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Abstract

New invariants occur for the p-torsion of Jacobians of
curves in characteristic p, such as the p-rank and a-number.

Some of these invariants are relevant for cryptography.

In this talk, I will describe these invariants and explain how
to compute them.

I will give some results about the construction of curves with
given invariants.

If time permits, I will describe the geometry of the moduli
spaces of curves with given invariants.
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p-torsion in the complex case

Let E = C/L be a complex elliptic curve (genus 1).

The p-torsion E [p] is the kernel of multiplication by p.

Then E [p] = 1
p L/L' (Z/p)2.

More generally,

Let X be a Riemann surface of genus g with Jacobian JX .

Then JX is a p.p. abelian variety of dimension g.

Also JX [p]' (Z/p)2g .
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p-torsion in characteristic p

Let k = Fp, an algebraically closed field of characteristic p.

If E is an elliptic curve over k , then |E [p](k)|< p2.

Typically, |E [p](k)|= p and E is ordinary.

Otherwise, |E [p](k)|= 1 and E is supersingular.

There are exactly (p−1)/2 choices of λ for which the elliptic
curve y2 = x(x −1)(x −λ) is supersingular, Igusa.

The elliptic curve y2 = h(x) is supersingular iff the
coefficient of xp−1 in h(x)(p−1)/2 is 0.
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Example of points of order p collapsing mod p

E : y2 = x3 +ax2 +bx +c.
A point Q ∈ E has order 3 iff x(2Q) = x(Q).

This occurs iff x(Q) is a root of

ψ3(x) = 3x4 +4ax3 +6bx2 +12cx +4ac−b2.

Now ψ3(x) has 4 distinct roots in C so |EC[3]|= 9.

Let p = 3. Then ψ3(x)≡ ax3 +(ac−b2) mod 3

ψ3(x) has

{
a triple root a 6≡ 0 mod 3

no roots a≡ 0 mod 3

So |E [3](k)| divides 3.
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Supersingular elliptic curves in cryptography

Due to Frey-Rück attack, supersingular elliptic curves are
weak for cryptography, Menezes-Okamato-Vanstone.

Similar phenomenon occurs for supersingular abelian
varieties, Galbraith.

Rubin/Silverberg: "For some cryptographic applications
[identity based encryption, short signature schemes]
supersingular elliptic curves turn out to be very good."

There is active research on the security parameters of these
abelian varieties.

What are the invariants of the p-torsion for these abelian
varieties?
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The p-rank of JX [p]

Let X be a smooth projective k -curve of genus g.

Its Jacobian JX is a p. p. abelian variety of dimension g.

Then |JX [p](k)|= pfX for some 0≤ fX ≤ g.

We say that fX is the p-rank of X .

Note: we count the number of points over k not over Fq.

Also, fX = dimFpHom(µp,JX [p]).
µp ' Spec(k [x ]/(xp−1)) is the kernel of Frobenius on Gm.

Def: X is ordinary if f = g and this happens generically.

The p-rank can only go down under specialization, Katz.
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Supersingularity and points of order p

Def: An abelian variety A is supersingular if A is isogenous
to ×g

1Ei where Ei are supersingular elliptic curves.

A supersingular iff the slopes of Newton polygon are all 1/2.

The p-rank is an isogeny invariant.

If A is supersingular, then the p-rank of A is 0.

The converse is false for g ≥ 3.

Let p = 2 and g = 2n−1.
Let y2 +y = h(x) with h(x) ∈ k [x ] and deg(h(x)) = 2g +1.
This has genus g and p-rank 0, but there are no
supersingular hyperelliptic curves of this genus (Zhu).
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The a-number

The a-number of X is aX = dimk Hom(αp,JX [p]).

αp ' Spec(k [x ]/xp) is the kernel of Frobenius on Ga.

The a-number measures the intersection of the image of F
and V on the Dieudonné module.

The a-number can only increase under specialization, Oort.

If f = 0, then a≥ 1. Also a+ f ≤ g.

Let E1, . . . ,Eg be supersingular elliptic curves.
Then a = g iff A'×g

i=1Ei (A superspecial).

Superspecial curves are rare.
They occur only if g ≤ (p2−p)/2, Ekedahl (see also Re).



Computing the
p-torsion of
curves in

characteristic
p

Rachel Pries

Introduction

Invariants

Computing
invariants

Constructing
curves

Moduli spaces

Summary and
open
questions

More about the a-number

The a-number is not an isogeny invariant.

Let E1,E2 be supersingular elliptic curves.

