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|. Introduction
Problem: given

E:y?+aixy + asy = x>+ apx? + agx + ag

defined over some finite field K = Fg, g = p", compute its
cardinality.

Which methods:

» Enumeration: O(q), O(q'/?);

» Baby steps/giant steps, kangaroos, etc.: O(g'/*);

» Any g: Schoof’s algorithm (1985) and extensions
O((log 9)°); )

» p small: p-adic methods & la Satoh O(r®) since 1999.

In this talk: g = p large, E : y?> = x® + Ax + B; we ignore CM
curves of small discriminant, as well as supersingular curves,
that should be tested beforehand.
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Il. An overview of the Schoof-Elkies-Atkin (SEA)
algorithm

Def. (torsion points) For n € N, E[n] = {P € E(K), [n]P = Og}.
Division polynomials: (for E : y? = x3 4 Ax + B)

on(X,Y) wa(X,Y) )
¢D(X7 Y)27 sz)n(Xv Y)3

[A(X, V) = (
bn = X2 — pi1tn_1

4Ywn = Yppoth_1 — Vn_2¥hiq
®n, Vantt1, Van/(2Y),wons1/ Y, wan € Z[A, B, X]
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[ ¥a(X,Y) for n odd
fn(X) = { (X, Y)/(2Y) for neven

fi=-1 =0 #f=1 £H=1
f3(X, Y) = 3X* + BAX? + 12BX — A?

(X, Y) = X8 + 5BAX* +20BX® — 5A°X? — 4ABX — 8B% — A3

fon = fn(fn+2fr?—1 - fn—2f§+1)

fn_i_gfg — ff?—H fn_1 (1 6Y4) if nis odd
font1 =

(16 Y*)fpiofd — f3 ' 1fn—1  otherwise.

2 _ if nis
deg(fn(X)) = { EZZ — l;?g (ft}TerW(i)je(.l

Thm. P = (x,y) € E[{] <= [2]P = Og or f;(x) = 0.
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The Frobenius endomorphism

Ordinary:

—
—

RS
x Xl
X A

Extension to E:

o: EK) — E(K)
(X,Y) — (XP,YP)

Thm. The minimal polynomial of p is x(T) = T? — ¢T + p,
lc] <2y/pand #E = x(1).
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Schoof’s algorithm (1985)

The fundamental idea: let / be prime to p. Then ¢ restricted
to E[(] satisfies
©? — cpy+p=0mod /¢

so we can find ¢, = ¢ mod ¢ such that
(X7, YP) & [pl(X. Y) = [c](XP, YP)

in K[X, Y]/(E, f,(X)) and use CRT once [[ ¢ > 4,/p
(= ¢ = O(log p)).

Thm. Schoof’s algorithm is deterministic polynomial with
bit-complexity O(log p - log pM(¢?log p)) = O((log p)°).

Pb. handling deg(f,) = O(¢?) polynomials.
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Atkin and Elkies (1986—1990)

Start again from:
¢f—cpr+p=0, A=c*—4p.
If (A/¢) = +1, then over [y,
Mat(py) ~ ( /})1 )(\) ) < 3F,p(F) = F & Fis acyclic
2

subgroup of order ¢, defined over K; E is /-isogenous to
E*=E/F.

As a consequence, f; has a factor of degree (£ — 1)/2.

Fact: there exists a polynomial ¢,(X, Y) € Z[X, Y] s.t. E and
E* are (-isogenous over K iff #E = #E* and
®.(J(E),J(E)) = 0.
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Elkies’s algorithm

for prime ¢ until [], ;04 ¢ > 4,/p do
0. Compute ®,(X, Y). [precomputation?]
1. find the roots of ®,(X, j(E)) over K; if none, use next ¢;
2. let jy be one of the roots:
2.1 build E* = E/F corresponding to fp; deduce fy | f;;
2.2find Amod ¢ s.t. (X, Y) = [A(X,Y)mod (E, f,);
23 ¢, =X+ p/Amod .

