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Preliminaries

q = a power of an odd prime

Fq = the finite field with q elements.

T = any transcendental element over Fq

A = Fq[T ]←→ Z

k = Fq(T )←→ Q

k = the rational function field

If K is any finite extension of k, then K is called a
global function field.



Just like in the integers, there is one more prime in
k in addition to the “finite” primes or monic, irreducible
polynomials.

Prime at Infinity:

∞ = localization of Fq

[
1

T

]
at

1

T

ord∞

(
f

g

)
= deg(g)− deg(f)

|f |∞ = qdeg(f)

A∞ =

{
f

g

∣∣∣ deg(g) ≥ deg(f)

}



The Ideal Class Group

OK ⊂ K OK ⊂ K

| | | |

Z ⊂ Q Fq[T ] ⊂ k = Fq(T )

OK = the ring of integers of K

= the integral closure of Z or Fq[T ] in K

ClK = the ideal class group of OK



Main Question: Can we construct number fields and
function fields (preferably infinitely many) whose class
groups have certain properties?

• class number 1?

• class number divisible by n?

• class number indivisible by n?

• class group G?

• class group with subgroup G?

In particular, we are interested in the n-rank of ClK
for a given integer n, that is, the greatest integer r with
the property that

(Z/nZ)r ⊂ ClK.



Gauss

• Q(
√

d) has even class number if and only if d is
divisible by at least two distinct primes

• Q(
√

d) has 2-rank r− 1 if r is the number of dis-
tinct primes dividing d



Class Number Divisible by n

Theorem. Infinitely many imaginary quadratic num-
ber fields have class number divisible by n.

Nagell (1922), Ankeny & Chowla (1955)

Theorem. Infinitely many real quadratic number fields
have class number divisible by n.

Yamamoto (1970), Weinberger (1973)

Theorem. Infinitely many quadratic function fields have
ideal class number divisible by n.

Friesen (1991)



Cohen - Lenstra Heuristics (1983)

A finite abelian group G seems to occur as the class
group of an imaginary quadratic field with a frequency
inversely proportional to the size of the automorphism
group of G.

Conjecture: The number of imaginary quadratic num-
ber fields with class number divisible by an odd prime
p is

1−
∞∏

i=1

(
1−

1

pi

)
.

Conjecture: The number of real quadratic number
fields with class number divisible by an odd prime p

is

1−
∞∏

i=2

(
1−

1

pi

)
.



Cohen - Lenstra Heuristics

-generalized to number fields of any degree and over
any base field by Cohen and Martinet (1987)

-function field analogue by Friedman and Washington
(1989)

The only known results are for quadratic number fields
with class number divisible by 3 (Davenport & Heil-
bronn, 1971) and for function fields (Achter, 2006).



Progress

In the past several years, several quantitative results
have appeared which give lower bounds on the num-
ber of fields with bounded discriminant and class num-
ber divisible by n ≥ 3.

Murty (1999):

(i) The number of imaginary quadratic number fields
whose absolute discriminant is ≤ x and whose class
number is divisible by n is� x

1
2+

1
n.

(ii) If n is odd or 2 ‖ n, then the number of real
quadratic fields with discriminant ≤ x and class num-
ber divisible by n is� x

1
2n−ε for any ε > 0.

(Ankeny & Chowla’s results gave lower bound of x1/2

for the imaginary case.)



Function Field Analogue

Cardon & Murty (2001):

Let q be a power of an odd prime, n ≥ 3. The number
of quadratic function fields Fq(T )(

√
D) with deg(D) ≤ x

and class number divisible by n is qx(1
2+

1
n).



Improved Bounds

Imaginary Quadratic Number Fields

4 | n: x
1
2+

2
n−ε for all ε > 0

4 | (n− 2): x
1
2+

3
n+2−ε (Soundararajan, 2000)

Real Quadratic Number Fields

n odd: x
1
n−ε for all ε > 0 (Yu, 2002)

n = 3: x5/6 (Chakraborty & Murty, 2003)

n = 3: x7/8 (Byeon & Koh, 2003)

Real Quadratic Function Fields

n odd: qx/n

x2

n even: qx/2n (Chakraborty & Mukhopadhyay, 2006)



Higher Degree Extensions

Theorem. (Bilu & Luca, 2005)

Given positive integers m and n, m ≥ 3, there exist
positive numbers X0(m, n) and c(m, n) such that for
any X > X0(m, n) there are at least c(m, n)Xµ pair-
wise non-isomorphic totally real number fields of de-
gree m, with discriminant not exceeding X, and with
class number divisible by n, where µ = 1

2(m−1)n.

