Computing the
p-torsion of curves in characteristic p

Rachel Pries

Introduction

Computing the p-torsion of curves in characteristic p

Rachel Pries

Colorado State University

Computational challenges arising in algorithmic number theory and cryptography
Fields Institute, October 31, 2006

Abstract

New invariants occur for the p-torsion of Jacobians of curves in characteristic p, such as the p-rank and a-number.

Some of these invariants are relevant for cryptography.
In this talk, I will describe these invariants and explain how to compute them.

I will give some results about the construction of curves with given invariants.

If time permits, I will describe the geometry of the moduli spaces of curves with given invariants.

p-torsion in the complex case

Computing the

p-torsion of curves in characteristic p

Rachel Pries

Introduction

Computing invariants

Constructing curves

Moduli spaces
questions

Let $E=\mathbb{C} / L$ be a complex elliptic curve (genus 1).
The p-torsion $E[p]$ is the kernel of multiplication by p.
Then $E[p]=\frac{1}{p} L / L \simeq(\mathbb{Z} / p)^{2}$.
More generally,
Let X be a Riemann surface of genus g with Jacobian J_{X}.
Then J_{X} is a p.p. abelian variety of dimension g.
Also $J_{X}[p] \simeq(\mathbb{Z} / p)^{2 g}$.

p-torsion in characteristic p

Let $k=\overline{\mathbb{F}}_{p}$, an algebraically closed field of characteristic p.
If E is an elliptic curve over k, then $|E[p](k)|<p^{2}$.
Typically, $|E[p](k)|=p$ and E is ordinary.
Otherwise, $|E[p](k)|=1$ and E is supersingular.
There are exactly $(p-1) / 2$ choices of λ for which the elliptic curve $y^{2}=x(x-1)(x-\lambda)$ is supersingular, Igusa.

The elliptic curve $y^{2}=h(x)$ is supersingular iff the coefficient of x^{p-1} in $h(x)^{(p-1) / 2}$ is 0 .

Example of points of order p collapsing $\bmod p$

Computing the
p-torsion of
curves in characteristic p

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing
curves
Moduli spaces
Summary and
$E: y^{2}=x^{3}+a x^{2}+b x+c$.
A point $Q \in E$ has order 3 iff $x(2 Q)=x(Q)$.
This occurs iff $x(Q)$ is a root of

$$
\psi_{3}(x)=3 x^{4}+4 a x^{3}+6 b x^{2}+12 c x+4 a c-b^{2} .
$$

Now $\psi_{3}(x)$ has 4 distinct roots in \mathbb{C} so $\left|E_{\mathbb{C}}[3]\right|=9$.
Let $p=3$. Then $\psi_{3}(x) \equiv a x^{3}+\left(a c-b^{2}\right) \bmod 3$

$$
\psi_{3}(x) \text { has } \begin{cases}\text { a triple root } & a \neq 0 \bmod 3 \\ \text { no roots } & a \equiv 0 \bmod 3\end{cases}
$$

So $|E[3](k)|$ divides 3.

Supersingular elliptic curves in cryptography

Computing the
p-torsion of
curves in characteristic p

Rachel Pries

Due to Frey-Rück attack, supersingular elliptic curves are weak for cryptography, Menezes-Okamato-Vanstone.

Similar phenomenon occurs for supersingular abelian varieties, Galbraith.

Rubin/Silverberg: "For some cryptographic applications [identity based encryption, short signature schemes] supersingular elliptic curves turn out to be very good."

There is active research on the security parameters of these abelian varieties.

What are the invariants of the p-torsion for these abelian varieties?

The p-rank of $J_{X}[p]$

Let X be a smooth projective k-curve of genus g. Its Jacobian J_{X} is a p. p. abelian variety of dimension g.

Then $\left|J_{X}[p](k)\right|=p^{f_{X}}$ for some $0 \leq f_{X} \leq g$.
We say that f_{X} is the p-rank of X.
Note: we count the number of points over k not over \mathbb{F}_{q}.
Also, $f_{X}=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Hom}\left(\mu_{p}, J_{X}[p]\right)$.
$\mu_{p} \simeq \operatorname{Spec}\left(k[x] /\left(x^{p}-1\right)\right)$ is the kernel of Frobenius on \mathbb{G}_{m}.
Def: X is ordinary if $f=g$ and this happens generically.
The p-rank can only go down under specialization, Katz.

