Recent improvements to the SEA algorithm in genus 1

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Toronto, October 31st, 2006

Plan

I. Introduction.
II. An overview of the SEA algorithm.
III. Fast isogeny computations.
IV. Computing modular equations (AE; RD).
V. Finding the eigenvalue ($\mathrm{PG}+\mathrm{FM}$; $\mathrm{PM}+\mathrm{FM}$).
VI. Records.
$R D=R$. Dupont, $A E=A . E n g e, P G=P$. Gaudry, $P M=$ P. Mihăilescu

I. Introduction

Problem: given

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defined over some finite field $\mathbf{K}=\mathbb{F}_{q}, q=p^{r}$, compute its cardinality.

Which methods:

- Enumeration: $O(q), O\left(q^{1 / 2}\right)$;
- Baby steps/giant steps, kangaroos, etc.: $O\left(q^{1 / 4}\right)$;
- Any q: Schoof's algorithm (1985) and extensions $\tilde{O}\left((\log q)^{5}\right)$;
- p small: p-adic methods à la Satoh $\tilde{O}\left(r^{3}\right)$ since 1999.

In this talk: $q=p$ large, $E: y^{2}=x^{3}+A x+B$; we ignore $C M$ curves of small discriminant, as well as supersingular curves, that should be tested beforehand.

II. An overview of the Schoof-Elkies-Atkin (SEA) algorithm

Def. (torsion points) For $n \in \mathbb{N}, E[n]=\left\{P \in E(\overline{\mathbf{K}}),[n] P=O_{E}\right\}$.
Division polynomials: (for $E: y^{2}=x^{3}+A x+B$)

$$
\begin{gathered}
{[n](X, Y)=\left(\frac{\phi_{n}(X, Y)}{\psi_{n}(X, Y)^{2}}, \frac{\omega_{n}(X, Y)}{\psi_{n}(X, Y)^{3}}\right)} \\
\phi_{n}=X \psi_{n}^{2}-\psi_{n+1} \psi_{n-1} \\
4 Y \omega_{n}=\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2} \\
\phi_{n}, \psi_{2 n+1}, \psi_{2 n} /(2 Y), \omega_{2 n+1} / Y, \omega_{2 n} \in \mathbb{Z}[A, B, X]
\end{gathered}
$$

$$
\left.\left.\begin{array}{c}
f_{n}(X)= \begin{cases}\psi_{n}(X, Y) & \text { for } n \text { odd } \\
\psi_{n}(X, Y) /(2 Y) & \text { for } n \text { even }\end{cases} \\
f_{-1}=-1, \quad f_{0}=0, \quad f_{1}=1, \quad f_{2}=1
\end{array}\right\} \begin{array}{c}
f_{3}(X, Y)=3 X^{4}+6 A X^{2}+12 B X-A^{2}
\end{array}\right\} \begin{aligned}
& f_{2 n+1}=\left\{\begin{array}{l}
f_{n+2} f_{n}^{3}-f_{n+1}^{3} f_{n-1}\left(16 Y^{4}\right) \text { if } n \text { is odd } \\
\left(16 Y^{4}\right) f_{n+2} f_{n}^{3}-f_{n+1}^{3} f_{n-1} \text { otherwise. }
\end{array}\right. \\
& \operatorname{deg}\left(f_{n}(X)\right)= \begin{cases}\left(n^{2}-1\right) / 2 & \text { if } n \text { is odd } \\
\left(n^{2}-4\right) / 2 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thm. $P=(x, y) \in E[\ell] \Longleftrightarrow[2] P=O_{E}$ or $f_{\ell}(x)=0$.

The Frobenius endomorphism

Ordinary:

$$
\begin{aligned}
\varphi: & \overline{\mathbf{K}}
\end{aligned} \rightarrow \overline{\mathbf{K}} \begin{array}{lll}
& \mapsto & x^{p}
\end{array}
$$

Extension to E :

$$
\varphi: \begin{array}{cccc}
E(\overline{\mathbf{K}}) & \rightarrow & E(\overline{\mathbf{K}}) \\
(X, Y) & \mapsto & \left(X^{p}, Y^{p}\right)
\end{array}
$$

Thm. The minimal polynomial of φ is $\chi(T)=T^{2}-c T+p$, $|c| \leq 2 \sqrt{p}$ and $\# E=\chi(1)$.

