Recent improvements to the SEA algorithm in genus 1

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Toronto, October 31st, 2006

Plan

- I. Introduction.
- II. An overview of the SEA algorithm.
- III. Fast isogeny computations.
- IV. Computing modular equations (AE; RD).
- V. Finding the eigenvalue (PG+FM; PM+FM).
- VI. Records.

RD = R. Dupont, AE = A. Enge, PG = P. Gaudry, PM = P. Mihăilescu

I. Introduction

Problem: given

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

defined over some finite field $\mathbf{K} = \mathbb{F}_q$, $q = p^r$, compute its cardinality.

Which methods:

- ► Enumeration: O(q), $O(q^{1/2})$;
- ▶ Baby steps/giant steps, kangaroos, etc.: O(q^{1/4});
- Any q: Schoof's algorithm (1985) and extensions Õ((log q)⁵);
- ▶ p small: p-adic methods à la Satoh $\tilde{O}(r^3)$ since 1999.

In this talk: q = p large, $E: y^2 = x^3 + Ax + B$; we ignore CM curves of small discriminant, as well as supersingular curves, that should be tested beforehand.

II. An overview of the Schoof-Elkies-Atkin (SEA) algorithm

Def. (torsion points) For $n \in \mathbb{N}$, $E[n] = \{P \in E(\overline{\mathbf{K}}), [n]P = O_E\}$.

Division polynomials: (for
$$E: y^2 = x^3 + Ax + B$$
)

$$[n](X,Y) = \left(\frac{\phi_n(X,Y)}{\psi_n(X,Y)^2}, \frac{\omega_n(X,Y)}{\psi_n(X,Y)^3}\right)$$

$$\phi_{n} = X\psi_{n}^{2} - \psi_{n+1}\psi_{n-1}$$

$$4Y\omega_{n} = \psi_{n+2}\psi_{n-1}^{2} - \psi_{n-2}\psi_{n+1}^{2}$$

$$\phi_{n}, \psi_{2n+1}, \psi_{2n}/(2Y), \omega_{2n+1}/Y, \omega_{2n} \in \mathbb{Z}[A, B, X]$$

$$f_n(X) = \begin{cases} \psi_n(X, Y) & \text{for } n \text{ odd} \\ \psi_n(X, Y)/(2Y) & \text{for } n \text{ even} \end{cases}$$

$$f_{-1} = -1, \quad f_0 = 0, \quad f_1 = 1, \quad f_2 = 1$$

$$f_3(X, Y) = 3X^4 + 6AX^2 + 12BX - A^2$$

$$f_4(X, Y) = X^6 + 5AX^4 + 20BX^3 - 5A^2X^2 - 4ABX - 8B^2 - A^3$$

$$f_{2n} = f_n(f_{n+2}f_{n-1}^2 - f_{n-2}f_{n+1}^2)$$

$$f_{2n+1} = \begin{cases} f_{n+2}f_n^3 - f_{n+1}^3 f_{n-1}(16Y^4) & \text{if } n \text{ is odd} \\ (16Y^4)f_{n+2}f_n^3 - f_{n+1}^3 f_{n-1} & \text{otherwise.} \end{cases}$$

$$\deg(f_n(X)) = \begin{cases} (n^2 - 1)/2 & \text{if } n \text{ is odd} \\ (n^2 - 4)/2 & \text{otherwise.} \end{cases}$$

Thm.
$$P = (x, y) \in E[\ell] \iff [2]P = O_E \text{ or } f_{\ell}(x) = 0.$$

The Frobenius endomorphism

Ordinary:

$$\varphi: \ \overline{\mathbf{K}} \to \ \overline{\mathbf{K}}$$
$$x \mapsto x^p$$

Extension to *E*:

$$\varphi: \quad E(\overline{\mathbf{K}}) \quad \to \quad E(\overline{\mathbf{K}}) \\ (X, Y) \quad \mapsto \quad (X^p, Y^p)$$

Thm. The minimal polynomial of φ is $\chi(T) = T^2 - cT + p$, $|c| \le 2\sqrt{p}$ and $\#E = \chi(1)$.