For m = 2, we get a lower bound of x
1
2n .



Higher Degree Extensions - function fields

Let l be a prime dividing q − 1. If n is a fixed positive
integer that satisfies

1) n > l2 − l,

2) n has no prime divisors less than l, and

3) 1
l −

1
n > log 2

log q ,

then there are � qx(1
l +

1
n) cyclic extensions K =

Fq(T )( l
√

D) of Fq(T ) with deg(D) ≤ x and class
number divisible by n.

If q > 2l, but n is an integer that fails to satisfy one of
the three conditions above:

qx(1
l +

1
nt), t > 1



Idea of Proof

Take monic f, g ∈ Fq[T ] with deg(gl) > deg(fn),

and a ∈ F×q with −a not an l-th power. Let

D = gl − afn.

• Construct an element of order n in ClK for K =

Fq(T,
√

D).

• Use sieve methods to find a lower bound on the
number of f and g for which D is l-th power-free.

• Check for duplication.



Constructing an Element of Order n in ClK

Let ζ ∈ Fq be a primitive l-th root of unity.

D = gl − afn

(fn) = (gl−D) = (g− l√
D)(g−ζ

l√
D) · · · (g−ζl−1 l√

D)



Constructing an Element of Order n in ClK

Let ζ ∈ Fq be a primitive l-th root of unity.

D = gl − afn

(fn) = (gl−D) = (g− l√
D)(g−ζ

l√
D) · · · (g−ζl−1 l√

D)

The ideals on the right are pairwise relatively prime,
so there exists an ideal a with

an = (g − l√
D).

Let r be the order of a in ClK . We will show that

r = n.

Choose v ∈ OK with

ar = (v).



Constructing an Element of Order n in ClK

For ideals b ⊂ OK , define

|b| = |OK/b|.

(fn) = (gl−D) = (g− l√
D)(g−ζ

l√
D) · · · (g−ζl−1 l√

D)

Then

|an|l = |(fn)| = qnl deg(f),

so

|(v)| = |ar| = qr deg(f).



We can show that

deg(N(v)) ≥
1

l − 1
deg(D).

Then

qr deg(f) = |a|r = |(v)| = |N(v)| = qdeg(N(v))

≥ q
deg(D)

l−1

= q
deg(gl−afn)

l−1

= q
ndeg(f)

l−1 ,

which implies that
n

r
≤ l − 1.

But n
r is an integer dividing n, so by the hypothesis we

must have that n = r, as desired.



n-Rank in Quadratic Number Fields

Cohen-Lenstra: Probability that odd part of class group
of an imaginary quadratic field is cyclic > 97%

Probability that p-rank = r ( p > 2):

1

pr2

∞∏
i=1

(
1−

1

pi

) ∏
1≤i≤r

(
1−

1

pi

)−2

Infinitely many imaginary quadratic number fields have
n-rank ≥ 2. (Yamamoto, 1970)

Infinitely many imaginary quadratic number fields have
3-rank at least 3. (Craig, 1973)

Algorithm for generating quadratic fields with 3-rank at
least 2. (Diaz y Diaz, 1978)

Current record: 3 imaginary quadratic fields with 3-
rank 6. (Llorente & Quer, 1987)

Infinitely many real and imaginary quadratic number
fields with 5-rank ≥ 3. (Mestre, 1992)



3-Rank in Quadratic Number Fields

Theorem (with Erickson, Kaplan, Mendoza, and Shayler).
Let w ≡ ±1 (mod 6), and let c be any integer with
c ≡ w (mod 6). If d =

c (w2+18cw+108c2)(4w3−27cw2−486c2w−2916c3),

then Q(
√

d) has 3-rank at least 2.

-Proven by the 2005 Algebraic Number Theory group
at the SMALL REU at Williams College.



More Generally

Theorem. (with F. Luca)

Choose integers a and b such that

(a, b) ≡ (1,11), (11,1) (mod 30).