If A' E1×E2, then a = 2.

If A isogenous to E1×E2 but A 6' E1×E2 then a = 1.

The p-rank and the a-number do not determine the
isomorphism class of the group scheme A[p].

The group scheme A[p] can be described using Dieudonné
modules, Ekedahl-Oort types ν, Young diagrams µ, or cycle
classes.
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g = 1:

A[p] codim f a ν µ cycle class

L 0 1 0 [1] /0 λ0

I1,1 1 0 1 [0] {1} (p−1)λ1

Group schemes:
L = Z/p⊕µp.
I1,1 given by 0→ αp → I1,1 → αp → 0 (non-split).

Occur as p-torsion:
If E is an ordinary elliptic curve then E [p]' L.
If E is a supersingular elliptic curve, then E [p]' I1,1.

Dieudonné modules:
D(Z/p⊕µp)' k [F ,V ]/(F ,1−V )`⊕k [F ,V ]/(V ,1−F )`.
D(I1,1)' k [F ,V ]/(F +V )`.
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g = 2:

A[p] codim f a ν µ cycle class

L2 0 2 0 [1,2] /0 λ0

L⊕ I1,1 1 1 1 [1,1] {1} (p−1)λ1

I2,1 2 0 1 [0,1] {2} (p−1)(p2−1)λ2

I2
1,1 3 0 2 [0,0] {2,1} (p−1)(p2 +1)λ1λ2

Group scheme:
Here αp ⊂ H ⊂ I2,1 where H/αp ' αp⊕αp, and I2,1/H ' αp.

Dieudonné module:
D(I2,1)' k [F ,V ]/(F 2 +V 2)`.

Newton polygons:
2G1,1 (supersingular) occurs for both (I1,1)

2 and I2,1.
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g = 3:

A[p] codim f a ν µ

L3 0 3 0 [1,2,3] /0
L2⊕ I1,1 1 2 1 [1,2,2] {1}
L⊕ I2,1 2 1 1 [1,1,2] {2}
L⊕ I2

1,1 3 1 2 [1,1,1] {2,1}
I3,1 3 0 1 [0,1,2] {3}
I3,2 4 0 2 [0,1,1] {3,1}
I1,1⊕ I2,1 5 0 2 [0,0,1] {3,2}
I3
1,1 6 0 3 [0,0,0] {3,2,1}

If A[p]' I3,1, then NP(A) = G1,2 +G2,1 (slopes 1/3 and 2/3)
usually but NP(A) = 3G1,1 (supersingular) also occurs.
D(I3,1)' k [F ,V ]/(F 3 +V 3)`.
D(I3,2)' k [F ,V ]/(F 2−V )`⊕k [F ,V ]/(V 2−F )`.
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g = 4:

There are 16 possibilities for A[p] if g = 4.
Here are the ones with f = 0.

g = 4, f = 0 codim f a ν µ

I4,1 4 0 1 [0,1,2,3] {4}
I4,2 5 0 2 [0,1,2,2] {4,1}
I1,1⊕ I3,1 6 0 2 [0,1,1,2] {4,2}
I1,1⊕ I3,2 7 0 3 [0,1,1,1] {4,2,1}
I2,1⊕ I2,1 7 0 2 [0,0,1,2] {4,3}
I4,3 8 0 3 [0,0,1,1] {4,3,1}
I2
1,1⊕ I2,1 9 0 3 [0,0,0,1] {4,3,2}

I4
1,1 10 0 4 [0,0,0,0] {4,3,2,1}

It is not known if these occur for all p as the p-torsion JX [p]
of a curve X of genus 4.
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Computing the p-rank and a-number

Let C be the Cartier (semi-linear) operator on H0(X ,Ω1).

The p-rank is f = dim(imCg), Manin.

The a-number is a = g− r where r is the rank of C.

Thus, for fixed p and X , one can compute fX and aX .

Yui worked out C when X hyperelliptic.

Consider Y : y2 = h(x) where h(x) = ∏2g+1
i=1 (x −λi).

Let cr be the coefficient of x r in the expansion of h(x)(p−1)/2.
Let Ag be the g×g matrix whose ij th entry is cip−j .

Yui: Y is ordinary if and only if D = det(Ag) 6= 0.

The p-rank of Y is fY = rank(M) where M = ∏g−1
i=0 (A(pi )

g ).
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An example of the Cartier operator when p = 2.

Let X : y2 +y = h(x) with h(x) ∈ k [x ] of odd degree j .

All hyperelliptic curves with 2-rank 0 have this form.

