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I. Introduction
Problem: given

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

defined over some finite field K = Fq, q = pr , compute its
cardinality.

Which methods:

I Enumeration: O(q), O(q1/2);
I Baby steps/giant steps, kangaroos, etc.: O(q1/4);
I Any q: Schoof’s algorithm (1985) and extensions

Õ((log q)5);
I p small: p-adic methods à la Satoh Õ(r3) since 1999.

In this talk: q = p large, E : y2 = x3 + Ax + B; we ignore CM
curves of small discriminant, as well as supersingular curves,
that should be tested beforehand.
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II. An overview of the Schoof-Elkies-Atkin (SEA)
algorithm

Def. (torsion points) For n ∈ N, E [n] = {P ∈ E(K), [n]P = OE}.

Division polynomials: (for E : y2 = x3 + Ax + B)

[n](X ,Y ) =

(
φn(X ,Y )

ψn(X ,Y )2 ,
ωn(X ,Y )

ψn(X ,Y )3

)

φn = Xψ2
n − ψn+1ψn−1

4Yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

φn, ψ2n+1, ψ2n/(2Y ), ω2n+1/Y , ω2n ∈ Z[A,B,X ]

F. Morain, Fields Institute, 31/10/2006 4/30



fn(X ) =

{
ψn(X ,Y ) for n odd
ψn(X ,Y )/(2Y ) for n even

f−1 = −1, f0 = 0, f1 = 1, f2 = 1

f3(X ,Y ) = 3X 4 + 6AX 2 + 12BX − A2

f4(X ,Y ) = X 6 + 5AX 4 + 20BX 3 − 5A2X 2 − 4ABX − 8B2 − A3

f2n = fn(fn+2f 2
n−1 − fn−2f 2

n+1)

f2n+1 =


fn+2f 3

n − f 3
n+1fn−1(16Y 4) if n is odd

(16Y 4)fn+2f 3
n − f 3

n+1fn−1 otherwise.

deg(fn(X )) =

{
(n2 − 1)/2 if n is odd
(n2 − 4)/2 otherwise.

Thm. P = (x , y) ∈ E [`] ⇐⇒ [2]P = OE or f`(x) = 0.
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The Frobenius endomorphism

Ordinary:
ϕ : K → K

x 7→ xp

Extension to E :

ϕ : E(K) → E(K)
(X ,Y ) 7→ (X p,Y p)

Thm. The minimal polynomial of ϕ is χ(T ) = T 2 − cT + p,
|c| ≤ 2

√
p and #E = χ(1).
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Schoof’s algorithm (1985)

The fundamental idea: let ` be prime to p. Then ϕ restricted
to E [`] satisfies

ϕ2
` − cϕ` + p ≡ 0 mod `

so we can find c` ≡ c mod ` such that

(X p2
,Y p2

)⊕ [p](X ,Y ) = [c`](X p,Y p)

in K[X ,Y ]/(E , f`(X )) and use CRT once
∏
` > 4

√
p

(⇒ ` = O(log p)).

Thm. Schoof’s algorithm is deterministic polynomial with
bit-complexity O(log p · log pM(`2 log p)) = Õ((log p)5).

Pb. handling deg(f`) = O(`2) polynomials.
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Atkin and Elkies (1986–1990)

Start again from:

ϕ2
` − cϕ` + p = 0, ∆ = c2 − 4p.

If (∆/`) = +1, then over F`,

Mat(ϕ`) '
(
λ1 0
0 λ2

)
⇔ ∃F , ϕ`(F ) = F ⇔ F is a cyclic

subgroup of order `, defined over K; E is `-isogenous to
E∗ = E/F .

As a consequence, f` has a factor of degree (`− 1)/2.

Fact: there exists a polynomial Φ`(X ,Y ) ∈ Z[X ,Y ] s.t. E and
E∗ are `-isogenous over K iff #E = #E∗ and
Φ`(j(E), j(E∗)) = 0.
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Elkies’s algorithm

for prime ` until
∏

` good ` > 4
√

p do

0. Compute Φ`(X ,Y ). [precomputation?]

1. find the roots of Φ`(X , j(E)) over K; if none, use next `;

2. let j0 be one of the roots:

2.1 build E∗ = E/F corresponding to j0; deduce fλ | f`;

2.2 find λ mod ` s.t. ϕ`(X ,Y ) = [λ](X ,Y ) mod (E , fλ);

2.3 c` = λ+ p/λ mod `.

