Modular Jacobians of dimension 3

Roger Oyono
University of Waterloo

Computational challenges arising in algorithmic number theory and Cryptography, Toronto 2006

Modular Jacobians of dimension 3

(9) Non-hyperelliptic curves

- Definition
- The case $g=3$
- Shioda's transformation
(2) Modular Curves / Jacobians
- Arithmetic on $J_{0}(N)$
- Modular curves
- The case $g=3$
(3) Explicit version of Torelli's theorem in dimension 3
- Abelian varieties over \mathbb{C}
- Torelli's theorem in dimension 3
- Modular Jacobians of dimension 3

Modular Jacobians of dimension 3

(9) Non-hyperelliptic curves

- Definition
- The case $g=3$
- Shioda's transformation
(2) Modular Curves / Jacobians
- Arithmetic on $J_{0}(N)$
- Modular curves
- The case $g=3$
(3) Explicit version of Torelli's theorem in dimension 3
- Abelian varieties over \mathbb{C}
- Torelli's theorem in dimension 3
- Modular Jacobians of dimension 3

Definition

A non-hyperelliptic curve C is a curve for which there exists no morphism $C \longrightarrow \mathbb{P}^{1}$ of degree 2.

Canonical embedding
Let $\left\{\omega_{1}, \cdots, \omega_{g}\right\}$ a basis of $\Omega^{1}(C)$. The curve C is non-hyperelliptic iff the canonical morphism

[^0]
Definition

A non-hyperelliptic curve C is a curve for which there exists no morphism $C \longrightarrow \mathbb{P}^{1}$ of degree 2 .

Canonical embedding

Let $\left\{\omega_{1}, \cdots, \omega_{g}\right\}$ a basis of $\Omega^{1}(C)$. The curve C is non-hyperelliptic iff the canonical morphism

$$
\begin{aligned}
\varphi: & C \longrightarrow \mathbb{P}^{g-1} \\
& P \longmapsto \varphi(P):=\left(\omega_{1}(P), \ldots, \omega_{g}(P)\right),
\end{aligned}
$$

is an embedding.
In that case, $\varphi(C)$ is a curve of degree $2 g-2$.

Properties for $g(C)=3$

- $\varphi(C)$ is a smooth plane quartic,
- Any smooth plane quartic is the image by the canonical embedding of a genus 3 non-hyperelliptic curve.
- If $\operatorname{char}(k) \neq 2$, there are exactly 28 bitangents.
- If $\operatorname{char}(k) \neq 2,3$, there are 24 Weierstrass points (with multiplicity).
- There exists a complete system of invariants for plane quartics (Dixmier-Ohno).

Theorem (Shioda)

Let k be a field with $\operatorname{char}(k) \neq 3$. Given a plane quartic with an ordinary flex (C, ξ) defined over k, there is a coordinate system (x, y, z) of \mathbb{P}^{2} s.t. C, ξ are given by

$$
\begin{gathered}
C: 0=y^{3} z+y\left(p_{0} z^{3}+p_{1} z^{2} x+x^{3}\right)+q_{0} z^{4}+q_{1} z^{3} x+q_{2} z^{2} x^{2}+q_{3} z x^{3}+q_{4} x^{4} \\
\xi=(0: 1: 0), \quad T_{\xi}: z=0 .
\end{gathered}
$$

Moreover the parameter

$$
\lambda=\left(p_{0}, p_{1}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right) \in k^{7}
$$

is uniquely determined up to the equivalence:

$$
\lambda=\left(p_{i}, q_{j}\right) \sim \lambda^{\prime}=\left(p_{i}^{\prime}, q_{j}^{\prime}\right) \Longleftrightarrow p_{i}^{\prime}=u^{6-2 i} p_{i}, q_{j}^{\prime}=u^{9-2 j} q_{j}, \quad(i=0,1, j=0,1, \cdots, 4)
$$

for some $u \neq 0$.