This includes some supersingular curves whose security
parameters are as good as possible.
Galbraith: y2 +y = x5 +x3, y2 +y = x9 +x4 +1.

Then g = (j−1)/2 and f = 0 by Deuring-Shafarevich.

A basis for H0(X ,Ω1) is {dx ,xdx , . . . ,xg−1dx}.

C(x2bdx) = 0 and C(x2b+1dx) = xbdx .

C nilpotent so f = 0, and a = b(g +1)/2c.
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More examples

Curves found in Galbraith, a-number computed by Elkin.
p = 3, y2 = x6 +x +2 has g = 2, f = 0, a = 1.
p = 3, y2 = x7 +1 has g = 3, f = 0, and a = 1.
p = 5, y2 = x5 +2x4 +x3 +x +3 has g = 2, f = 0, a = 1.
p = 2, y3 = x5 +1 has g = 4, f = 0, and a = 2.
p = 2, y3 = x5 +x +1 has g = 4, f = 0, and a = 2.

The curve yp−y = xp+1 is related to error-correcting codes.
It has g = p(p−1)/2, f = 0, and a = g.

(P) If p ≡ 1 mod j and yp−y = x j , then a = (p−1)j/4 if j
even and a = (p−1)(j−1)(j +1)/4j if j odd.
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Geometric existence results

For every p ≥ 2, for every g ≥ 1, for every 0≤ f ≤ g there
exists a curve X over k = Fp with:

genus g and p-rank f , Faber-van der Geer.
genus g and p-rank f with X hyperelliptic if p ≥ 3, Glass-P.
genus g and p-rank f with X hyperelliptic if p = 2, Zhu.

P: existence results for curves with large p-rank:
genus g ≥ 2 with f = g−2 and a = 1.
genus g ≥ 2 with f = g−2 and a = 2 if p ≥ 5.
genus g ≥ 3 with f = g−3 and a = 1.

Only Zhu’s proof is constructive.
The other proofs are all geometric. There are families of
these curves and the results include the dimension of the
families.
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Construction for f = g−2 and a = 2:

Let φi : Ci → P1 be a hyperelliptic cover branched at Bi for
i = 1,2. Let φ3 : C3 → P1 be the hyperelliptic cover branched
at B3 = (B1∪B2)− (B1∩B2).

Let φ : D → P1 be the normalized fibre product of φ1 and φ2.
It is a (Z/2)2-cover.

Prop. If p > 2, then JD[p]∼= JC1
[p]⊕JC2

[p]⊕JC3
[p]

(isomorphism, not isogeny as in Kani-Rosen)

Theorem

(Glass, P): For p ≥ 5 and g ≥ 2, we construct a hyperelliptic
curve D with p-rank g−2 and a-number 2.

Proof. For g even, there exist B1 6= B2 s.t. gC1
= gC2

= g/2
and gC3

= 0 and fC1
= fC2

= g/2−1 (uses Yui, Igusa).
If g is odd, the proof is similar.
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Fun approach for constructing g = 5 and a = 3

Let λ1,λ2,λ3 be distinct supersingular values;
(i.e. each Ei : y2 = x(x −1)(x −λi) is supersingular).
There are

((p−1)/2
3

)
ways to choose {λi}3

i=1.

Which of the 4 possibilities for JY [p] occur for the resulting
genus two curve Y : y2 = x(x −1)(x −λ1)(x −λ2)(x −λ3)?

For all p, we expect {λi}3
i=1 exists so Y is ordinary;

(this is verified by Ritzenthaler for 7≤ p < 100).

If so, the fibre product of {Ei}3
i=1 is a hyperelliptic curve of

genus 5, with p-rank 2 and a-number 3.

For some p, there does not exist {λi}3
i=1 so Y has p-rank 0.
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Method to construct curves with f = g−2 and
a = 1.

Goal: produce X genus g with fX = g−2 and aX = 1.

Start with Y genus 2 with fY = 0 and aY = 1.

Ex: p = 2, look at y2 +y = x5.
p = 3, look at y2 = x6 +x +2.
p = 5, look at y2 = x5 +2x4 +x3 +x +3.

Find points of order ` = g +1 on JY (ok if p - `).

One of these yields an unramified Z/`-cover X → Y with
invariants as above.
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Constructing curves with f = g−3

All four possibilities for the p-torsion of a curve of genus 3
with f = 0 do occur.

Prop. [P] Let p ≥ 3. Let g be odd, g 6≡ 1 mod p, and
g ≥ 6(p−1)+1. Then all four possibilities for the p-torsion
of a curve X of genus g with p-rank g−3 do occur.