Thm. O((log p)®M(¢log p) =O((log p)*) probabilistic (half the
primes are good).
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lll. Fast isogeny computations

INPUT: E and E* related via an ¢-isogeny with trace o.
OuUTPUT: I(x) = N(x)/D(x).

E:y?=x3+Ax+B,E*:y?> = x®+ Ax + B,

can be parametrized as (x, y) = (p(2), ¢'(2)/2), where the
function p can be expanded as:

1 o
p(Z) = ? +Zciz I)

with
k-2

A B 3
Ci 5 C2 = for k > 3, ck (k—2)(2k + 3) ;_1 CiCk—1—i

(see BMSS paper for fast expansion method)

F. Morain, Fields Institute, 31/10/2006 10/30



Elkies’s method

D(X;:@op1(x)zx+zz

i>1
First: compute

k—2
k-3, 2(k-3)

3
h, = hhe 4 i —— — o
K (k—2)(2k+3); k1= ok +37% 2" 2k +3

Bhy_3

for all k > 3 with hy = (A— A)/5 and h, = (B - B)/7.
= O(/?) operations in K.
Second: get p;’s using:

hi=2i+1)pis1+ (2i —1)Api_1 + (2i — 2)Bp;_», foralli>1,

Third: recover D(x) using Newton’s formulas in O(¢?)
operations, or perhaps in O(M(¢)) with Schénhage’s algorithm.
Total complexity: O(¢2).
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A fast variant (Bostan/M./Salvy/Schost)
Con3|derSst R So R, with R(z) =1/+/p(z) and

= 1/1 /
One has:
S(z)=z+ A1_0A25 + 1_4827 +0(2°) € z+ Z°K[[23]]
Claim:
N(x) _ 1
()
X

Applying the chain rule gives the following first order differential
equation satisfied by S(z):

(Bz8 + Az* +1)S'(2)2 =1+ AS(2)* + BS(2)®.

Use fast computer algebra techniques to get O(M(¢)) method.
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IV. Computing modular equations

Traditionnal modular polynomial: constructed via lattices
and curves over C. Remember that

, 1
j(q) = gt 7444+ cnq".

n>1

Then ®] (X, Y) is such that ¢/ (j(q),/(q")) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X, Y],
degree in X and Y is ¢ + 1 (hence (¢ + 1)? coefficients), etc.
and moreover

Thm. [P. Cohen] the height of ®] (X, Y) is O((¢ + 1)log £).
Example:

®a(X, Y) = X3 + X2 (— Y2 1 1488 Y — 162000)

+X (1 488 Y2 + 40773375 Y + 8748000000)
+Y3 — 162000 Y? + 8748000000 Y — 157464000000000.
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Choosing another modular equation

Why? Always good to have the smallest polynomial so as not
to fill the disks too rapidly... For small ¢, ®] is not a desperate
choice.

Key point: any function on 'g(¢) (or ['g(¢)/(we)) will do. In
particular, if

(a) =g+
then there will exist a polynomial ®,[f](X, Y) s.t.
®[f(i(q), (q)) = 0.

This polynomial will have (v + 1)(¢ + 1) coefficients, and height
O(vlog?).

F. Morain, Fields Institute, 31/10/2006 14/30



Choosing f

Atkin proposed several choices:
» canonical choice f(q) using some power of n(q)/n(q")
where:
n(q)=q"*J[(1-q".
n>1

» a conceptually difficult method (the laundry method) for
finding (conjecturally) the f with smallest v (that he is now
able to rewrite as #-functions with characters).

Alternatively, one may use some linear algebra on functions
obtained via Hecke operators.

F. Morain, Fields Institute, 31/10/2006 15/30



Computing ,[f] given f

» Atkin (analysis by Elkies): use g-expansion of j and f with
O(v?) terms, compute power sums of roots of ®,[f], write
them as polynomials in J and go back to coefficients of
®,[f](X, J) via Newton’s formulas; use CRT on small
primes. O(¢3M(p)); used for ¢ < 1000 fifteen years ago.