Modular Jacobians of dimension 3

(4) Non-hyperelliptic curves

- Definition
- The case $g=3$
- Shioda's transformation
(2) Modular Curves / Jacobians
- Arithmetic on $J_{0}(N)$
- Modular curves
- The case $g=3$
(3) Explicit version of Torelli's theorem in dimension 3
- Abelian varieties over \mathbb{C}
- Torelli's theorem in dimension 3
- Modular Jacobians of dimension 3

Definition

Hecke subgroups of Level N in $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, \quad c \equiv 0 \quad \bmod N\right\}
$$

$\Gamma_{0}(N)$ acts on the extended upper half plane $\mathbb{H}^{*}:=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ with $\mathbb{H}:=\{\tau \in \mathbb{C} \mid \quad \mathfrak{I m}(\tau)>0\}$ via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z \longmapsto \frac{a z+b}{c z+d} .
$$

The orbits of this action are the modular curves $X_{0}(N)$:

$$
\Gamma_{0}(N) \backslash \mathbb{H}^{*}=: X_{0}(N) .
$$

- For the \mathbb{C}-vector space $S_{2}(N)$ of cusp forms of weigth 2 :

$$
S_{2}(N) \simeq \Omega^{1}\left(X_{0}(N)\right)
$$

- Fourier expansion of cusp forms:

$$
f(\tau):=\sum_{n=1}^{\infty} a_{n} q^{n}, q:=e^{2 \pi i \tau}, \quad a_{n} \in \mathbb{C},
$$

and $f \equiv 0 \Longleftrightarrow a_{n}=0$ for $0 \leq n \leq \mu k / 12$ where

$$
\mu:=\left[\operatorname{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right] .
$$

- The Hecke algebra induces an action on $S_{2}(N)$ as well as on $J_{0}(N)$.
- The vector space $S_{2}^{\text {new }}(N)$ of newforms is the orthogonal complement of

$$
\left.S_{2}^{\text {old }}(N):=\langle g(d \tau)| \quad g(\tau) \in S_{2}(M) \text { with } M|N, M \neq N, d| \frac{N}{M}\right\rangle
$$

with respect to the Petersson inner product.

- There exists a unique basis of $S_{2}^{\text {new }}(N)$ consisting of eigenforms with respect to all the Hecke operators $T_{p}(\operatorname{gcd}(p, N)=1)$.

Theorem

- Shimura (1973): To the eigenform $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{2}^{\text {new }}(N)$ there exists a \mathbb{Q}-simple abelian subvariety of $J_{0}^{\text {new }}(N)$ of dimension $\left[K_{f}, \mathbb{Q}\right]$ where $K_{f}:=\mathbb{Q}\left(a_{n}\right)$.
- Eichler-Shimura relation: For the characteristic polynomial $\chi_{T_{p}}$ of the Hecke operator T_{p} :

$$
\# A_{f}\left(\mathbb{F}_{p}\right)=\chi_{T_{p}}(p+1)
$$

Definition

$A_{\mathbb{Q}}$ is a modular abelian variety of level N if

Theorem

- Shimura (1973): To the eigenform $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{2}^{\text {new }}(N)$ there exists a \mathbb{Q}-simple abelian subvariety of $J_{0}^{\text {new }}(N)$ of dimension $\left[K_{f}, \mathbb{Q}\right]$ where $K_{f}:=\mathbb{Q}\left(a_{n}\right)$.
- Eichler-Shimura relation: For the characteristic polynomial $\chi_{T_{p}}$ of the Hecke operator T_{p} :

$$
\# A_{f}\left(\mathbb{F}_{p}\right)=\chi_{T_{p}}(p+1)
$$

Definition

$A_{/ \mathbb{Q}}$ is a modular abelian variety of level N if

$$
\exists \tau_{\mathbb{Q}}: J_{0}(N) \longrightarrow A .
$$

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi_{/ \mathbb{Q}}: X_{0}(N) \longrightarrow C .
$$

$$
X_{0}(N) \longrightarrow C
$$

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi_{/ \mathbb{Q}}: X_{0}(N) \longrightarrow C .
$$

$$
J_{0}(N) \xrightarrow{\pi_{*}} J(C)
$$

$$
X_{0}(N) \xrightarrow{\pi} C
$$

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi / \mathbb{Q}: X_{0}(N) \longrightarrow C .
$$

In that case, $J(C)$ is modular of level N, since we have

$$
J_{0}(N) \xrightarrow{\pi_{*}} J(C)
$$

$$
X_{0}(N) \xrightarrow{\pi} C
$$

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi_{/ \mathbb{Q}}: X_{0}(N) \longrightarrow C .
$$

In that case, $J(C)$ is modular of level N, since we have

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi_{/ \mathbb{Q}}: X_{0}(N) \longrightarrow C .
$$

In that case, $J(C)$ is modular of level N, since we have

The converse is not true in general.