Schoof's algorithm (1985)

The fundamental idea: let ℓ be prime to p. Then φ restricted to $E[\ell]$ satisfies

$$
\varphi_{\ell}^{2}-c \varphi_{\ell}+p \equiv 0 \bmod \ell
$$

so we can find $c_{\ell} \equiv c$ mod ℓ such that

$$
\left(X^{p^{2}}, Y^{p^{2}}\right) \oplus[p](X, Y)=\left[c_{\ell}\right]\left(X^{p}, Y^{p}\right)
$$

in $\mathbf{K}[X, Y] /\left(E, f_{\ell}(X)\right)$ and use CRT once $\Pi \ell>4 \sqrt{p}$ $(\Rightarrow \ell=O(\log p))$.

Thm. Schoof's algorithm is deterministic polynomial with bit-complexity $O\left(\log p \cdot \log p \mathrm{M}\left(\ell^{2} \log p\right)\right)=\tilde{O}\left((\log p)^{5}\right)$.

Pb. handling $\operatorname{deg}\left(f_{\ell}\right)=O\left(\ell^{2}\right)$ polynomials.

Atkin and Elkies (1986-1990)

Start again from:

$$
\varphi_{\ell}^{2}-c \varphi_{\ell}+p=0, \quad \Delta=c^{2}-4 p
$$

If $(\Delta / \ell)=+1$, then over \mathbb{F}_{ℓ},
$\operatorname{Mat}\left(\varphi_{\ell}\right) \simeq\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \Leftrightarrow \exists F, \varphi_{\ell}(F)=F \Leftrightarrow F$ is a cyclic
subgroup of order ℓ, defined over \mathbf{K}; E is ℓ-isogenous to $E^{*}=E / F$.

As a consequence, f_{ℓ} has a factor of degree $(\ell-1) / 2$.
Fact: there exists a polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ s.t. E and E^{*} are ℓ-isogenous over \mathbf{K} iff $\# E=\# E^{*}$ and $\Phi_{\ell}\left(j(E), j\left(E^{*}\right)\right)=0$.

Elkies's algorithm

for prime ℓ until $\prod_{\ell \text { good }} \ell>4 \sqrt{p}$ do
0. Compute $\Phi_{\ell}(X, Y)$. [precomputation?]

1. find the roots of $\Phi_{\ell}(X, j(E))$ over \mathbf{K}; if none, use next ℓ;
2. let j_{0} be one of the roots:
2.1 build $E^{*}=E / F$ corresponding to j_{0}; deduce $f_{\lambda} \mid f_{\ell}$;
2.2 find $\lambda \bmod \ell$ s.t. $\varphi_{\ell}(X, Y)=[\lambda](X, Y) \bmod \left(E, f_{\lambda}\right)$;
$2.3 c_{\ell}=\lambda+p / \lambda \bmod \ell$.
Thm. $\tilde{O}\left((\log p)^{2} \mathrm{M}(\ell \log p)=\tilde{O}\left((\log p)^{4}\right)\right.$ probabilistic (half the primes are good).

III. Fast isogeny computations

INPUT: E and E^{*} related via an ℓ-isogeny with trace σ.
Output: $I(x)=N(x) / D(x)$.

$$
E: y^{2}=x^{3}+A x+B, E^{*}: y^{2}=x^{3}+\tilde{A} x+\tilde{B}
$$

can be parametrized as $(x, y)=\left(\wp(z), \wp^{\prime}(z) / 2\right)$, where the function \wp can be expanded as:

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{i \geq 1} c_{i} z^{2 i}
$$

with

$$
c_{1}=-\frac{A}{5}, c_{2}=-\frac{B}{7}, \quad \text { for } k \geq 3, c_{k}=\frac{3}{(k-2)(2 k+3)} \sum_{i=1}^{k-2} c_{i} c_{k-1-i}
$$

(see BMSS paper for fast expansion method)