Schoof's algorithm (1985)

The fundamental idea: let ℓ be prime to p. Then φ restricted to $E[\ell]$ satisfies

$$\varphi_{\ell}^2 - \boldsymbol{c}\varphi_{\ell} + \boldsymbol{p} \equiv 0 \bmod \ell$$

so we can find $c_\ell \equiv c \mod \ell$ such that

$$(X^{p^2}, Y^{p^2}) \oplus [p](X, Y) = [c_\ell](X^p, Y^p)$$

in $\mathbf{K}[X, Y]/(E, f_{\ell}(X))$ and use CRT once $\prod \ell > 4\sqrt{p}$ ($\Rightarrow \ell = O(\log p)$).

Thm. Schoof's algorithm is deterministic polynomial with bit-complexity $O(\log p \cdot \log p M(\ell^2 \log p)) = \tilde{O}((\log p)^5)$.

Pb. handling $deg(f_{\ell}) = O(\ell^2)$ polynomials.

Atkin and Elkies (1986–1990)

Start again from:

$$\varphi_{\ell}^2 - c\varphi_{\ell} + p = 0, \quad \Delta = c^2 - 4p.$$

If $(\Delta/\ell) = +1$, then over \mathbb{F}_ℓ , $\operatorname{Mat}(\varphi_\ell) \simeq \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right) \Leftrightarrow \exists F, \varphi_\ell(F) = F \Leftrightarrow F \text{ is a cyclic subgroup of order } \ell, \text{ defined over } \mathbf{K}; E \text{ is } \ell\text{-isogenous to } E^* = E/F.$

As a consequence, f_{ℓ} has a factor of degree $(\ell - 1)/2$.

Fact: there exists a polynomial $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ s.t. E and E^* are ℓ -isogenous over **K** iff $\#E = \#E^*$ and $\Phi_{\ell}(j(E),j(E^*)) = 0$.

Elkies's algorithm

for prime ℓ until $\prod_{\ell \text{ good }} \ell > 4\sqrt{p}$ do

- 0. Compute $\Phi_{\ell}(X, Y)$. [precomputation?]
- 1. find the roots of $\Phi_{\ell}(X, j(E))$ over **K**; if none, use next ℓ ;
- 2. let j_0 be one of the roots:
 - 2.1 build $E^* = E/F$ corresponding to j_0 ; deduce $f_{\lambda} \mid f_{\ell}$;
 - 2.2 find $\lambda \mod \ell$ s.t. $\varphi_{\ell}(X, Y) = [\lambda](X, Y) \mod (E, f_{\lambda});$
 - 2.3 $c_{\ell} = \lambda + p/\lambda \mod \ell$.

Thm. $\tilde{O}((\log p)^2 M(\ell \log p) = \tilde{O}((\log p)^4)$ probabilistic (half the primes are good).

III. Fast isogeny computations

INPUT: E and E^* related via an ℓ -isogeny with trace σ . OUTPUT: I(x) = N(x)/D(x).

$$E: y^2 = x^3 + Ax + B, E^*: y^2 = x^3 + \tilde{A}x + \tilde{B},$$

can be parametrized as $(x, y) = (\wp(z), \wp'(z)/2)$, where the function \wp can be expanded as:

$$\wp(z) = \frac{1}{z^2} + \sum_{i>1} c_i z^{2i},$$

with

$$c_1 = -\frac{A}{5}, c_2 = -\frac{B}{7}, \quad \text{for } k \ge 3, c_k = \frac{3}{(k-2)(2k+3)} \sum_{i=1}^{k-2} c_i c_{k-1-i}.$$

(see BMSS paper for fast expansion method)