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
\exists \pi / \mathbb{Q}: X_{0}(N) \longrightarrow C .
$$

In that case, $J(C)$ is modular of level N, since we have

The converse is not true in general.

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

$$
X_{0}(N) \xrightarrow{\pi / \mathbb{Q}} C
$$

Definition

$C_{/ \mathbb{Q}}$ is a modular curve of level N if

Definition

$C_{/ \mathbb{Q}}$ is a new modular curve of level N if

Definition

$C_{/ \mathbb{Q}}$ is a new modular curve of level N if

Then

$$
\pi^{*} \Omega^{1}(C) \hookrightarrow S_{2}(N)^{\text {new }} \frac{d q}{q}
$$

Definition

$C_{/ \mathbb{Q}}$ is a new modular curve of level N if

Then

$$
\pi^{*} \Omega^{1}(C) \hookrightarrow S_{2}(N)^{\text {new }} \frac{d q}{q}
$$

Notation

Let $g \in \mathbb{Z}$ such that $g \geq 0$, we denote by

$$
\begin{array}{ll}
\mathscr{M} C_{g} & =\{\text { modular curves of genus } g\}_{/ \mathscr{O}}, \\
\mathscr{M} C_{g}^{\text {new }} & =\left\{[C] \in \mathscr{M} C_{g} \mid C \text { is new }\right\} .
\end{array}
$$

Theorem (Baker et. al.)
let $g \geq 2$ be an integer. Then $\mathcal{M} C_{g}^{\text {new }}$ is finite and computable.

Notation

Let $g \in \mathbb{Z}$ such that $g \geq 0$, we denote by

$$
\begin{aligned}
\mathscr{M} C_{g} & =\{\text { modular curves of genus } g\}_{/ \mathscr{Q}}, \\
\mathscr{M} C_{g}^{\text {new }} & =\left\{[C] \in \mathscr{M} C_{g} \mid C \text { is new }\right\} .
\end{aligned}
$$

$g=1$, Wiles et. al.
$\mathscr{M} C_{1}=\mathcal{M} C_{1}^{\text {new }}=\{\text { elliptic curves defined over } \mathbb{Q}\}_{\underset{\sim}{\mathbb{Q}}}$.
$\# \mathcal{M} C_{1}=\# \mathcal{M} C_{1}^{\text {new }}=\infty$.

Theorem (Baker et. al.)
Let $g \geq 2$ be an integer. Then $\mathfrak{M} C_{g}^{\text {new }}$ is finite and computable.

Notation

Let $g \in \mathbb{Z}$ such that $g \geq 0$, we denote by

$$
\begin{aligned}
\mathscr{M} C_{g} & =\{\text { modular curves of genus } g\}_{/ \mathscr{Q}}, \\
\mathscr{M} C_{g}^{\text {new }} & =\left\{[C] \in \mathscr{M} C_{g} \mid C \text { is new }\right\}
\end{aligned}
$$

$g=1$, Wiles et. al.
$\mathscr{M} C_{1}=\mathcal{M} C_{1}^{\text {new }}=\{\text { elliptic curves defined over } \mathbb{Q}\}_{\underset{\sim}{\mathbb{Q}}}$.
$\# \mathcal{M} C_{1}=\# \mathcal{M} C_{1}^{\text {new }}=\infty$.

Theorem (Baker et. al.)

Let $g \geq 2$ be an integer. Then $\mathcal{M} C_{g}^{\text {new }}$ is finite and computable.

Non-Hyperelliptic Curves

Let $C_{/ \mathbb{Q}}$ be a non-hyperelliptic curve of genus $g \geq 3$, and

$$
\Omega^{1}(C)=\left\langle\omega_{1}, \ldots, \omega_{g}\right\rangle_{\mathbb{C}} .
$$

Then there exists the canonical embedding defined by:

$$
i: C \hookrightarrow \mathbb{P}^{g-1}: z \mapsto\left[\omega_{1}(z): \cdots: \omega_{g}(z)\right]
$$

where $i(C)$ is a nonsingular projective curve of degree $2 g-2$.