Thm. Õ((log p)2M(` log p) =Õ((log p)4) probabilistic (half the
primes are good).
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III. Fast isogeny computations
INPUT: E and E∗ related via an `-isogeny with trace σ.
OUTPUT: I(x) = N(x)/D(x).

E : y2 = x3 + Ax + B,E∗ : y2 = x3 + Ãx + B̃,

can be parametrized as (x , y) = (℘(z), ℘′(z)/2), where the
function ℘ can be expanded as:

℘(z) =
1
z2 +

∑
i≥1

ciz2i ,

with

c1 = −A
5
, c2 = −B

7
, for k ≥ 3, ck =

3
(k − 2)(2k + 3)

k−2∑
i=1

cick−1−i .

(see BMSS paper for fast expansion method)
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Elkies’s method

N(x)

D(x)
= ℘̃ ◦ ℘−1(x) = x +

∑
i≥1

hi

x i

First: compute

hk =
3

(k − 2)(2k + 3)

k−2∑
i=1

hihk−1−i−
2k − 3
2k + 3

Ahk−2−
2(k − 3)

2k + 3
Bhk−3

for all k ≥ 3 with h1 = (A− Ã)/5 and h2 = (B − B̃)/7.
⇒ O(`2) operations in K.

Second: get pi ’s using:

hi = (2i + 1)pi+1 + (2i − 1)Api−1 + (2i − 2)Bpi−2, for all i ≥ 1,

Third: recover D(x) using Newton’s formulas in O(`2)
operations, or perhaps in O(M(`)) with Schönhage’s algorithm.
Total complexity: O(`2).
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A fast variant (Bostan/M./Salvy/Schost)

Consider S s.t. R̃ = S ◦ R, with R(z) = 1/
√
℘(z) and

R̃(z) = 1/
√
℘̃(z)

One has:

S(z) = z +
Ã− A

10
z5 +

B̃ − B
14

z7 + O(z9) ∈ z + z3K[[z2]]

Claim:
N(x)

D(x)
=

1

S
(

1√
x

)2 .

Applying the chain rule gives the following first order differential
equation satisfied by S(z):

(Bz6 + Az4 + 1) S ′(z)2 = 1 + Ã S(z)4 + B̃ S(z)6.

Use fast computer algebra techniques to get O(M(`)) method.
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IV. Computing modular equations
Traditionnal modular polynomial: constructed via lattices
and curves over C. Remember that

j(q) =
1
q

+ 744 +
∑
n≥1

cnqn.

Then ΦT
` (X ,Y ) is such that ΦT

` (j(q), j(q`)) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X ,Y ],
degree in X and Y is `+ 1 (hence (`+ 1)2 coefficients), etc.
and moreover
Thm. [P. Cohen] the height of ΦT

` (X ,Y ) is O((`+ 1) log `).
Example:

Φ2(X ,Y ) = X 3 + X 2
(
−Y 2 + 1488 Y − 162000

)
+X

(
1488 Y 2 + 40773375 Y + 8748000000

)
+Y 3 − 162000 Y 2 + 8748000000 Y − 157464000000000.

F. Morain, Fields Institute, 31/10/2006 13/30



Choosing another modular equation

Why? Always good to have the smallest polynomial so as not
to fill the disks too rapidly... For small `, ΦT

` is not a desperate
choice.

Key point: any function on Γ0(`) (or Γ0(`)/〈w`〉) will do. In
particular, if

f (q) = q−v + · · ·

then there will exist a polynomial Φ`[f ](X ,Y ) s.t.

Φ`[f ](j(q), f (q)) ≡ 0.

This polynomial will have (v + 1)(`+ 1) coefficients, and height
O(v log `).
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Choosing f

Atkin proposed several choices:

I canonical choice f (q) using some power of η(q)/η(q`)
where:

η(q) = q1/24
∏
n≥1

(1− qn).

I a conceptually difficult method (the laundry method) for
finding (conjecturally) the f with smallest v (that he is now
able to rewrite as θ-functions with characters).