Elkies's method

$$\frac{N(x)}{D(x)} = \tilde{\wp} \circ \wp^{-1}(x) = x + \sum_{i \ge 1} \frac{h_i}{x^i}$$

First: compute

$$h_k = \frac{3}{(k-2)(2k+3)} \sum_{i=1}^{k-2} h_i h_{k-1-i} - \frac{2k-3}{2k+3} A h_{k-2} - \frac{2(k-3)}{2k+3} B h_{k-3}$$

for all $k \ge 3$ with $h_1 = (A - \tilde{A})/5$ and $h_2 = (B - \tilde{B})/7$. $\Rightarrow O(\ell^2)$ operations in **K**.

Second: get p_i 's using:

$$h_i = (2i+1)p_{i+1} + (2i-1)Ap_{i-1} + (2i-2)Bp_{i-2}$$
, for all $i \ge 1$,

Third: recover D(x) using Newton's formulas in $O(\ell^2)$ operations, or perhaps in $O(M(\ell))$ with Schönhage's algorithm.

Total complexity: $O(\ell^2)$.

A fast variant (Bostan/M./Salvy/Schost)

Consider S s.t. $\tilde{R}=S\circ R$, with $R(z)=1/\sqrt{\wp(z)}$ and $\tilde{R}(z)=1/\sqrt{\tilde{\wp}(z)}$ One has:

$$S(z) = z + \frac{\tilde{A} - A}{10}z^5 + \frac{\tilde{B} - B}{14}z^7 + O(z^9) \in z + z^3 \mathbf{K}[[z^2]]$$

Claim:

$$\frac{N(x)}{D(x)} = \frac{1}{S\left(\frac{1}{\sqrt{x}}\right)^2}.$$

Applying the chain rule gives the following first order differential equation satisfied by S(z):

$$(Bz^6 + Az^4 + 1) S'(z)^2 = 1 + \tilde{A} S(z)^4 + \tilde{B} S(z)^6.$$

Use fast computer algebra techniques to get $O(M(\ell))$ method.

IV. Computing modular equations

Traditionnal modular polynomial: constructed via lattices and curves over \mathbb{C} . Remember that

$$j(q) = \frac{1}{q} + 744 + \sum_{n \geq 1} c_n q^n.$$

Then $\Phi_\ell^T(X,Y)$ is such that $\Phi_\ell^T(j(q),j(q^\ell))$ vanishes identically. This polynomial has a lot of properties: symmetrical $\mathbb{Z}[X,Y]$, degree in X and Y is $\ell+1$ (hence $(\ell+1)^2$ coefficients), etc. and moreover

Thm. [P. Cohen] the height of $\Phi_{\ell}^{T}(X, Y)$ is $O((\ell + 1) \log \ell)$. **Example:**

$$\Phi_2(X,Y) = X^3 + X^2 \left(-Y^2 + 1488 \ Y - 162000 \right)$$

$$+ X \left(1488 \ Y^2 + 40773375 \ Y + 8748000000 \right)$$

$$+ Y^3 - 162000 \ Y^2 + 8748000000 \ Y - 157464000000000.$$

Choosing another modular equation

Why? Always good to have the smallest polynomial so as not to fill the disks too rapidly... For small ℓ , Φ_ℓ^T is not a desperate choice.

Key point: any function on $\Gamma_0(\ell)$ (or $\Gamma_0(\ell)/\langle w_\ell \rangle$) will do. In particular, if

$$f(q) = q^{-\nu} + \cdots$$

then there will exist a polynomial $\Phi_{\ell}[f](X, Y)$ s.t.

$$\Phi_{\ell}[f](j(q),f(q))\equiv 0.$$

This polynomial will have $(v + 1)(\ell + 1)$ coefficients, and height $O(v \log \ell)$.

Choosing f

Atkin proposed several choices:

▶ canonical choice f(q) using some power of $\eta(q)/\eta(q^{\ell})$ where:

$$\eta(q) = q^{1/24} \prod_{n \geq 1} (1 - q^n).$$

▶ a conceptually difficult method (the laundry method) for finding (conjecturally) the f with smallest v (that he is now able to rewrite as θ -functions with characters).