Example: $g=3$

Algorithm $g=3$ (joint work with Enrique González)

INPUT: $f_{1}, \ldots, f_{n} \in \operatorname{New}_{N}$ such that $\operatorname{dim} A=3, A=A_{f_{1}} \times \cdots \times A_{f_{n}}$. Step 1: Compute a rational basis $\left\{h_{1}, \ldots, h_{3}\right\}$ of $\Omega^{1}(A)$.Using Gauss elimination check if

$$
\left\{\begin{array}{lll}
h_{1}= & q+ & O\left(q^{2}\right) \\
h_{2}= & q^{2}+ & O\left(q^{3}\right) \\
h_{3}= & & O\left(q^{3}\right)
\end{array}\right.
$$

Step 2: embeding

$$
\left\{\begin{array}{l}
x=h_{1} \\
y=h_{2} \\
z=h_{3}
\end{array}\right.
$$

Algorithm (cont.)

Step 3: Compute if there exists

$$
F(X, Y, Z)=\sum_{i+j+k=4} a_{i j k} X^{i} Y^{j} Z^{k} \in \mathbb{Q}[X, Y, Z]
$$

such that

$$
F(x, y, z)=O\left(q^{c_{N}}\right), c_{N}=\frac{4}{3}\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]
$$

Step 4: If $C: F(X, Y, Z)=0$ is smooth and of genus 3 then C is a non-hyperelliptic modular curve of genus 3 , level N such that

$$
J(C) \stackrel{\mathbb{Q}}{\sim} A .
$$

OUTPUT: $C: F(X, Y, Z)=0$ or ERROR.

$C: F(x, y, z)=0$

$C_{97}^{A} \quad: \quad x^{3} z-x^{2} y^{2}-5 x^{2} z^{2}+x y^{3}+x y^{2} z+3 x y z^{2}+6 x z^{3}-3 y^{2} z^{2}-y z^{3}-2 z^{4}=0$
$C_{109}^{B}: \quad x^{3} z-2 x^{2} y z-x^{2} z^{2}-x y^{3}+6 x y^{2} z-6 x y z^{2}+3 x z^{3}+y^{4}-6 y^{3} z+10 y^{2} z^{2}-5 y z^{3}=0$
$C_{113}^{C}: \quad x^{3} z-x^{2} y^{2}-4 x^{2} z^{2}+x y^{3}+2 x y^{2} z+6 x z^{3}-y^{3} z-3 y^{2} z^{2}+y z^{3}-3 z^{4}=0$
$C_{127}^{A}: \quad x^{3} z-x^{2} y^{2}-3 x^{2} z^{2}+x y^{3}-x y z^{2}+4 x z^{3}+2 y^{3} z-3 y^{2} z^{2}+3 y z^{3}-2 z^{4}=0$
C_{139}^{B}
$x^{3} z-x^{2} y^{2}-2 x^{2} z^{2}+x y^{3}-2 x y^{2} z+2 x y z^{2}+x z^{3}+y^{4}-2 y^{3} z+4 y^{2} z^{2}-3 y z^{3}=0$
C_{149}^{A}
$x^{3} z-x^{2} y^{2}-3 x^{2} z^{2}+x y^{3}+3 x y^{2} z-2 x y z^{2}+2 x z^{3}-y^{4}-y^{2} z^{2}+y z^{3}=0$

21 new modular curves with \mathbb{Q}-simple Jacobians

$$
\begin{array}{clc}
\vdots & & \vdots \\
C_{855}^{L} & : & x^{3} z-x^{2} z^{2}-x y^{3}+3 x y z^{2}-3 x z^{3}+2 y^{3} z-3 y^{2} z^{2}+3 y z^{3}=0 \\
C_{1175}^{D} & : & x^{3} z-x^{2} y^{2}+x^{2} z^{2}+x y^{3}-2 x y^{2} z+2 x y z^{2}-x z^{3}+y^{4}-2 y^{3} z+y^{2} z^{2}+y z^{3}=0 \\
C_{1215}^{P} & : & x^{3} z-x y^{3}+3 x y z^{2}+5 x z^{3}-6 y^{2} z^{2}-3 y z^{3}+z^{4}=0
\end{array}
$$

How to compute a basis of $S_{2}(C)$ if C is a "non-new" modular curve?

Lemma

Let $\pi: X_{0}(N) \longrightarrow C$ a non-constant \mathbb{Q}-morphism. The vector space $S_{2}(C)$ admits a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant basis B consisting of cusp forms

$$
h(q)=\sum_{d \left\lvert\, \frac{N}{M}\right.} c_{d} f\left(q^{d}\right)
$$

for $M \mid N, f \in S_{2}^{\text {new }}(M)$ and $c_{d} \in K_{f}$.

