of {E; }i3:1 is a hyperelliptic curve of
genus 5, with p-rank 2 and a-number 3.

For some p, there does not exist {\;}3_, so Y has p-rank 0.



Method to construct curves withf =g —2 and
a=1.
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p Goal: produce X genus g with fx =g —2 and ax = 1.
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Start with Y genus 2 with fy =0 and ay = 1.
Ex: p=2, look at y?+y =x5.

p =3, look aty? =x5+x+2.

ekl D =5, look at y? = x5 4+ 2x* +x3 +x +3.

Find points of order =g+ 1 on Jy (ok if p1¥).

One of these yields an unramified Z/¢-cover X — Y with
invariants as above.



Constructing curves withf =g —3
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All four possibilities for the p-torsion of a curve of genus 3
with f =0 do occur.

Rachel Pries

Prop.[P] Let p > 3. Let g be odd, g # 1 mod p, and
g > 6(p—1)+ 1. Then all four possibilities for the p-torsion
Constructing of a curve X of genus g with p-rank g — 3 do occur.

curves

Proof: X is produced as an unramified cover of a curve of
genus 3, using a result of Raynaud about theta divisors.
This leads to restrictions on g.



Questions
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Bl Let X be a curve of genus g with p-rank f.
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Then Jx [p] = (Z/p @ 1)’ © G where there are 29-1-1
possibilities for the group scheme G.

It is now natural to ask:
which a-numbers and group schemes G actually occur?

mEees  If G occurs, describe the corresponding sublocus of My:
how many components? what are their dimensions?

If f =g, then Jx[p] ~ (Z/p®1p)? and ax = 0.
Iff =g —1,then Jx[p] ~ (Z/p & )% 1@y and ay = 1.

For arbitrary g and f < g — 2, there are not many results.



The generic group scheme for p-rank f

C ting th . .
Sl Conj. A generic curve of genus g and p-rank f has
curves In

characteristic a-number 1 if f < g-— 1.
p

Rachel Pries

[P] proved when f > g — 3 and reduced proof in other cases
to the base case f = 0.

The conditions p-rank f and a-number 1 determine a unique
group scheme: Jx [p] =~ (Z/p & 1) ®lg 1.1

Here I; 1 is the unique choice of G with rank p2, p-rank 0,
i and a-number 1.

I1,1 occurs as the p-torsion for a supersingular elliptic curve.
I2.1, for a supersingular non-superspecial abelian surface.

The covariant Dieudonné module for I, 1 has relation
Fr=Vvr.



Open guestions for small genus

Computing the
p-torsion of
curves in
characteristic

p Hyperelliptic curves of genus 3 and
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p-rank O

@ How many components does this space have?
© Does supersingular locus intersect each component?

Curves of genus g >4
Unfortunately very little is known for go > 4 and f = 0.

© Does there exist a curve with p-rank 0 and a-number 1?
Summary and © Does there exist a curve with p-rank g —3 and a = 3?

open
questions

Computational evidence for many p should be feasible. Is
there a systematic way to produce these curves for all g,p?



Summary
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P @ The Cartier operator is useful for computing invariants
RS of the p-torsion Jx [p].

@ We construct curves X with interesting p-torsion Jx [p].

@ We use geometric methods to show there exist
(hyperelliptic) curves of genus g with p-rank f.

Summary and

open @ In some cases, we can find the a-number of these

questions

curves.
Thanks!



Moduli spaces

SRR Consider the moduli space 2y of k-curves of genus g

p-torsion of

curves in or the moduli space #y of hyperelliptic k-curves of genus g.

characteristic

P”r’p‘p 5 (All curves are smooth, connected, and projective.)
. Recall dim(Mg) = 3g — 3 and dim(#Hg) =29 — 1.

Let Vy¢ C My consist of all curves with p-rank fx <f.
Vg0 CVg1C...CVgg-1CVgg= M.

Oort described the stratification of Ay by p-rank.

Faber & Van der Geer: every component of Vg ¢ has
codimension g —f in My (dimension 2g +f — 3).

(Glass, P): For p > 3, every component of Vgt N Hy has
codimension g —f in #Hy (dim g +f —1).



Boundary approach: wheng >2andf=g—2
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characpteristic (B) (Z/p ® I-'lp)giz D (|1)2 (Wlth ay = 2)
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(P): Case (A) occurs for the generic point of every
component of Vg g_» N Mg and (for p > 3) of Vg g_o N Hy.

If p > 5, then case (B) occurs with codimension 3 in Mj.

So case (A) occurs in codim 2 in My (and in Hg for p > 3).
Precisely, let Ty » C My be the locus of curves X with ax > 2.
Every component of Ty » has dimension 3g —6.

The generic point of every component of Ty > has type (B).



Boundary approach: wheng >3 andf =g -3
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Then Jx[p] ~ (Z/p @ )¢ 3 © G where G is:
() G =13, (ii) G =14, (iii) G = I, @1y, or (iv) G = (I)°.
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(P): Case (i) (p-rank g — 3 and ax = 1) occurs
for the generic point of every component of Vg 43N M.

So case (i) occurs with dimension 3g — 6 (codim 3 in My).
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