Elkies's method

$$
\frac{N(x)}{D(x)}=\tilde{\wp} \circ \wp^{-1}(x)=x+\sum_{i \geq 1} \frac{h_{i}}{x^{i}}
$$

First: compute
$h_{k}=\frac{3}{(k-2)(2 k+3)} \sum_{i=1}^{k-2} h_{i} h_{k-1-i}-\frac{2 k-3}{2 k+3} A h_{k-2}-\frac{2(k-3)}{2 k+3} B h_{k-3}$
for all $k \geq 3$ with $h_{1}=(A-\tilde{A}) / 5$ and $h_{2}=(B-\tilde{B}) / 7$.
$\Rightarrow O\left(\ell^{2}\right)$ operations in \mathbf{K}.
Second: get p_{i} 's using:

$$
h_{i}=(2 i+1) p_{i+1}+(2 i-1) A p_{i-1}+(2 i-2) B p_{i-2}, \quad \text { for all } i \geq 1
$$

Third: recover $D(x)$ using Newton's formulas in $O\left(\ell^{2}\right)$ operations, or perhaps in $O(\mathrm{M}(\ell))$ with Schönhage's algorithm. Total complexity: $O\left(\ell^{2}\right)$.

A fast variant (Bostan/M./Salvy/Schost)

Consider S s.t. $\tilde{R}=S \circ R$, with $R(z)=1 / \sqrt{\wp(z)}$ and $\tilde{R}(z)=1 / \sqrt{\tilde{\wp}(z)}$
One has:

$$
S(z)=z+\frac{\tilde{A}-A}{10} z^{5}+\frac{\tilde{B}-B}{14} z^{7}+O\left(z^{9}\right) \in z+z^{3} \mathbf{K}\left[\left[z^{2}\right]\right]
$$

Claim:

$$
\frac{N(x)}{D(x)}=\frac{1}{S\left(\frac{1}{\sqrt{x}}\right)^{2}} .
$$

Applying the chain rule gives the following first order differential equation satisfied by $S(z)$:

$$
\left(B z^{6}+A z^{4}+1\right) S^{\prime}(z)^{2}=1+\tilde{A} S(z)^{4}+\tilde{B} S(z)^{6} .
$$

Use fast computer algebra techniques to get $O(\mathrm{M}(\ell))$ method.

IV. Computing modular equations

Traditionnal modular polynomial: constructed via lattices and curves over \mathbb{C}. Remember that

$$
j(q)=\frac{1}{q}+744+\sum_{n \geq 1} c_{n} q^{n} .
$$

Then $\Phi_{\ell}^{T}(X, Y)$ is such that $\Phi_{\ell}^{T}\left(j(q), j\left(q^{\ell}\right)\right)$ vanishes identically. This polynomial has a lot of properties: symmetrical $\mathbb{Z}[X, Y]$, degree in X and Y is $\ell+1$ (hence $(\ell+1)^{2}$ coefficients), etc. and moreover
Thm. [P. Cohen] the height of $\Phi_{\ell}^{T}(X, Y)$ is $O((\ell+1) \log \ell)$. Example:

$$
\begin{gathered}
\Phi_{2}(X, Y)=X^{3}+X^{2}\left(-Y^{2}+1488 Y-162000\right) \\
+X\left(1488 Y^{2}+40773375 Y+8748000000\right) \\
+Y^{3}-162000 Y^{2}+8748000000 Y-157464000000000
\end{gathered}
$$

Choosing another modular equation

Why? Always good to have the smallest polynomial so as not to fill the disks too rapidly... For small ℓ, Φ_{ℓ}^{T} is not a desperate choice.

Key point: any function on $\Gamma_{0}(\ell)$ (or $\left.\Gamma_{0}(\ell) /\left\langle w_{\ell}\right\rangle\right)$ will do. In particular, if

$$
f(q)=q^{-v}+\cdots
$$

then there will exist a polynomial $\Phi_{\ell}[f](X, Y)$ s.t.

$$
\Phi_{\ell}[f](j(q), f(q)) \equiv 0
$$

This polynomial will have $(v+1)(\ell+1)$ coefficients, and height $O(v \log \ell)$.