Supersingularity and points of order p

Computing the
p-torsion of
curves in
characteristic

Def: An abelian variety A is supersingular if A is isogenous to $\times{ }_{1}^{g} E_{i}$ where E_{i} are supersingular elliptic curves.

A supersingular iff the slopes of Newton polygon are all $1 / 2$.
The p-rank is an isogeny invariant.
If A is supersingular, then the p-rank of A is 0 .
The converse is false for $g \geq 3$.
Let $p=2$ and $g=2^{n}-1$.
Let $y^{2}+y=h(x)$ with $h(x) \in k[x]$ and $\operatorname{deg}(h(x))=2 g+1$.
This has genus g and p-rank 0 , but there are no supersingular hyperelliptic curves of this genus (Zhu).

The a-number

Computing the
p-torsion of
curves in characteristic

The a-number of X is $a_{X}=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, J_{X}[p]\right)$.
$\alpha_{p} \simeq \operatorname{Spec}\left(k[x] / x^{p}\right)$ is the kernel of Frobenius on \mathbb{G}_{a}.
The a-number measures the intersection of the image of F and V on the Dieudonné module.

The a-number can only increase under specialization, Oort.
If $f=0$, then $a \geq 1$. Also $a+f \leq g$.
Let E_{1}, \ldots, E_{g} be supersingular elliptic curves.
Then $a=g$ iff $A \simeq \times{ }_{i=1}^{g} E_{i}$ (A superspecial).
Superspecial curves are rare.
They occur only if $g \leq\left(p^{2}-p\right) / 2$, Ekedahl (see also Re).

More about the a-number

The a-number is not an isogeny invariant.
Let E_{1}, E_{2} be supersingular elliptic curves.
If $A \simeq E_{1} \times E_{2}$, then $a=2$.
If A isogenous to $E_{1} \times E_{2}$ but $A \not \approx E_{1} \times E_{2}$ then $a=1$.
The p-rank and the a-number do not determine the isomorphism class of the group scheme $A[p]$.

The group scheme $A[p]$ can be described using Dieudonné modules, Ekedahl-Oort types v, Young diagrams μ, or cycle classes.

$$
g=1:
$$

Computing the

 p-torsion of curves in characteristic pRachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and open questions

$A[p]$	codim	f	a	v	μ	cycle class
L	0	1	0	$[1]$	\emptyset	λ_{0}
$I_{1,1}$	1	0	1	$[0]$	$\{1\}$	$(p-1) \lambda_{1}$

Group schemes:

$L=\mathbb{Z} / p \oplus \mu_{p}$.
$\Lambda_{1,1}$ given by $0 \rightarrow \alpha_{p} \rightarrow I_{1,1} \rightarrow \alpha_{p} \rightarrow 0$ (non-split).

Occur as p-torsion:

If E is an ordinary elliptic curve then $E[p] \simeq L$. If E is a supersingular elliptic curve, then $E[p] \simeq I_{1,1}$.

Dieudonné modules:

$$
\begin{aligned}
& D\left(\mathbb{Z} / p \oplus \mu_{p}\right) \simeq k[F, V] /(F, 1-V)_{\ell} \oplus k[F, V] /(V, 1-F)_{\ell} . \\
& D\left(l_{1,1}\right) \simeq k[F, V] /(F+V)_{\ell} .
\end{aligned}
$$

$$
g=2:
$$

Computing the p-torsion of curves in characteristic p

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and

$A[p]$	codim	f	a	v	μ	cycle class
L^{2}	0	2	0	$[1,2]$	0	λ_{0}
$L \oplus I_{1,1}$	1	1	1	$[1,1]$	$\{1\}$	$(p-1) \lambda_{1}$
$I_{2,1}$	2	0	1	$[0,1]$	$\{2\}$	$(p-1)\left(p^{2}-1\right) \lambda_{2}$
$I_{1,1}^{2}$	3	0	2	$[0,0]$	$\{2,1\}$	$(p-1)\left(p^{2}+1\right) \lambda_{1} \lambda_{2}$

Group scheme:

Here $\alpha_{p} \subset H \subset I_{2,1}$ where $H / \alpha_{p} \simeq \alpha_{p} \oplus \alpha_{p}$, and $I_{2,1} / H \simeq \alpha_{p}$.