Example:

$J_{0}(178) \sim \mathbb{Q} A_{f_{1}}^{(1)} \times A_{f_{2}}^{(1)} \times A_{f_{3}}^{(2)} \times A_{f_{4}}^{(3)} \times\left(B_{g_{1}}^{(1)}\right)^{2} \times\left(B_{g_{2}}^{(1)}\right)^{2} \times\left(B_{g_{3}}^{(5)}\right)^{2}$.
Let $A_{f_{3}, g_{2}}:=A_{f_{3}}^{(2)} \times B_{g_{2}}^{(1)}$

$$
\begin{gather*}
f_{3}(q)=q+q-q^{2}+a q^{3}+q^{4}+(-2 a-3) q^{5}+O\left(q^{6}\right) \in S_{2}^{\text {new }}(178) \\
g_{2}(q)=q-q^{2}-q^{3}-q^{4}-q^{5}+O\left(q^{6}\right) \in S_{2}^{\text {new }}(89)
\end{gather*}
$$

where $K_{f_{3}}=\mathbb{Q}(a)$ with $a^{2}+2 a-1=0$. Let $S_{2}\left(A_{f_{3}}\right)=\left\langle f_{31}, f_{32}\right\rangle$ with

$$
\begin{gathered}
f_{31}(q)=q-q^{2}+q^{4}-3 q^{5}-2 q^{7}-q^{8}-2 q^{9}+O\left(q^{10}\right) \\
f_{32}(q)=q^{3}-2 q^{5}-q^{6}-2 q^{9}+O\left(q^{10}\right)
\end{gathered}
$$

We have

$$
F\left(f_{31}(q), f_{32}(q), g_{2}(q)+2 g_{2}\left(q^{2}\right)\right)=0
$$

where $C: F=0$ is the smooth plane quartic given by

$$
F(x, y, z)=x^{4}-8 x^{3} y+38 x^{2} y^{2}-2 x^{2} z^{2}-24 x y^{3}-8 x y z^{2}-7 y^{4}+6 y^{2} z^{2}+z^{4}
$$

Modular Jacobians of dimension 3

(4) Non-hyperelliptic curves

- Definition
- The case $g=3$
- Shioda's transformation
(2) Modular Curves / Jacobians
- Arithmetic on $J_{0}(N)$
- Modular curves
- The case $g=3$
(3) Explicit version of Torelli's theorem in dimension 3
- Abelian varieties over \mathbb{C}
- Torelli's theorem in dimension 3
- Modular Jacobians of dimension 3
- Abelian varieties (of dimension g) over \mathbb{C} are isomorphic to tori \mathbb{C}^{g} / Λ, with a well defined Riemann form E.
- Example: A Riemann form of the elliptic curve $E(\mathbb{C}) \simeq \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$ is given by

$$
E\left(x+i y, x^{\prime}+i y^{\prime}\right):=x^{\prime} y-y^{\prime} x
$$

- \mathbb{C}^{g} / Λ is principally polarized (p.p.), if there exists a basis $\left\{\lambda_{1}, \cdots, \lambda_{2 g}\right\}$ of Λ with

$$
\left(E\left(\lambda_{i}, \lambda_{j}\right)\right)=\left(\begin{array}{cc}
0 & E_{g} \\
-E_{g} & 0
\end{array}\right)
$$

In this case: $A \simeq \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ with $\Omega \in \mathbb{H}_{g}$.

- Jacobian varieties are principally polarized.

Theorem

An absolute simple p.p.a.v. A of dimension $g \leq 3$ is isomorphic to the Jacobian of a genus g curve.

Theorem (Torelli (1957))

$\operatorname{Jac}\left(C_{1}\right) \simeq \operatorname{Jac}\left(C_{2}\right)($ as p.p.a.v. $) \Longleftrightarrow C_{1} \simeq C_{2}$.

Remark

There exists non-isomorphic curves C and C^{\prime} with isomorphic unpolarized Jacobian (Howe, Rotger, ...).