Choosing f

Atkin proposed several choices:

- canonical choice $f(q)$ using some power of $\eta(q) / \eta\left(q^{\ell}\right)$ where:

$$
\eta(q)=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right) .
$$

- a conceptually difficult method (the laundry method) for finding (conjecturally) the f with smallest v (that he is now able to rewrite as θ-functions with characters).

Alternatively, one may use some linear algebra on functions obtained via Hecke operators.

Computing $\Phi_{\ell}[f]$ given f

- Atkin (analysis by Elkies): use q-expansion of j and f with $O(v \ell)$ terms, compute power sums of roots of $\Phi_{\ell}[f]$, write them as polynomials in J and go back to coefficients of $\Phi_{\ell}[f](X, J)$ via Newton's formulas; use CRT on small primes. $\tilde{O}\left(\ell^{3} \mathrm{M}(p)\right)$; used for $\ell \leq 1000$ fifteen years ago.
- Charles+Lauter (2005): compute Φ_{ℓ}^{T} modulo p using supersingular invariants mod p, Mestre méthode des graphes, ℓ torsion points defined over $\mathbb{F}_{p_{(\ell)}}$ and interpolation. $\tilde{O}\left(\ell^{4} \mathrm{M}(p)\right)$
- Enge (2004); Dupont (2004): use complex floating point evaluation and interpolation. $\tilde{O}\left(\ell^{3}\right)$

Real life (Enge)

- Use

$$
\frac{T_{r}\left(\eta \eta_{\ell}\right)}{\eta \eta_{\ell}}
$$

where T_{r} is the Hecke operator

$$
\left(T_{r} \mid f\right)(\tau)=f(r \tau)+\frac{1}{r} \sum_{k=0}^{r-1} f\left(\frac{\tau+k}{r}\right)
$$

for some (small) r. Total overall cost $\tilde{O}\left(r \ell^{3}\right)$.

- Evaluation of η using the sparse expansion, $O(\sqrt{H})$ arithmetical operations per value: $O\left(\ell^{2} \sqrt{H} M_{\text {int }}(H)\right)$.

Rem. sometimes, a combination of T_{r} 's is better (i.e., smaller order v), but then evaluation is more costly.

Examples

ℓ	r	H	$\operatorname{deg}(J)$	$\operatorname{eval}(s)$	$\operatorname{interp}(s)$	tot (d)	Mb gz
3011	5	7560	200				368
3079	97	9018	254	7790	640	23	547
3527	13	9894	268	799	1440	3	746
3517	97	10746	290	12400	1110	42	850
4003	13	11408	308	1130	2320	4	1127
5009	5	13349	334	880	3110	3	1819
6029	5	16418	402	1550	6370	7	3251
7001	5	19473	466	2440	11700	13	5182
8009	5	22515	534	3500	20000	22	7905
9029	5	25507	602	5030	33100	35	11460
10079	5	28825	672	7690	56300	61	16152

V. Finding the eigenvalue

Pb: find $\lambda, 1 \leq \lambda<\ell$ s.t.

$$
\left(X^{p}, Y^{p}\right)=[\lambda](X, Y) \bmod \left(E, f_{\lambda}(X)\right)
$$

A) previous methods

First approach: $O(\ell)$ iterations to find λ given X^{p} and Y^{p}.
When $\ell \equiv 3 \bmod 4$: enough to test $X^{p}=[\lambda](X)$ using Dewaghe's trick.

Maurer + Müller (1994/2001): [funny baby-steps/giant steps] find i and j s.t. $[i]\left(X^{p}\right)=[j](X)$, with $i, j=O(\sqrt{\ell})$ yielding a $O(\sqrt{\ell} \mathrm{M}(\ell))$ method (given $\left.X^{p}\right)$.

Gaudry + FM (ISSAC 2006): practical improvements, for instance how to get X^{p} from Y^{p}; better constants in MM.

Some timings

For p with $1700 \mathrm{dd}, \ell=3881$:

$X^{p} \bmod \Phi$	17529
find $j^{*}(\operatorname{deg}=257)$	1398
f_{λ}	2930
Y^{p}	8768
X^{p} from Y^{p}	2063
$j / i=31 / 29$	
all N_{j} / D_{j}	149
$f_{u}\left(X^{p}\right)$	300
matchs	310

B) Abelian lifts (P. Mihăilescu)

(Joint work in progress...)
Finding $\lambda: O((\log p) \mathrm{M}(\ell)+\sqrt{\ell} \mathrm{M}(\ell))$.
Question: can we get rid of the $\log p$ term? Yes, in some cases.