Dieudonné module:

$$
D\left(I_{2,1}\right) \simeq k[F, V] /\left(F^{2}+V^{2}\right)_{\ell}
$$

Newton polygons:

$2 G_{1,1}$ (supersingular) occurs for both $\left(l_{1,1}\right)^{2}$ and $I_{2,1}$.

$$
g=3:
$$

Computing the p-torsion of curves in characteristic p

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and open questions

$A[p]$	codim	f	a	v	μ
L^{3}	0	3	0	$[1,2,3]$	0
$L^{2} \oplus I_{1,1}$	1	2	1	$[1,2,2]$	$\{1\}$
$L \oplus I_{2,1}$	2	1	1	$[1,1,2]$	$\{2\}$
$L \oplus I_{1,1}^{2}$	3	1	2	$[1,1,1]$	$\{2,1\}$
$I_{3,1}$	3	0	1	$[0,1,2]$	$\{3\}$
$I_{3,2}$	4	0	2	$[0,1,1]$	$\{3,1\}$
$I_{1,1} \oplus I_{2,1}$	5	0	2	$[0,0,1]$	$\{3,2\}$
$I_{1,1}^{3}$	6	0	3	$[0,0,0]$	$\{3,2,1\}$

If $A[p] \simeq I_{3,1}$, then $N P(A)=G_{1,2}+G_{2,1}$ (slopes $1 / 3$ and $2 / 3$) usually but $N P(A)=3 G_{1,1}$ (supersingular) also occurs. $D\left(I_{3,1}\right) \simeq k[F, V] /\left(F^{3}+V^{3}\right)_{\ell}$.
$D\left(I_{3,2}\right) \simeq k[F, V] /\left(F^{2}-V\right)_{\ell} \oplus k[F, V] /\left(V^{2}-F\right)_{\ell}$.

$$
g=4
$$

Computing the p-torsion of curves in characteristic p

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and

There are 16 possibilities for $A[p]$ if $g=4$. Here are the ones with $f=0$.

$g=4, f=0$	codim	f	a	v	μ
$I_{4,1}$	4	0	1	$[0,1,2,3]$	$\{4\}$
$I_{4,2}$	5	0	2	$[0,1,2,2]$	$\{4,1\}$
$I_{1,1} \oplus I_{3,1}$	6	0	2	$[0,1,1,2]$	$\{4,2\}$
$I_{1,1} \oplus I_{3,2}$	7	0	3	$[0,1,1,1]$	$\{4,2,1\}$
$I_{2,1} \oplus I_{2,1}$	7	0	2	$[0,0,1,2]$	$\{4,3\}$
$I_{4,3}$	8	0	3	$[0,0,1,1]$	$\{4,3,1\}$
$I_{1,1}^{2} \oplus I_{2,1}$	9	0	3	$[0,0,0,1]$	$\{4,3,2\}$
$I_{1,1}^{4}$	10	0	4	$[0,0,0,0]$	$\{4,3,2,1\}$

It is not known if these occur for all p as the p-torsion $J_{X}[p]$ of a curve X of genus 4 .

Computing the p-rank and a-number

Computing the
p-torsion of
curves in characteristic

Let C be the Cartier (semi-linear) operator on $H^{0}\left(X, \Omega^{1}\right)$.
The p-rank is $f=\operatorname{dim}\left(\mathrm{im} C^{g}\right)$, Manin.
The a-number is $a=g-r$ where r is the rank of C.
Thus, for fixed p and X, one can compute f_{X} and a_{X}.
Yui worked out C when X hyperelliptic.
Consider $Y: y^{2}=h(x)$ where $h(x)=\prod_{i=1}^{2 g+1}\left(x-\lambda_{i}\right)$.
Let c_{r} be the coefficient of x^{r} in the expansion of $h(x)^{(p-1) / 2}$.
Let A_{g} be the $g \times g$ matrix whose $i j$ th entry is $c_{i p-j}$.
Yui: Y is ordinary if and only if $D=\operatorname{det}\left(A_{g}\right) \neq 0$.
The p-rank of Y is $f_{Y}=\operatorname{rank}(M)$ where $M=\prod_{i=0}^{g-1}\left(A_{g}^{\left(p^{\prime}\right)}\right)$.

An example of the Cartier operator when $p=2$.