» Charles+Lauter (2005): compute ®] modulo p using
supersingular invariants mod p, Mestre méthode des
graphes, ¢ torsion points defined over F o) and

interpolation. O(/*M(p))

» Enge (2004); Dupont (2004): use complex floating point
evaluation and interpolation. O(¢3)
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Real life (Enge)

» Use
Tr(nme)

nmne
where T, is the Hecke operator

(THh(r) E_f (%)

for some (small) r. Total overall cost O(r(?).

» Evaluation of 7 using the sparse expansion, O(v/H)
arithmetical operations per value: O(/2v/ HMy(H)).

Rem. sometimes, a combination of T,’s is better (i.e., smaller
order v), but then evaluation is more costly.
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Examples

14 r H | deg(J) | eval(s) | interp(s) | tot (d) | Mb gz
3011 | 5| 7560 200 368
3079 | 97 | 9018 254 | 7790 640 23 547
3527 |13 | 9894 | 268 799 1440 3 746
3517 | 97 | 10746 290 | 12400 1110 42 850
4003 | 13 | 11408 308 | 1130 2320 4| 1127
5009 | 5| 13349 334 880 3110 3] 1819
6029 | 5| 16418 402 | 1550 6370 7| 3251
7001 | 519473 466 | 2440 11700 13| 5182
8009 | 522515 534 | 3500 | 20000 22| 7905
9029 | 525507 | 602| 5030| 33100 35| 11460

10079 | 5 | 28825 672 | 7690 | 56300 61| 16152
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V. Finding the eigenvalue
Pb: find A\, 1 < A < {st.

(XP,YP) = [A\](X,Y)mod (E, f,(X)).

A) previous methods
First approach: O(/) iterations to find \ given XP and YP.

When ¢ = 3 mod 4: enough to test XP = [A\](X) using
Dewaghe’s trick.

Maurer + Muller (1994/2001): [funny baby-steps/giant steps]
find i and j s.t. []]J(XP) = [j](X), with i,j = O(+/?) yielding a
O(V/IM(¢)) method (given XP).

Gaudry + FM (ISSAC 2006): practical improvements, for

instance how to get XP from YP; better constants in MM.
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Some timings

For p with 1700dd, ¢ = 3881:

XP mod ¢ 17529
find j* (deg=257) 1398

fy 2930

Yp 8768

XP from YP 2063
j/i=31/29

all N;/D; 149

fu(XP) 300

matchs 310

F. Morain, Fields Institute, 31/10/2006

20/30



B) Abelian lifts (P. Mihailescu)

(Joint work in progress. . .)
Finding \: O((log p)M(¢) + vEM(¢)).

Question: can we get rid of the log p term? Yes, in some
cases.

Philosophy: f, behaves very much like a cyclotomic
polynomial after all. Why not transfer all the theory?

First idea: factor f,, but requires XP mod f,.

Second idea: use Gaussian periods, but then need [a] X for
a< (¢—1)/2. Costis O({M(¢)), ok if £ < log p, but in real life,

¢ =logp.

Third idea: look more closely at cyclotomic properties, or

Abelian properties.
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Principle: Let prime powerg=r?||d=({—1)/2,
Q=(t-1)/2/q

Write (Z/¢Z)* = (c) and write A = ¢*. We will find u = x mod g.

W.l.o.g: g odd.
Notation:
(6—1)/2
W2 = ] (Z-pa(X))
a—=1
where

pa(X) = ([8]P)x in K[X]/(f(X))and 1 < a < (¢ — 1)/2.
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Deuring lift E/Fp to E/K and p to p.