Philosophy: f_{λ} behaves very much like a cyclotomic polynomial after all. Why not transfer all the theory?

First idea: factor f_{λ}, but requires $X^{p} \bmod f_{\lambda}$.
Second idea: use Gaussian periods, but then need [a] X for $a \leq(\ell-1) / 2$. Cost is $O(\ell \mathrm{M}(\ell))$, ok if $\ell \ll \log p$, but in real life, $\ell=\log p$.

Third idea: look more closely at cyclotomic properties, or Abelian properties.

Principle: Let prime power $q=r^{a} \| d=(\ell-1) / 2$,
$Q=(\ell-1) / 2 / q$.
Write $(\mathbb{Z} / \ell \mathbb{Z})^{*}=\langle c\rangle$ and write $\lambda=c^{x}$. We will find $u=x \bmod q$.
W.l.o.g: q odd.

Notation:

$$
f_{\lambda}(Z)=\prod_{a=1}^{(\ell-1) / 2}\left(Z-\rho_{a}(X)\right)
$$

where
$\rho_{a}(X)=([a] P)_{x}$ in $\mathbf{K}[X] /\left(f_{\lambda}(X)\right)$ and $1 \leq a \leq(\ell-1) / 2$.

Deuring lift E / \mathbb{F}_{p} to \bar{E} / \mathbb{K} and p to \mathfrak{p}.

$$
\begin{gathered}
\mathbb{K}_{\ell}=\mathbb{K}(X) /\left(\bar{f}_{\ell}(X)\right) \\
\ell+1 \mid \\
\mathbb{K}_{\ell}^{\{\bar{\rho}\}}=\mathbb{K}[X] /\left(\bar{f}_{\lambda}(X)\right) \\
(\ell-1) / 2 / q=Q \\
\mathbb{K}_{q}= \\
q
\end{gathered} \mathbb{K}_{\left(\bar{\eta}_{0}\right)} \quad \mathbf{K}[X] /\left(f_{\lambda}(X)\right)
$$

There is an Abelian action:

$$
\bar{\rho}_{i j}=\bar{\rho}_{i} \bar{\rho}_{j}=\bar{\rho}_{j} \bar{\rho}_{i} .
$$

$\bar{f}_{\lambda}(Z)=\prod_{a=1}^{(\ell-1) / 2}\left(Z-\bar{\rho}_{a}(X)\right)$ is an Abelian lift of $f_{\lambda}(Z)$.

Elliptic Gaussian period

Let $(\mathbb{Z} / \ell \mathbb{Z})^{*} /\{ \pm 1\}=\langle c\rangle$ and put:

$$
(\mathbb{Z} / \ell \mathbb{Z})^{*} /\{ \pm 1\}=H \times K=\langle h\rangle \times\langle k\rangle \quad \text { with } h=c^{q}, k=c^{Q} .
$$

For $0 \leq i<q$:

$$
\bar{\eta}_{i}=\sum_{a \in H}\left(\left[k^{i} \cdot a\right] \bar{P}\right)_{x}
$$

Since $\bar{\eta}_{1}=\bar{\eta}_{0} \circ \bar{\rho}_{k}$, there is a cyclic action:

$$
\bar{\eta}_{0} \xrightarrow{\bar{\rho}_{k}} \bar{\eta}_{1} \xrightarrow{\bar{\rho}_{k}} \ldots \xrightarrow{\bar{\rho}_{k}} \bar{\eta}_{q-1} \xrightarrow{\bar{\rho}_{k}} \bar{\eta}_{0},
$$

The minimal polynomial of $\bar{\eta}_{0}$ is:

$$
\bar{M}(T)=\prod_{i=0}^{q-1}\left(T-\bar{\eta}_{i}\right)
$$

and belongs to $\mathbb{K}[T]$.
Fact: since the extension $\mathbb{K}_{q} / \mathbb{K}$ is Abelian, there exists
$\bar{C}(T) \in \mathbb{K}[T]$ of degree $\leq q-1$ s.t. $\bar{\eta}_{1}=\bar{C}\left(\bar{\eta}_{0}\right)$.