Computing the

p-torsion of
curves in characteristic

Let $X: y^{2}+y=h(x)$ with $h(x) \in k[x]$ of odd degree j.
All hyperelliptic curves with 2-rank 0 have this form.
This includes some supersingular curves whose security parameters are as good as possible.
Galbraith: $y^{2}+y=x^{5}+x^{3}, y^{2}+y=x^{9}+x^{4}+1$.
Then $g=(j-1) / 2$ and $f=0$ by Deuring-Shafarevich.
A basis for $H^{0}\left(X, \Omega^{1}\right)$ is $\left\{d x, x d x, \ldots, x^{g-1} d x\right\}$.
$C\left(x^{2 b} d x\right)=0$ and $C\left(x^{2 b+1} d x\right)=x^{b} d x$.
C nilpotent so $f=0$, and $a=\lfloor(g+1) / 2\rfloor$.

More examples

Computing the

Curves found in Galbraith, a-number computed by Elkin.
$p=3, y^{2}=x^{6}+x+2$ has $g=2, f=0, a=1$.
$p=3, y^{2}=x^{7}+1$ has $g=3, f=0$, and $a=1$.
$p=5, y^{2}=x^{5}+2 x^{4}+x^{3}+x+3$ has $g=2, f=0, a=1$.
$p=2, y^{3}=x^{5}+1$ has $g=4, f=0$, and $a=2$.
$p=2, y^{3}=x^{5}+x+1$ has $g=4, f=0$, and $a=2$.
The curve $y^{p}-y=x^{p+1}$ is related to error-correcting codes. It has $g=p(p-1) / 2, f=0$, and $a=g$.
(P) If $p \equiv 1 \bmod j$ and $y^{p}-y=x^{j}$, then $a=(p-1) j / 4$ if j even and $a=(p-1)(j-1)(j+1) / 4 j$ if j odd.

Geometric existence results

Computing the
p-torsion of
curves in
characteristic

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and open questions

For every $p \geq 2$, for every $g \geq 1$, for every $0 \leq f \leq g$ there exists a curve X over $k=\overline{\mathbb{F}}_{p}$ with:
genus g and p-rank f, Faber-van der Geer. genus g and p-rank f with X hyperelliptic if $p \geq 3$, Glass- P. genus g and p-rank f with X hyperelliptic if $p=2$, Zhu.
P : existence results for curves with large p-rank: genus $g \geq 2$ with $f=g-2$ and $a=1$. genus $g \geq 2$ with $f=g-2$ and $a=2$ if $p \geq 5$. genus $g \geq 3$ with $f=g-3$ and $a=1$.

Only Zhu's proof is constructive.
The other proofs are all geometric. There are families of these curves and the results include the dimension of the families.

Construction for $f=g-2$ and $a=2$:

Computing the
p-torsion of curves in characteristic p

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and open questions

Let $\phi_{i}: C_{i} \rightarrow \mathbb{P}^{1}$ be a hyperelliptic cover branched at B_{i} for $i=1,2$. Let $\phi_{3}: C_{3} \rightarrow \mathbb{P}^{1}$ be the hyperelliptic cover branched at $B_{3}=\left(B_{1} \cup B_{2}\right)-\left(B_{1} \cap B_{2}\right)$.

Let $\phi: D \rightarrow \mathbb{P}^{1}$ be the normalized fibre product of ϕ_{1} and ϕ_{2}. It is a $(\mathbb{Z} / 2)^{2}$-cover.

Prop. If $p>2$, then $J_{D}[p] \cong J_{C_{1}}[p] \oplus J_{C_{2}}[p] \oplus J_{C_{3}}[p]$ (isomorphism, not isogeny as in Kani-Rosen)

Theorem

(Glass, P): For $p \geq 5$ and $g \geq 2$, we construct a hyperelliptic curve D with p-rank $g-2$ and a-number 2.

Proof. For g even, there exist $B_{1} \neq B_{2}$ s.t. $g_{C_{1}}=g_{C_{2}}=g / 2$ and $g_{C_{3}}=0$ and $f_{C_{1}}=f_{C_{2}}=g / 2-1$ (uses Yui, Igusa). If g is odd, the proof is similar.

Fun approach for constructing $g=5$ and $a=3$

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be distinct supersingular values;
(i.e. each $E_{i}: y^{2}=x(x-1)\left(x-\lambda_{i}\right)$ is supersingular).