Alternatively, one may use some linear algebra on functions obtained via Hecke operators.

Computing $\Phi_{\ell}[f]$ given f

- ▶ **Atkin** (analysis by Elkies): use q-expansion of j and f with $O(v\ell)$ terms, compute power sums of roots of $\Phi_{\ell}[f]$, write them as polynomials in J and go back to coefficients of $\Phi_{\ell}[f](X,J)$ via Newton's formulas; use CRT on small primes. $\tilde{O}(\ell^3 M(p))$; used for $\ell \leq 1000$ fifteen years ago.
- ▶ Charles+Lauter (2005): compute Φ_{ℓ}^T modulo p using supersingular invariants mod p, Mestre *méthode des graphes*, ℓ torsion points defined over $\mathbb{F}_{p^{O(\ell)}}$ and interpolation. $\tilde{O}(\ell^4 M(p))$
- ▶ Enge (2004); Dupont (2004): use complex floating point evaluation and interpolation. $\tilde{O}(\ell^3)$

Real life (Enge)

Use

$$\frac{T_r(\eta\eta_\ell)}{\eta\eta_\ell}$$

where T_r is the Hecke operator

$$(T_r|f)(\tau) = f(r\tau) + \frac{1}{r}\sum_{k=0}^{r-1} f\left(\frac{\tau+k}{r}\right)$$

for some (small) r. Total overall cost $\tilde{O}(r\ell^3)$.

► Evaluation of η using the sparse expansion, $O(\sqrt{H})$ arithmetical operations per value: $O(\ell^2 \sqrt{H} M_{int}(H))$.

Rem. sometimes, a combination of T_r 's is better (i.e., smaller order v), but then evaluation is more costly.

Examples

ℓ	r	Н	deg(J)	eval(s)	interp(s)	tot (d)	Mb gz
3011	5	7560	200				368
3079	97	9018	254	7790	640	23	547
3527	13	9894	268	799	1440	3	746
3517	97	10746	290	12400	1110	42	850
4003	13	11408	308	1130	2320	4	1127
5009	5	13349	334	880	3110	3	1819
6029	5	16418	402	1550	6370	7	3251
7001	5	19473	466	2440	11700	13	5182
8009	5	22515	534	3500	20000	22	7905
9029	5	25507	602	5030	33100	35	11460
10079	5	28825	672	7690	56300	61	16152

V. Finding the eigenvalue

Pb: find λ , $1 \le \lambda < \ell$ s.t.

$$(X^p, Y^p) = [\lambda](X, Y) \mod (E, f_{\lambda}(X)).$$

A) previous methods

First approach: $O(\ell)$ iterations to find λ given X^p and Y^p .

When $\ell \equiv 3 \mod 4$: enough to test $X^p = [\lambda](X)$ using Dewaghe's trick.

Maurer + Müller (1994/2001): [funny baby-steps/giant steps] find i and j s.t. $[i](X^p) = [j](X)$, with $i, j = O(\sqrt{\ell})$ yielding a $O(\sqrt{\ell}M(\ell))$ method (given X^p).

Gaudry + FM (ISSAC 2006): practical improvements, for instance how to get X^p from Y^p ; better constants in MM.

Some timings

For *p* with 1700dd, $\ell = 3881$:

X^p mod Φ	17529
find <i>j</i> * (deg=257)	1398
f_{λ}	2930
Y^p	8768
X^p from Y^p	2063
j/i = 31/29	
all N_i/D_i	149
$f_u(X^p)$	300
matchs	310

B) Abelian lifts (P. Mihăilescu)

(Joint work in progress...)

Finding λ : $O((\log p)M(\ell) + \sqrt{\ell}M(\ell))$.

Question: can we get rid of the log *p* term? Yes, in some cases.