Choose positive integers α and β such that

α ≡ 6,24 (mod 30), β ≡ 7,13,17,23 (mod 30),

gcd(α, a− 18bβ2) = 1,gcd(a, β) = 1,

gcd(a, b(α2 − β2)) = 1.

If d = 8bβ2(a2 + 18ac + 108c2)∗

(4a3 − 216bβ2(a2 + 18ac + 108c2)),

then K = Q[
√

d] has 3-rank at least 2.



Idea of Proof
Recall that the Hilbert Class Field H of K is the

maximal, unramified, abelian extension of K, and that

Gal(H/K) ∼= ClK.

H

|

L

|

K

|

Q

3|hK ⇔ Kadmits a cyclic, unramified degree 3 extension.

In fact, the 3-rank of K is equal to n if and only if there

are exactly
3n − 1

2
cyclic, unramified extensions of K degree 3.



Kishi and Miyake’s Result

Theorem (Kishi/Miyake, 2000). Choose u, w ∈ Z and
let g(Z) = Z3 − uwZ − u2. If

(i) d = 4uw3 − 27u2 is not a square in Z;

(ii) u and w are relatively prime;

(iii) g(Z) is irreducible;

(iv) One of the following conditions holds:

I. 3 - w;

II. 3 | w, uw 6≡ 3 (mod 9), u ≡ w ± 1 (mod 9);

III. 3 | w, uw ≡ 3 (mod 9), u ≡ w ± 1 (mod 27),

then K = Q(
√

d) has class number divisible by 3.
Conversely, every quadratic number field K with class
number divisible by 3 and every unramified cyclic cu-
bic extension of K is given by a suitable choice of in-
tegers u and w.



The Parameterizations

Let

u = 8bβ2(a2 + 18ac + 108c2),

v = a,

x = 8bα2(a2 + 18ac + 108c2),

y = a + 18c.

Claim: The pairs (u, w) and (x, y) satisfy the hy-
potheses for Kishi and Miyake’s theorem.

Thus, Q(
√

4w3 − 27u) and Q(
√

4y3 − 27x) each
admit cyclic, cubic, unramified extensions.



θ1 = root of Z3 − uwZ − u2

θ2 = root of Z3 − xyZ − x2.

Then the cubic fields Q(θ1) and Q(θ2) have discrim-
inants which differ by a square factor, so

So Q(
√

4w3 − 27u) = Q(
√

d) = Q(
√

4y3 − 27x).

Thus Q(
√

d) has two cyclic, unramified cubic
extensions L1 and L2, where Li is the normal closure of

Q(θi). So Q(
√

d) has 3-rank at least 2.
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#
#

#
#

c
c

c
c

c
c

J
J

JJ

L1L2

Q(θ1)Q(θ2) Q(
√

d)

��
���

���
���

H
HHHH

HHH
HHH

Q

unramified

33

22

2 Z3 − uwZ − u2Z3 − xyZ − x2



Quantitative Results

Theorem. (with F. Luca)

For every ε > 0, there exists x0 = x0(ε) such that
if x > x0, then there are ≥ x1/3−ε real quadratic
number fields K with ∆K ≤ x whose class group has
3-rank at least 2. The same result is true for complex
quadratic number fields with |∆K| ≤ x.

This lower bound agrees with Byeon’s result (2006) on
the number of imaginary quadratic number fields with
n-rank ≥ 2.



n-Rank in Quadratic Function Fields

Function field analogue of theorem above. (current
work)

Algorithm for generating quadratic function fields with
3-rank ≥ 2,3 (other results as well). (Bauer, Jacob-
son, Lee, Scheidler)

Infinitely many real and imaginary quadratic function
fields have n-rank ≥ 2. (with Spencer)



Higher Degree Extensions

Theorem (Azuhata, Ichimura, 1982). For any positive
integers m and n with m > 1, there are infinitely many
number fields K of degree m = r1 + 2r2 such that

1) r2 ≥ 1, and

2) ClK contains a subgroup isomorphic to (Z/nZ)r2.

n-rank + unit rank ≥ m− 1



Higher Degree Extensions

Theorem (Azuhata, Ichimura, 1982). For any positive
integers m and n with m > 1, there are infinitely many
number fields K of degree m = r1 + 2r2 such that

1) r2 ≥ 1, and

2) ClK contains a subgroup isomorphic to (Z/nZ)r2.