K¢ = K(X)/(f(X))

(41|
K7 = K[X]/(FA(X))
(¢-1)/2/g=Q T K[X]/(H(X))
Kg=K(mo) ...
q T

There is an Abelian action:
Pij = PiPj = Pjpi-

fA(2) = [1Y5,2(Z — pa(X)) is an Abelian lift of £,(2).
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Elliptic Gaussian period
Let (Z/¢Z)*/{£1} = (c) and put:
(Z)0Z)* {1} = H x K = (h) x (k) with h=c9 k = ¢

For0<i<aq:

=Y (k' aP)x
acH
Since 77y = 7y © Pk, there is a cyclic action:

_ Pk — Pk _
Mo —M™M — 7 MNg-1 "o
The minimal polynomial of 7 is:
q—1
M(T)=T[(T—m)
i=0
and belongs to K[T].
Fact: since the extension K4/K is Abelian, there exists
C(T) € K[T] of degree < q — 1 s.t. j; = C(7)p)-
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Reduce everything modulo p: 1 and 74 live in Fp[X]/(f(X))
and are related through ny = C(no), M(n9) = M(n1) = 0.

Suppose TP = C()(T) mod M(T). Then
5 = CM(no) = nv = [K"]no.

But nf = [A]no and therefore ¢ = ¢ or u = Qv mod q.
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Algorithm

Aim: given q || (¢ — 1)/2, compute u mod q where X\ = c".
. Compute no(X) € Fp[X]/(£)-
Shoup’s trace algorithm in O((log Q)(Cz2(¢) + 0.5C3(¢)).
. Compute 71(X) = ng o px(X) mod £, (X).
O(C4(2)).-
. Compute the minimal polynomial M(T) of 79 mod f,.
Shoup: O(M(q)q'/? + ¢?).
. Compute C(T) s.t. n1(X) = C(no(X)).
Shoup: O(¢(«w+1/2),
5. Compute T, = TP mod M(T).
O((log p)M(q)).
6. Find 0 < v < gs.t. T, = C)(T) mod M(T).
O(q'2C /4(q))-
7. Return vQ mod q.

—_

[\

w

o

Cr(0) = O(r'/2012M(£) + rlw=1)/2¢(«+1)/2) (Comp[23]Mod of
NTL).

F. Morain, Fields Institute, 31/10/2006 26/30



Trace computation: computing 79 is analogous to Shoup’s
algorithm for computing

Kk
Tk(X) =Y X mod f
i=0

using Toyp = Ta(XPb) + Ty, hence O(log k) modular
compositions by a divide-and-conquer algorithm.

Analysis:
When g < ¢: dominant step is step 1 in
O((log Q)C(¢)) = O((log £)C(£))-

When q ~ ¢: dominant term is step 5 in O((log p)M(¢)) =
clearly not useful in that case.
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A real life example

p=10%4% 1 7131, ¢ =5861,(— 1 =22.5.293,

q no | m | M(T) | C(T) TP u
4 | 15418 | 732 13 100 2 0
5 8491 | 446 17 43 10 0
293 3615 | 446 160 | 2509 | 3203 | 250

for a total time of 36800 sec.

Traditional approach: YP costs 33001, XP (from YP) 898; \

final is 3650.

Any improvement to C, or trace computation would be crucial.
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VI. Records

Modular equations computed using gmp, mpfr, mpc (C

language).

SEA++ written in C++ (NTL).

Times for computing the cardinality of
E : Y2 = X3 4 4589X + 91128 modulo the smallest p with
given # dd, on an AMD 64 Processor 3400+ (2.4GHz).

what | 500dd | 1000dd | 1500dd | 2005dd | 2100dd
XP 6h 134h 35d 133d 121d
Total 10h 180h 77d 195d 190d
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What's left to be done?

» Mihailescu’s approach: injecting more cyclotomic
properties seems promising (Gauss and Jacobi sums,
etc.).

» Computing E* from E is a O(¢?) process. Can we go down
to O(M(¢))???

» Modular equations still the stumbling block of all this (as a
result, AE has filled all our disks...). Can we dream of
doing without ®’s??7?7?

» Much much harder: still a lot of work to be done in higher
genus.
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