(Theta)-characteristic (odd / even)

- A (theta)-charactersitic is a vector of the form $m=\left[\begin{array}{l}\delta \\ \varepsilon\end{array}\right]$ with $\delta, \varepsilon \in \mathbb{Z}^{g} \bmod 2 \mathbb{Z}^{g}$. The charactersitic m is odd (resp. even) iff $\delta \cdot \varepsilon^{T} \equiv 1 \bmod 2\left(\right.$ resp. $\left.\delta \cdot \varepsilon^{T} \equiv 0 \bmod 2\right)$.
- There are $2^{g-1}\left(2^{g}-1\right)$ odd characteristics and $2^{g-1}\left(2^{g}+1\right)$ even characteristics.

Riemann Theta functions:

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} \exp \left(\pi i\left(n \Omega n^{t}+2 n z\right)\right) . \\
A[2]=\left\{\left.z_{m}=\frac{1}{2} \Omega \delta^{t}+\frac{1}{2} \varepsilon^{t} \right\rvert\, m=\left[\begin{array}{l}
\delta \\
\varepsilon
\end{array}\right] \text { with } \delta, \varepsilon \in \mathbb{Z}^{g} \bmod 2 \mathbb{Z}^{g}\right\} . \\
\vartheta\left[\begin{array}{l}
\delta \\
\varepsilon
\end{array}\right](0, \Omega):=\exp \left(\frac{\pi i}{4} \delta \Omega \delta^{t}+\pi i \delta \frac{\varepsilon^{t}}{2}\right) \cdot \vartheta\left(\frac{1}{2} \Omega \delta^{t}+\frac{\varepsilon^{t}}{2}, \Omega\right)
\end{gathered}
$$

- For an absolute simple p.p.a.v. $A=\mathbb{C}^{3} /\left(\mathbb{Z}^{3}+\Omega \mathbb{Z}^{3}\right)$ there exists a curve C with $A \simeq \operatorname{Jac}(C)$.
- The curve C is hyperelliptic \Longleftrightarrow exactly one even ϑ - constants of $\mathrm{Jac}(C)$ vanishes.
- For a smooth plane quartic: The odd 2-torsion points of $\operatorname{Jac}(C)$ correspond to divisor classes $\left[P_{1}+P_{2}-\left(P_{1}^{\infty}+P_{2}^{\infty}\right)\right]$ coming from bitangents of C.
- Goal: From the p.p.a.v. $A=\mathbb{C}^{3} /\left(\mathbb{Z}^{3}+\Omega \mathbb{Z}^{3}\right)$ compute the equation of a curve C with $\operatorname{Jac}(C) \simeq_{\mathbb{C}} A$.
- Rosenhain model using even ϑ-constants (Spalleck, Weng,
- "Svmmetric model" using derivatives of ϑ-function at odd 2-torsion points (Guardia)
- For an absolute simple p.p.a.v. $A=\mathbb{C}^{3} /\left(\mathbb{Z}^{3}+\Omega \mathbb{Z}^{3}\right)$ there exists a curve C with $A \simeq \operatorname{Jac}(C)$.
- The curve C is hyperelliptic \Longleftrightarrow exactly one even ϑ - constants of $\operatorname{Jac}(C)$ vanishes.
- For a smooth plane quartic: The odd 2-torsion points of $\operatorname{Jac}(C)$ correspond to divisor classes $\left[P_{1}+P_{2}-\left(P_{1}^{\infty}+P_{2}^{\infty}\right)\right]$ coming from bitangents of C.
- Goal: From the p.p.a.v. $A=\mathbb{C}^{3} /\left(\mathbb{Z}^{3}+\Omega \mathbb{Z}^{3}\right)$ compute the equation of a curve C with $\operatorname{Jac}(C) \simeq_{\mathbb{C}} A$.

Hyperelliptic Shottky problem

- Rosenhain model using even ϑ-constants (Spalleck, Weng, ...).
- "Symmetric model" using derivatives of ϑ-function at odd 2-torsion points (Guardia).

A set of characteristics $S:=\left(\left[\varepsilon_{i}\right]\right)_{i=1, \ldots, 7}$ is an Aronhold system if:

- Any odd characteristic is of the form $\left[\varepsilon_{i}\right]$ or $\left[\varepsilon_{i}\right]+\left[\varepsilon_{j}\right], i \neq j$, and,
- Any even characteristic is of the form $[0]$ or $\left[\varepsilon_{i}\right]+\left[\varepsilon_{j}\right]+\left[\varepsilon_{k}\right]$, with distincts i, j, k.