There are $\binom{(p-1) / 2}{3}$ ways to choose $\left\{\lambda_{i}\right\}_{i=1}^{3}$.
Which of the 4 possibilities for $J_{Y}[p]$ occur for the resulting genus two curve $Y: y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$?

For all p, we expect $\left\{\lambda_{i}\right\}_{i=1}^{3}$ exists so Y is ordinary; (this is verified by Ritzenthaler for $7 \leq p<100$).

If so, the fibre product of $\left\{E_{i}\right\}_{i=1}^{3}$ is a hyperelliptic curve of genus 5 , with p-rank 2 and a-number 3.

For some p, there does not exist $\left\{\lambda_{i}\right\}_{i=1}^{3}$ so Y has p-rank 0 .

Method to construct curves with $f=g-2$ and $a=1$.

Computing the

p-torsion of curves in characteristic

Computing

Constructing curves

Moduli spaces

Goal: produce X genus g with $f_{X}=g-2$ and $a_{X}=1$.
Start with Y genus 2 with $f_{Y}=0$ and $a_{Y}=1$.
Ex: $p=2$, look at $y^{2}+y=x^{5}$.
$p=3$, look at $y^{2}=x^{6}+x+2$.
$p=5$, look at $y^{2}=x^{5}+2 x^{4}+x^{3}+x+3$.
Find points of order $\ell=g+1$ on J_{Y} (ok if $p \nmid \ell$).
One of these yields an unramified \mathbb{Z} / ℓ-cover $X \rightarrow Y$ with invariants as above.

Constructing curves with $f=g-3$

All four possibilities for the p-torsion of a curve of genus 3 with $f=0$ do occur.

Prop.[P] Let $p \geq 3$. Let g be odd, $g \not \equiv 1 \bmod p$, and $g \geq 6(p-1)+1$. Then all four possibilities for the p-torsion of a curve X of genus g with p-rank $g-3$ do occur.

Proof: X is produced as an unramified cover of a curve of genus 3, using a result of Raynaud about theta divisors. This leads to restrictions on g.

Questions

Computing the
p-torsion of
curves in
characteristic p

Rachel Pries

Consider $g \geq 1$ and $0 \leq f<g$.
Let X be a curve of genus g with p-rank f.
Then $J_{X}[p]=\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{f} \oplus \mathbb{G}$ where there are 2^{g-f-1} possibilities for the group scheme \mathbb{G}.

It is now natural to ask:
which a-numbers and group schemes \mathbb{G} actually occur? If \mathbb{G} occurs, describe the corresponding sublocus of \mathcal{M}_{g} : how many components? what are their dimensions?

If $f=g$, then $J_{X}[p] \simeq\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g}$ and $a_{x}=0$.
If $f=g-1$, then $J_{X}[p] \simeq\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g-1} \oplus I_{1}$ and $a_{X}=1$.
For arbitrary g and $f \leq g-2$, there are not many results.

The generic group scheme for p-rank f

Computing the
p-torsion of
curves in
characteristic
p
Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces

Conj. A generic curve of genus g and p-rank f has a-number 1 if $f \leq g-1$.
$[\mathrm{P}]$ proved when $f \geq g-3$ and reduced proof in other cases to the base case $f=0$.

The conditions p-rank f and a-number 1 determine a unique group scheme: $J_{X}[p] \simeq\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{f} \oplus I_{g-f, 1}$. Here $I_{r, 1}$ is the unique choice of \mathbb{G} with rank $p^{2 r}$, p-rank 0 , and a-number 1 .
$I_{1,1}$ occurs as the p-torsion for a supersingular elliptic curve. $l_{2,1}$, for a supersingular non-superspecial abelian surface.

The covariant Dieudonné module for $I_{r, 1}$ has relation $F^{r}=V^{r}$.

Open questions for small genus

Hyperelliptic curves of genus 3 and p-rank 0

© How many components does this space have?
(2) Does supersingular locus intersect each component?

Curves of genus $g \geq 4$
Unfortunately very little is known for $g_{0} \geq 4$ and $f=0$.
(1) Does there exist a curve with p-rank 0 and a-number 1 ?
(2) Does there exist a curve with p-rank $g-3$ and $a=3$?