Philosophy: f_{λ} behaves very much like a cyclotomic polynomial after all. Why not transfer all the theory?

First idea: factor f_{λ} , but requires $X^p \mod f_{\lambda}$.

Second idea: use Gaussian periods, but then need [a]X for $a \le (\ell - 1)/2$. Cost is $O(\ell M(\ell))$, ok if $\ell \ll \log p$, but in real life, $\ell = \log p$.

Third idea: look more closely at cyclotomic properties, or Abelian properties.

Principle: Let prime power $q = r^a \mid\mid d = (\ell - 1)/2$, $Q = (\ell - 1)/2/q$.

Write $(\mathbb{Z}/\ell\mathbb{Z})^* = \langle c \rangle$ and write $\lambda = c^x$. We will find $u = x \mod q$.

W.l.o.g: q odd.

Notation:

$$f_{\lambda}(Z) = \prod_{a=1}^{(\ell-1)/2} (Z - \rho_a(X))$$

where

$$\rho_a(X) = ([a]P)_X \text{ in } \mathbf{K}[X]/(f_{\lambda}(X)) \text{ and } 1 \le a \le (\ell-1)/2.$$

Deuring lift E/\mathbb{F}_p to \overline{E}/\mathbb{K} and p to \mathfrak{p} .

$$\mathbb{K}_{\ell} = \mathbb{K}(X)/(\overline{f}_{\ell}(X))$$
 $\ell+1$ |
 $\mathbb{K}_{\ell}^{\{\overline{\rho}\}} = \mathbb{K}[X]/(\overline{f}_{\lambda}(X))$
 $(\ell-1)/2/q = Q$
 $\mathbb{K}_{q} = \mathbb{K}(\overline{\eta}_{0})$
 $\mathbb{K}_{q} = \mathbb{K}(\overline{\eta}_{0})$
 $\mathbb{K}_{q} = \mathbb{K}(\overline{\eta}_{0})$

There is an Abelian action:

$$\overline{\rho}_{ij} = \overline{\rho}_i \overline{\rho}_j = \overline{\rho}_j \overline{\rho}_i.$$

$$\overline{f}_{\lambda}(Z) = \prod_{a=1}^{(\ell-1)/2} (Z - \overline{\rho}_a(X))$$
 is an Abelian lift of $f_{\lambda}(Z)$.

Elliptic Gaussian period

Let $(\mathbb{Z}/\ell\mathbb{Z})^*/\{\pm 1\} = \langle c \rangle$ and put:

$$(\mathbb{Z}/\ell\mathbb{Z})^*/\{\pm 1\} = H \times K = \langle h \rangle \times \langle k \rangle$$
 with $h = c^q, k = c^Q$.

For $0 \le i < q$:

$$\overline{\eta}_i = \sum_{a \in H} ([k^i \cdot a]\overline{P})_X$$

Since $\overline{\eta}_1 = \overline{\eta}_0 \circ \overline{\rho}_k$, there is a cyclic action:

$$\overline{\eta}_0 \overset{\overline{\rho}_k}{\to} \overline{\eta}_1 \overset{\overline{\rho}_k}{\to} \cdots \overset{\overline{\rho}_k}{\to} \overline{\eta}_{q-1} \overset{\overline{\rho}_k}{\to} \overline{\eta}_0,$$

The minimal polynomial of $\overline{\eta}_0$ is:

$$\overline{M}(T) = \prod_{i=0}^{q-1} (T - \overline{\eta}_i)$$

and belongs to $\mathbb{K}[T]$.

Fact: since the extension \mathbb{K}_q/\mathbb{K} is Abelian, there exists $\overline{C}(T) \in \mathbb{K}[T]$ of degree < q - 1 s.t. $\overline{\eta}_1 = \overline{C}(\overline{\eta}_0)$.