Theorem (Nakano, 1986). For any positive integers
m and n with m > 1, and any non-negative integers
r1 and r2 with r1+2r2 = m, there are infinitely many
number fields K of degree m over Q such that

1) r1 is the number of real embeddings of K into C,

2) ClK contains a subgroup isomorphic to (Z/nZ)r2+1.

n-rank + unit rank ≥ m



Real vs. Imaginary Function Fields

Number Fields: Rank of Units = r1 + r2 − 1

Function Fields: Rank = (# of primes over∞) −1



Real vs. Imaginary Function Fields

Number Fields: Rank of Units = r1 + r2 − 1

Function Fields: Rank = (# of primes over∞) −1

Number Fields Function Fields

Max. Unit Rank Real ∞ splits completely

Min. Unit Rank Imaginary ∞ totally ramified/inert

So we say a function field K/k is real is the prime at
infinity in k splits completely in K and imaginary if the
prime at infinity in k is totally ramified or inert in K.



Function Fields - Imaginary Case

Theorem. For any relatively prime integers m and
n, not divisible by the characteristic of Fq(T ), with
m, n > 1, there exist infinitely many function fields
K of degree m over k = Fq(T ) such that

1) the prime at infinity is totally ramified in K , and

2) ClK contains a subgroup isomorphic to (Z/nZ)m−1.

Infinity inert (with Y. Lee): Same rank under certain
conditions on n, m, and q

n-rank + unit rank ≥ m− 1.



Function Fields - Real Case

Theorem. For any relatively prime integers m and
n, not divisible by the characteristic of Fq(T ), with
m, n > 1, there exist infinitely many function fields
K of degree m over k = Fq(T ) such that

1) the prime at infinity splits completely in K, and

2) ClK contains a subgroup isomorphic to Z/nZ.

n-rank + unit rank ≥ m



General Case

Theorem. Let m and n be any positive integers, not
divisible by the characteristic of F(T ), with n > 1. If
g is an integer with 2 ≤ g ≤ m − 1, then there are
infinitely many function fields K of degree m over k

such that

1) the prime at infinity in k splits into exactly g primes
in K, one with ramification index m − g + 1, the rest
unramified, all with relative degree 1, and

2) ClK contains an abelian subgroup isomorphic to
(Z/nZ)m−g.

n-rank + unit rank ≥ m− 1.

Improved to m (with Y. Lee) when infinity is inert, un-
der certain conditions.

Improved to m by Y. Lee in certain cases.



Idea of Proof

f(X) =
m−1∏
i=0

(X −Bi) + Dn

B0, · · · , Bm−1, D ∈ Fq[T ] and satisfy certain con-
gruences and degree properties.

If θ is a root of f(X), then K = k(θ) satisfies the
theorem.

Since the class number is finite, the existence of one
such field implies the existence of infinitely many.



Idea of Proof

W = roots of unity in K

E = group of units in K

ClK[n] = elements of ClK with order dividing n

For all primes l dividing n:

(1)→ ClK

[
n

l

]
i−→ ClK[n]

h−→ K×/EK×l

For all ā ∈ ClK[n], an = (α). Set

h(ā) = [α] ∈ K×/EK×l.

ClK[n]n/l ∼= ClK[n]/ClK

[
n

l

]
∼= Im(h)



Imaginary Case - Infinite Prime Totally Ramified

Since∞ is totally ramified, E = W .

(1)→ ClK

[
n

l

]
i−→ ClK[n]

h−→ K×/WK×l

ClK[n]n/l ∼= ClK[n]/ClK

[
n

l

]
∼= Im(h)

θ−B1, · · · , θ−Bm−1 linearly independent in K×/WK×l,

and [θ −B1], · · · , [θ −Bm−1] ∈ Im(h), so

dimZ/lZ ClK[n]n/l = dimZ/lZ Im(h) ≥ m− 1.

Thus ClK contains a subgroup isomorphic to (Z/nZ)m−1.



General Case

Exact Sequence:

(1)→ ClK

[
n

l

]
i−→ ClK[n]

h−→ K×/EK×l

θ−B1, · · · , θ−Bm−1 linearly independent in K×/WK×l,

but E 6= W in this case.