Alternatively, one may use some linear algebra on functions
obtained via Hecke operators.
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Computing Φ`[f ] given f

I Atkin (analysis by Elkies): use q-expansion of j and f with
O(v`) terms, compute power sums of roots of Φ`[f ], write
them as polynomials in J and go back to coefficients of
Φ`[f ](X , J) via Newton’s formulas; use CRT on small
primes. Õ(`3M(p)); used for ` ≤ 1000 fifteen years ago.

I Charles+Lauter (2005): compute ΦT
` modulo p using

supersingular invariants mod p, Mestre méthode des
graphes, ` torsion points defined over FpO(`) and
interpolation. Õ(`4M(p))

I Enge (2004); Dupont (2004): use complex floating point
evaluation and interpolation. Õ(`3)
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Real life (Enge)

I Use
Tr (ηη`)

ηη`

where Tr is the Hecke operator

(Tr |f )(τ) = f (rτ) +
1
r

r−1∑
k=0

f
(
τ + k

r

)

for some (small) r . Total overall cost Õ(r`3).
I Evaluation of η using the sparse expansion, O(

√
H)

arithmetical operations per value: O(`2
√

HMint(H)).

Rem. sometimes, a combination of Tr ’s is better (i.e., smaller
order v ), but then evaluation is more costly.
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Examples

` r H deg(J) eval(s) interp(s) tot (d) Mb gz
3011 5 7560 200 368
3079 97 9018 254 7790 640 23 547
3527 13 9894 268 799 1440 3 746
3517 97 10746 290 12400 1110 42 850
4003 13 11408 308 1130 2320 4 1127
5009 5 13349 334 880 3110 3 1819
6029 5 16418 402 1550 6370 7 3251
7001 5 19473 466 2440 11700 13 5182
8009 5 22515 534 3500 20000 22 7905
9029 5 25507 602 5030 33100 35 11460

10079 5 28825 672 7690 56300 61 16152
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V. Finding the eigenvalue
Pb: find λ, 1 ≤ λ < ` s.t.

(X p,Y p) = [λ](X ,Y ) mod (E , fλ(X )).

A) previous methods

First approach: O(`) iterations to find λ given X p and Y p.

When ` ≡ 3 mod 4: enough to test X p = [λ](X ) using
Dewaghe’s trick.

Maurer + Müller (1994/2001): [funny baby-steps/giant steps]
find i and j s.t. [i](X p) = [j](X ), with i , j = O(

√
`) yielding a

O(
√
`M(`)) method (given X p).

Gaudry + FM (ISSAC 2006): practical improvements, for
instance how to get X p from Y p; better constants in MM.
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Some timings

For p with 1700dd, ` = 3881:

X p mod Φ 17529
find j∗ (deg=257) 1398

fλ 2930
Y p 8768

X p from Y p 2063
j/i = 31/29

all Nj/Dj 149
fu(X p) 300
matchs 310
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B) Abelian lifts (P. Mihăilescu)

(Joint work in progress. . . )

Finding λ: O((log p)M(`) +
√
`M(`)).

Question: can we get rid of the log p term? Yes, in some
cases.

Philosophy: fλ behaves very much like a cyclotomic
polynomial after all. Why not transfer all the theory?

First idea: factor fλ, but requires X p mod fλ.

Second idea: use Gaussian periods, but then need [a]X for
a ≤ (`− 1)/2. Cost is O(`M(`)), ok if `� log p, but in real life,
` = log p.

Third idea: look more closely at cyclotomic properties, or
Abelian properties.
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Principle: Let prime power q = ra || d = (`− 1)/2,
Q = (`− 1)/2/q.

Write (Z/`Z)∗ = 〈c〉 and write λ = cx . We will find u = x mod q.

W.l.o.g: q odd.

Notation:

fλ(Z ) =

(`−1)/2∏
a=1

(Z − ρa(X ))

where
ρa(X ) = ([a]P)x in K[X ]/(fλ(X )) and 1 ≤ a ≤ (`− 1)/2.
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Deuring lift E/Fp to E/K and p to p.