Example

$$
\begin{aligned}
& \varepsilon_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \quad \varepsilon_{2}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \quad \varepsilon_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad \varepsilon_{4}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \varepsilon_{5}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \varepsilon_{6}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \quad \varepsilon_{7}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Theorem (Riemann (1898))

For the canonical Aronhold system $\left(\beta_{i}\right)_{i=1, \ldots, 7}$ there exists a smooth plane quartic C admitting the $\left(\beta_{i}\right)_{i=1, \ldots, 7}$ as bitangents:

$$
\sqrt{x v_{1}}+\sqrt{y v_{2}}+\sqrt{z v_{3}}=0
$$

The linear functions v_{1}, v_{2}, v_{3} are explicitly given.
Theorem (Lehavi (2002))
Any smooth plane quartic is uniquely (up to isomorphism) determined by an Aronhold system $\left(\beta_{i}\right)_{i=1, \cdots, 7}$.

Theorem (Riemann (1898))

For the canonical Aronhold system $\left(\beta_{i}\right)_{i=1, \ldots, 7}$ there exists a smooth plane quartic C admitting the $\left(\beta_{i}\right)_{i=1, \ldots, 7}$ as bitangents:

$$
\sqrt{x v_{1}}+\sqrt{y v_{2}}+\sqrt{z v_{3}}=0
$$

The linear functions v_{1}, v_{2}, v_{3} are explicitly given.

Theorem (Lehavi (2002))

Any smooth plane quartic is uniquely (up to isomorphism) determined by an Aronhold system $\left(\beta_{i}\right)_{i=1, \cdots, 7}$.

Let $\operatorname{Jac}(\mathrm{C}) \simeq \mathbb{C}^{3} /\left(\Omega_{1} \mathbb{Z}^{3}+\Omega_{2} \mathbb{Z}^{3}\right)$, with $\Omega:=\Omega_{2} \Omega_{1}^{-1} \in \mathbb{H}_{3}$.
How to compute the bitangents of C ?
The bitangents $\left(\beta_{i}\right)_{i=1, \ldots, 7}$ associated to the Aronhold system $\left(\left[\varepsilon_{i}\right]\right)_{i=1, \ldots, 7}$ are given by

$$
\left(\frac{\partial \vartheta}{\partial z_{1}}\left(\varepsilon_{i}\right), \frac{\partial \vartheta}{\partial z_{2}}\left(\varepsilon_{i}\right), \frac{\partial \vartheta}{\partial z_{3}}\left(\varepsilon_{i}\right)\right) \Omega_{1}^{-1}\left(\begin{array}{c}
z \\
x \\
Y
\end{array}\right)=0 .
$$

Algorithm for Torelli in dimension 3

INPUT: $A=\mathbb{C}^{3} /\left(\mathbb{Z}^{3}+\Omega \mathbb{Z}^{3}\right)$ p.p. and absolute simple.
OUTPUT: A smooth plane quartic C with $A \simeq_{\mathbb{C}} \operatorname{Jac}(C)$.
Step 1: Compute the 36 even ϑ-constant and decide whether $A \in \operatorname{Jac}\left(\mathcal{N} \mathcal{H}_{3}(\mathbb{C})\right)$ or not.

Step 2: Compute the derivatives of the ϑ-functions at the odd 2-torsion points $z_{\varepsilon_{i}}\left(\varepsilon_{i} \in S_{\text {can }}\right)$ and compute then the 7 associated bitangents β_{i}.

Step 3: Compute the Riemann model corresponding to the Aronhold system $\left(\beta_{i}\right)$.

Theorem (Hida, Wang)

Let A_{f} be new modular p.p.a.v. and

$$
\Omega_{1, f}:=\left(\int_{w_{i}} \omega\left(f^{\sigma_{j}}\right)\right)_{i, j=1, \ldots, d} \in \mathbb{C}^{d \times d}
$$

and

$$
\Omega_{2, f}:=\left(\int_{w_{i}} \omega\left(f^{\sigma_{j}}\right)\right)_{\substack{i=d+1, \ldots, 2 d \\ j=1, \ldots, d}} \in \mathbb{C}^{d \times d}
$$