Proof: X is produced as an unramified cover of a curve of
genus 3, using a result of Raynaud about theta divisors.
This leads to restrictions on g.



Computing the
p-torsion of
curves in

characteristic
p

Rachel Pries

Introduction

Invariants

Computing
invariants

Constructing
curves

Moduli spaces

Summary and
open
questions

Questions

Consider g ≥ 1 and 0≤ f < g.

Let X be a curve of genus g with p-rank f .

Then JX [p] = (Z/p⊕µp)f ⊕G where there are 2g−f−1

possibilities for the group scheme G.

It is now natural to ask:

which a-numbers and group schemes G actually occur?

If G occurs, describe the corresponding sublocus of Mg :
how many components? what are their dimensions?

If f = g, then JX [p]' (Z/p⊕µp)g and aX = 0.
If f = g−1, then JX [p]' (Z/p⊕µp)g−1⊕ I1 and aX = 1.

For arbitrary g and f ≤ g−2, there are not many results.
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The generic group scheme for p-rank f

Conj. A generic curve of genus g and p-rank f has
a-number 1 if f ≤ g−1.

[P] proved when f ≥ g−3 and reduced proof in other cases
to the base case f = 0.

The conditions p-rank f and a-number 1 determine a unique
group scheme: JX [p]' (Z/p⊕µp)f ⊕ Ig−f ,1.
Here Ir ,1 is the unique choice of G with rank p2r , p-rank 0,
and a-number 1.

I1,1 occurs as the p-torsion for a supersingular elliptic curve.
I2,1, for a supersingular non-superspecial abelian surface.

The covariant Dieudonné module for Ir ,1 has relation
F r = V r .
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Open questions for small genus

Hyperelliptic curves of genus 3 and p-rank 0

1 How many components does this space have?
2 Does supersingular locus intersect each component?

Curves of genus g ≥ 4
Unfortunately very little is known for g0 ≥ 4 and f = 0.

1 Does there exist a curve with p-rank 0 and a-number 1?
2 Does there exist a curve with p-rank g−3 and a = 3?

Computational evidence for many p should be feasible. Is
there a systematic way to produce these curves for all g,p?
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Summary

The Cartier operator is useful for computing invariants
of the p-torsion JX [p].

We construct curves X with interesting p-torsion JX [p].

We use geometric methods to show there exist
(hyperelliptic) curves of genus g with p-rank f .

In some cases, we can find the a-number of these
curves.

Thanks!
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Moduli spaces

Consider the moduli space Mg of k -curves of genus g
or the moduli space Hg of hyperelliptic k -curves of genus g.

(All curves are smooth, connected, and projective.)

Recall dim(Mg) = 3g−3 and dim(Hg) = 2g−1.

Let Vg,f ⊂Mg consist of all curves with p-rank fX ≤ f .

Vg,0 ⊂ Vg,1 ⊂ . . .⊂ Vg,g−1 ⊂ Vg,g = Mg .

Oort described the stratification of Ag by p-rank.

Faber & Van der Geer: every component of Vg,f has
codimension g− f in Mg (dimension 2g + f −3).

(Glass, P): For p ≥ 3, every component of Vg,f ∩Hg has
codimension g− f in Hg (dim g + f −1).
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Boundary approach: when g ≥ 2 and f = g−2

Then JX [p] is (A) (Z/p⊕µp)g−2⊕ I2 (with aX = 1) or

(B) (Z/p⊕µp)g−2⊕ (I1)2 (with aX = 2).

Theorem

(P): Case (A) occurs for the generic point of every
component of Vg,g−2∩Mg and (for p ≥ 3) of Vg,g−2∩Hg .

If p ≥ 5, then case (B) occurs with codimension 3 in Mg .

So case (A) occurs in codim 2 in Mg (and in Hg for p ≥ 3).

Precisely, let Tg,2 ⊂Mg be the locus of curves X with aX ≥ 2.

Every component of Tg,2 has dimension 3g−6.

The generic point of every component of Tg,2 has type (B).
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Boundary approach: when g ≥ 3 and f = g−3

Then JX [p]' (Z/p⊕µp)g−3⊕G where G is:

(i) G = I3, (ii) G = I ′3, (iii) G = I2⊕ I1, or (iv) G = (I1)3.

Theorem

(P): Case (i) (p-rank g−3 and aX = 1) occurs

for the generic point of every component of Vg,g−3∩Mg .

So case (i) occurs with dimension 3g−6 (codim 3 in Mg).
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