K` = K(X )/(f `(X ))

K{ρ}
` = K[X ]/(f λ(X ))

`+ 1

Kq = K(η0)

(`− 1)/2/q = Q

K

q

K

K[X ]/(fλ(X ))

There is an Abelian action:

ρij = ρiρj = ρjρi .

f λ(Z ) =
∏(`−1)/2

a=1 (Z − ρa(X )) is an Abelian lift of fλ(Z ).
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Elliptic Gaussian period
Let (Z/`Z)∗/{±1} = 〈c〉 and put:

(Z/`Z)∗/{±1} = H × K = 〈h〉 × 〈k〉 with h = cq, k = cQ.

For 0 ≤ i < q:
ηi =

∑
a∈H

([k i · a]P)x

Since η1 = η0 ◦ ρk , there is a cyclic action:

η0
ρk→ η1

ρk→ · · · ρk→ ηq−1
ρk→ η0,

The minimal polynomial of η0 is:

M(T ) =

q−1∏
i=0

(T − ηi)

and belongs to K[T ].
Fact: since the extension Kq/K is Abelian, there exists
C(T ) ∈ K[T ] of degree ≤ q − 1 s.t. η1 = C(η0).

F. Morain, Fields Institute, 31/10/2006 24/30



Reduce everything modulo p: η0 and η1 live in Fp[X ]/(fλ(X ))
and are related through η1 = C(η0), M(η0) = M(η1) = 0.

Suppose T p = C(v)(T ) mod M(T ). Then

ηp
0 = C(v)(η0) = ηv = [kv ]η0.

But ηp
0 = [λ]η0 and therefore cu ≡ cQv or u ≡ Qv mod q.
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Algorithm
Aim: given q || (`− 1)/2, compute u mod q where λ = cu.
1. Compute η0(X ) ∈ Fp[X ]/(fλ).

Shoup’s trace algorithm in O((log Q)(C2(`) + 0.5C3(`)).
2. Compute η1(X ) = η0 ◦ ρk (X ) mod fλ(X ).

O(C1(`)).
3. Compute the minimal polynomial M(T ) of η0 mod fλ.

Shoup: O(M(q)q1/2 + q2).
4. Compute C(T ) s.t. η1(X ) = C(η0(X )).

Shoup: O(`(ω+1)/2).
5. Compute Tp = T p mod M(T ).

O((log p)M(q)).
6. Find 0 ≤ v < q s.t. Tp = C(v)(T ) mod M(T ).

O(q1/2C√q(q)).
7. Return vQ mod q.

Cr (`) = O(r1/2`1/2M(`) + r (ω−1)/2`(ω+1)/2) (Comp[23]Mod of
NTL).
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Trace computation: computing η0 is analogous to Shoup’s
algorithm for computing

Tk (X ) =
k∑

i=0

X pi
mod f

using Ta+b = Ta(X pb
) + Tb, hence O(log k) modular

compositions by a divide-and-conquer algorithm.

Analysis:
When q � `: dominant step is step 1 in
O((log Q)C(`)) = O((log `)C(`)).

When q ≈ `: dominant term is step 5 in O((log p)M(`)) ⇒
clearly not useful in that case.
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A real life example

p = 102499 + 7131, ` = 5861, `− 1 = 22 · 5 · 293.

q η0 η1 M(T ) C(T ) T p u
4 15418 732 13 100 2 0
5 8491 446 17 43 10 0

293 3615 446 160 2509 3203 250

for a total time of 36800 sec.

Traditional approach: Y p costs 33001, X p (from Y p) 898; λ
final is 3650.

Any improvement to Cr or trace computation would be crucial.
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VI. Records

Modular equations computed using gmp, mpfr, mpc (C
language).

SEA++ written in C++ (NTL).

Times for computing the cardinality of
E : Y 2 = X 3 + 4589X + 91128 modulo the smallest p with
given # dd, on an AMD 64 Processor 3400+ (2.4GHz).

what 500dd 1000dd 1500dd 2005dd 2100dd
X p 6h 134h 35d 133d 121d
Total 10h 180h 77d 195d 190d
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What’s left to be done?

I Mihăilescu’s approach: injecting more cyclotomic
properties seems promising (Gauss and Jacobi sums,
etc.).

I Computing E∗ from E is a O(`2) process. Can we go down
to O(M(`))???

I Modular equations still the stumbling block of all this (as a
result, AE has filled all our disks...). Can we dream of
doing without Φ’s????

I Much much harder: still a lot of work to be done in higher
genus.

F. Morain, Fields Institute, 31/10/2006 30/30