The period matrix Ω_{f} of A_{f} is given by

$$
\Omega_{f}=\Omega_{1, f}^{-1} \Omega_{2, f} .
$$

Example

Let $N=511=7 \cdot 73$ and $f \in S_{2}^{\text {new }}(511)$ be the eigenform with Fourier expansion

$$
f=q+a q^{2}+2 q^{3}+\left(a^{2}-2\right) q^{4}+(-a+1) q^{5}+2 a q^{6}+O\left(q^{7}\right)
$$

where $a^{3}-5 a+1=0$.
$A_{f} \simeq_{\mathbb{C}} \operatorname{Jac}\left(C_{f}\right)$ for a smooth plane quartic C_{f} given by

$$
C_{f}:\left(x v_{1}+y v_{2}-z v_{3}\right)^{2}=4 x y v_{1} v_{2},
$$

where

$$
\begin{aligned}
& v_{1}=(7.883 \cdots-10.600 \ldots i) x+(8.108 \cdots-11.222 \ldots i) y+(6.920 \cdots-11.383 \ldots i) z, \\
& v_{2}=-(7.602 \cdots-6.770 \ldots i) x-(7.566 \cdots-7.038 \ldots i) y-(7.694 \cdots-7.382 \ldots i) z \\
& v_{3}=-(1.282 \cdots-3.829 \ldots i) x-(1.542 \cdots-4.184 \ldots i) y-(0.227 \cdots-4.001 \ldots i) z
\end{aligned}
$$

Example (cont.)

After Shioda transformation (with a specific Weierstrass point):

$$
\begin{aligned}
C_{f}: 0= & y^{3} z+y\left(x^{3}+8.09331 \ldots x z^{2}+376513626.19508 \ldots z^{3}\right) \\
& +x^{4}-30364.69321 \ldots x^{3} z+11220519.80408 \ldots \\
& +x^{2} z^{2}+46628578544.41879 \ldots x z^{3}+19617959110841.35239 \ldots z^{4}
\end{aligned}
$$

defined over some real algebraic number field K, with the following \mathbb{Q}-rational Dixmier invariants:

$$
\begin{array}{ll}
i_{1} & =\frac{5^{9} \cdot 37^{9} \cdot 43133^{9}}{2^{53} \cdot 3^{30} \cdot 7^{8} \cdot 11^{14} \cdot 73^{3} \cdot 101^{14}}, \\
i_{2} & =\frac{-5^{8} \cdot 37^{7} \cdot 263 \cdot 43133^{7} \cdot 197689 \cdot 6021091}{2^{57} \cdot 3^{32} \cdot 7^{8} \cdot 11^{14} \cdot 73^{3} \cdot 101^{14}} \\
i_{3} & =\frac{5^{6} \cdot 13 \cdot 37^{6} \cdot 43133^{6} \cdot 142702121 \cdot 25535098000501}{2^{43} \cdot 3^{28} \cdot 7^{8} \cdot 11^{14} \cdot 73^{3} \cdot 101^{14}} \\
i_{4} & =\frac{5^{5} \cdot 17 \cdot 37^{5} \cdot 577 \cdot 43133^{5} \cdot 3563719 \cdot 164875199 \cdot 160402791737}{2^{39} \cdot 3^{28} \cdot 7^{8} \cdot 11^{14} \cdot 73^{3} \cdot 101^{14}} \\
i_{5} & =\frac{-5^{4} \cdot 13^{2} \cdot 37^{4} \cdot 43133^{4} \cdot 411153604670328285288413280589099}{2^{33} \cdot 3^{24} \cdot 78 \cdot 411^{144} \cdot 73^{3} \cdot 10114} \\
i_{6} & =\frac{-5^{3} \cdot 37^{3} \cdot 43133^{3} \cdot 688333 \cdot 28685999 \cdot 303141393386674295606558437642759}{2^{36} \cdot 3^{26} \cdot 7^{8} \cdot 11^{14} \cdot 73^{3} \cdot 1011^{14}}
\end{array}
$$

- For $N<4000$:

$\# A_{f}$	3334
$\#$ p.p. A_{f}	79
$\# A_{f} \in \operatorname{Jac}\left(\mathcal{H}_{3}(\mathbb{C})\right)$	12
$\# A_{f} \in \operatorname{Jac}\left(\mathcal{N} \mathcal{H}_{3}(\mathbb{C})\right)$	67

- The obtained equations are defined over $\overline{\mathbb{Q}}$.
- However: The Dixmier invariants of the C_{f} are defined over \mathbb{Q}.
- We are able to compute a \mathbb{Q}-rational model for curves C_{f} having a \mathbb{Q}-rational Weierstrass point.

[^0]: is an embedding.
 In that case, $\varphi(C)$ is a curve of degree $2 g-2$.