Now, since the prime at infinity splits into exactly g

primes in K, we have that the unit rank of K is equal
to g − 1.



General Case Continued

Exact Sequence:

(1)→ S ∩ EK×l/WK×l → S → S′ → (1)

S ⊂ K×/WK×l: generated by θ−B1, . . . , θ−Bm−1

S′ ⊂ K×/EK×l: image of S

dimZ/lZ S′ = dimZ/lZ S − dimZ/lZ (S ∩ EK×l/WK×l)

≥ dimZ/lZ S − dimZ/lZ(E/W )

≥ m− 1− (g − 1)

≥ m− g



Exact Sequence:

(1)→ ClK

[
n

l

]
i−→ ClK[n]

h−→ K×/EK×l

Because S′ ⊂ Im(h), we get that

dimZ/lZ ClK[n]n/l = dimZ/lZ Im(h)

≥ dimZ/lZ S′

≥ m− g.

Thus ClK contains a subgroup isomorphic to (Z/nZ)m−g.



Infinite Prime

With the exception of the case where the prime at in-
finity is inert, we use the Newton Polygon to prove the
behavior of the prime at infinity.

A: any discrete, rank 1 valuation ring with quotient
field K

K: an algebraic closure of K

v: valuation on A and the unique extension of v to K

If f(X) =
∑d

i=0 aiX
i ∈ K[X], then the Newton

polygon of f with respect to the valuation v is con-
structed by first considering the points (i,ordv(ai)) in
the plane. Next, for each i, 0 ≤ i ≤ d, draw the ver-
tical half-line that starts at the point (i,ordv(ai)) and
extends upward. The Newton polygon is the convex
hull of the union of these lines and satisfies the follow-
ing property.

Theorem. If (i,ordv(ai)) and (j,ordv(aj)), j > i, are
endpoints of a segment of the boundary of the Newton
polygon of f with respect to v, then f has j − i roots
θt in K, counting multiplicity, each with

ordv(θt) = −
ordv(aj)− ordv(ai)

j − i
.



f(X) =
m−1∏
i=0

(X −Bi) + Dn

Infinity Totally Ramified:

deg(Dn) > m · max {deg(Bi)}m−1
i=0

(m,deg(D)) = 1

Newton Polygon consists of single line segment with
slope

ndeg(D)

m
.



Infinity Splits Completely:

deg(B0) < · · · < deg(Bm−1)

deg(B0) + · · ·+ deg(Bm−1) = deg(Dn)

Newton Polygon consists of m distinct line segments
with distinct slopes deg(B0),deg(B1), . . . ,deg(Bm−1).

General Case:



Prescribed Class Group

Can we construct infinitely many number fields or
function fields with prescribed class group?

Every finite abelian p-group is isomorphic to the p-part
of ClK for some number field K. (Yahagi, 1978)

Every cyclic group is isomorphic to the class group of
infinitely many function fields. (Angles, 1998)

Every finite abelian group G is isomorphic to the S-
class group of some number field K for some finite
set of places S (the same is true for function fields).
(Perret, 1999)

None of these fields give explicit constructions for the fields.



Indivisibility of Class Numbers

Constructing fields with class number indivisible by a
given integer n is typically a more difficult problem.

e.g. Are there infinitely many regular primes?

• Infinitely many imaginary quadratic number fields
have class number indivisible by 3. (Hartung, 1976)
(check: not explicit)

• Infinitely many imaginary quadratic number fields
have class number indivisible by p. (Horie & On-
ishi, Jochnowitz, Ono & Skinner)

• Quantitative results for imaginary quadratic num-
ber fields with p - hK . (Kohnen & Ono)

• Quantitative results for real quadratic number fields
with p - hK . (Ono)

None of these results give explicit constructions of
fields with the desired properties.



Higher Degree Function Fields

Theorem. Let m be any positive integer not divisible
by 3. Let q 6≡ 1 (mod 3) be a power of an odd prime,
γ ∈ Fq. If γ + 3ζ3 is not a p-th power in Fq(ζ3) for
all primes p dividing m and γ + 3ζ3 6∈ −4F4

q2
, then

there are infinitely many function fields of degree m

with divisor class number not divisible by n = 3.

For any given m, there is a positive density of primes
q satisfying the hypotheses.

Here we construct the fields explicitly. The proof relies
on class field theory.