Reduce everything modulo p: η_0 and η_1 live in $\mathbb{F}_p[X]/(f_\lambda(X))$ and are related through $\eta_1 = C(\eta_0)$, $M(\eta_0) = M(\eta_1) = 0$.

Suppose $T^p = C^{(v)}(T) \mod M(T)$. Then

$$\eta_0^p = C^{(v)}(\eta_0) = \eta_v = [k^v]\eta_0.$$

But $\eta_0^p = [\lambda]\eta_0$ and therefore $c^u \equiv c^{Qv}$ or $u \equiv Qv \mod q$.

Algorithm

Aim: given $q \mid \mid (\ell - 1)/2$, compute $u \mod q$ where $\lambda = c^u$.

- 1. Compute $\eta_0(X) \in \mathbb{F}_p[X]/(f_{\lambda})$. Shoup's trace algorithm in $O((\log Q)(\mathcal{C}_2(\ell) + 0.5\mathcal{C}_3(\ell))$.
- 2. Compute $\eta_1(X) = \eta_0 \circ \rho_k(X) \mod f_\lambda(X)$. $O(\mathcal{C}_1(\ell))$.
- 3. Compute the minimal polynomial M(T) of $\eta_0 \mod f_\lambda$. Shoup: $O(M(q)q^{1/2} + q^2)$.
- 4. Compute C(T) s.t. $\eta_1(X) = C(\eta_0(X))$. Shoup: $O(\ell^{(\omega+1)/2})$.
- 5. Compute $T_p = T^p \mod M(T)$. $O((\log p)M(q))$.
- 6. Find $0 \le v < q$ s.t. $T_p = C^{(v)}(T) \mod M(T)$. $O(q^{1/2}C_{\sqrt{q}}(q)).$
- 7. Return vQ mod q.

$$C_r(\ell) = O(r^{1/2}\ell^{1/2}M(\ell) + r^{(\omega-1)/2}\ell^{(\omega+1)/2})$$
 (Comp[23]Mod of NTL).

Trace computation: computing η_0 is analogous to Shoup's algorithm for computing

$$T_k(X) = \sum_{i=0}^k X^{p^i} \bmod f$$

using $T_{a+b} = T_a(X^{p^b}) + T_b$, hence $O(\log k)$ modular compositions by a divide-and-conquer algorithm.

Analysis:

When $q \ll \ell$: dominant step is step 1 in $O((\log Q)C(\ell)) = O((\log \ell)C(\ell))$.

When $q \approx \ell$: dominant term is step 5 in $O((\log p)M(\ell)) \Rightarrow$ clearly not useful in that case.

A real life example

$$p = 10^{2499} + 7131$$
, $\ell = 5861$, $\ell - 1 = 2^2 \cdot 5 \cdot 293$.

q	η_0	η_1	M(T)	C(T)	Τ ^p	и
4	15418	732	13	100	2	0
5	8491	446	17	43	10	0
293	3615	446	160	2509	3203	250

for a total time of 36800 sec.

Traditional approach: Y^p costs 33001, X^p (from Y^p) 898; λ final is 3650.

Any improvement to C_r or trace computation would be crucial.

VI. Records

Modular equations computed using gmp, mpfr, mpc (C language).

SEA++ written in C++ (NTL).

Times for computing the cardinality of

 $E: Y^2 = X^3 + 4589X + 91128$ modulo the smallest p with given # dd, on an AMD 64 Processor 3400+ (2.4GHz).

what	500dd	1000dd	1500dd	2005dd	2100dd
Xp	6h	134h	35d	133d	121d
Total	10h	180h	77d	195d	190d

What's left to be done?

- Mihăilescu's approach: injecting more cyclotomic properties seems promising (Gauss and Jacobi sums, etc.).
- Computing E* from E is a O(ℓ²) process. Can we go down to O(M(ℓ))???
- Modular equations still the stumbling block of all this (as a result, AE has filled all our disks...). Can we dream of doing without Φ's????
- Much much harder: still a lot of work to be done in higher genus.