Computational evidence for many p should be feasible. Is there a systematic way to produce these curves for all g, p ?

Summary

```
Computing the
    p-torsion of
    curves in
characteristic
- The Cartier operator is useful for computing invariants of the \(p\)-torsion \(J_{X}[p]\).
- We construct curves \(X\) with interesting \(p\)-torsion \(J_{X}[p]\).
- We use geometric methods to show there exist (hyperelliptic) curves of genus \(g\) with \(p\)-rank \(f\).
- In some cases, we can find the a-number of these curves.

Thanks!

\section*{Moduli spaces}

Computing the
\(p\)-torsion of
curves in characteristic \(p\)

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and open
questions

Consider the moduli space \(\mathcal{M}_{g}\) of \(k\)-curves of genus \(g\) or the moduli space \(\mathcal{H}_{g}\) of hyperelliptic \(k\)-curves of genus \(g\).
(All curves are smooth, connected, and projective.)
Recall \(\operatorname{dim}\left(\mathcal{M}_{g}\right)=3 g-3\) and \(\operatorname{dim}\left(\mathcal{H}_{g}\right)=2 g-1\).
Let \(V_{g, f} \subset \mathcal{M}_{g}\) consist of all curves with \(p\)-rank \(f_{X} \leq f\).
\(V_{g, 0} \subset V_{g, 1} \subset \ldots \subset V_{g, g-1} \subset V_{g, g}=\mathcal{M}_{g}\).
Oort described the stratification of \(\mathcal{A}_{g}\) by \(p\)-rank.
Faber \& Van der Geer: every component of \(V_{g, f}\) has codimension \(g-f\) in \(\mathcal{M}_{g}\) (dimension \(2 g+f-3\) ).
(Glass, P): For \(p \geq 3\), every component of \(V_{g, f} \cap \mathcal{H}_{g}\) has codimension \(g-f\) in \(\mathcal{H}_{g}(\operatorname{dim} g+f-1)\).

\section*{Boundary approach: when \(g \geq 2\) and \(f=g-2\)}

Computing the
\(p\)-torsion of
curves in characteristic

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing curves

Moduli spaces
Summary and
questions

Then \(J_{x}[p]\) is \((A)\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g-2} \oplus I_{2}\left(\right.\) with \(\left.a_{x}=1\right)\) or
(B) \(\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g-2} \oplus\left(I_{1}\right)^{2}\left(\right.\) with \(\left.a_{X}=2\right)\).

\section*{Theorem}
\((P)\) : Case (A) occurs for the generic point of every component of \(V_{g, g-2} \cap \mathcal{M}_{g}\) and (for \(p \geq 3\) ) of \(V_{g, g-2} \cap \mathcal{H}_{g}\).

If \(p \geq 5\), then case \((B)\) occurs with codimension 3 in \(\mathcal{M}_{g}\).

So case (A) occurs in codim 2 in \(\mathscr{M}_{g}\) (and in \(\mathcal{H}_{g}\) for \(p \geq 3\) ). Precisely, let \(T_{g, 2} \subset \mathscr{M}_{g}\) be the locus of curves \(X\) with \(a_{X} \geq 2\). Every component of \(T_{g, 2}\) has dimension \(3 g-6\).
The generic point of every component of \(T_{g, 2}\) has type (B).

\section*{Boundary approach: when \(g \geq 3\) and \(f=g-3\)}

\section*{Computing the}
\(p\)-torsion of curves in characteristic \(p\)

Rachel Pries

Introduction
Invariants
Computing invariants

Constructing
curves
Moduli spaces

Then \(J_{X}[p] \simeq\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g-3} \oplus \mathbb{G}\) where \(\mathbb{G}\) is:
(i) \(\mathbb{G}=I_{3}\), (ii) \(\mathbb{G}=I_{3}^{\prime}\), (iii) \(\mathbb{G}=I_{2} \oplus I_{1}\), or (iv) \(\mathbb{G}=\left(I_{1}\right)^{3}\).

\section*{Theorem}
(P): Case (i) (p-rank g-3 and \(a_{X}=1\) ) occurs for the generic point of every component of \(V_{g, g-3} \cap \mathscr{M}_{g}\).

So case (i) occurs with dimension \(3 g-6\) (codim 3 in \(\mathcal{M}_{g}\) ).```