Reduce everything modulo $p: \eta_{0}$ and η_{1} live in $\mathbb{F}_{p}[X] /\left(f_{\lambda}(X)\right)$ and are related through $\eta_{1}=C\left(\eta_{0}\right), M\left(\eta_{0}\right)=M\left(\eta_{1}\right)=0$.

Suppose $T^{p}=C^{(v)}(T) \bmod M(T)$. Then

$$
\eta_{0}^{p}=C^{(v)}\left(\eta_{0}\right)=\eta_{v}=\left[k^{v}\right] \eta_{0} .
$$

But $\eta_{0}^{p}=[\lambda] \eta_{0}$ and therefore $c^{u} \equiv c^{Q v}$ or $u \equiv Q v \bmod q$.

Algorithm

Aim: given $q \|(\ell-1) / 2$, compute $u \bmod q$ where $\lambda=c^{u}$.

1. Compute $\eta_{0}(X) \in \mathbb{F}_{p}[X] /\left(f_{\lambda}\right)$.

Shoup's trace algorithm in $O\left((\log Q)\left(\mathcal{C}_{2}(\ell)+0.5 \mathcal{C}_{3}(\ell)\right)\right.$.
2. Compute $\eta_{1}(X)=\eta_{0} \circ \rho_{k}(X) \bmod f_{\lambda}(X)$.
$O\left(\mathcal{C}_{1}(\ell)\right)$.
3. Compute the minimal polynomial $M(T)$ of $\eta_{0} \bmod f_{\lambda}$.

Shoup: $O\left(\mathrm{M}(q) q^{1 / 2}+q^{2}\right)$.
4. Compute $C(T)$ s.t. $\eta_{1}(X)=C\left(\eta_{0}(X)\right)$.

Shoup: $O\left(\ell^{(\omega+1) / 2}\right)$.
5. Compute $T_{p}=T^{p} \bmod M(T)$. $O((\log p) \mathrm{M}(q))$.
6. Find $0 \leq v<q$ s.t. $T_{p}=C^{(v)}(T) \bmod M(T)$.

$$
O\left(\bar{q}^{1 / 2} \mathcal{C}_{\sqrt{q}}(q)\right)
$$

7. Return $v Q \bmod q$.
$\mathcal{C}_{r}(\ell)=O\left(r^{1 / 2} \ell^{1 / 2} \mathrm{M}(\ell)+r^{(\omega-1) / 2} \ell^{(\omega+1) / 2}\right)($ Comp[23]Mod of NTL).

Trace computation: computing η_{0} is analogous to Shoup's algorithm for computing

$$
T_{k}(X)=\sum_{i=0}^{k} X^{p^{i}} \bmod f
$$

using $T_{a+b}=T_{a}\left(X^{p^{b}}\right)+T_{b}$, hence $O(\log k)$ modular compositions by a divide-and-conquer algorithm.

Analysis:

When $q \ll \ell$: dominant step is step 1 in
$O((\log Q) \mathcal{C}(\ell))=O((\log \ell) \mathcal{C}(\ell))$.
When $q \approx \ell$: dominant term is step 5 in $O((\log p) \mathrm{M}(\ell)) \Rightarrow$ clearly not useful in that case.

A real life example

$$
p=10^{2499}+7131, \ell=5861, \ell-1=2^{2} \cdot 5 \cdot 293
$$

q	η_{0}	η_{1}	$M(T)$	$C(T)$	T^{p}	u
4	15418	732	13	100	2	0
5	8491	446	17	43	10	0
293	3615	446	160	2509	3203	250

for a total time of 36800 sec.
Traditional approach: Y^{p} costs 33001, $X^{p}\left(\right.$ from $\left.Y^{p}\right) 898 ; \lambda$ final is 3650 .

Any improvement to \mathcal{C}_{r} or trace computation would be crucial.

VI. Records

Modular equations computed using gmp, mpfr, mpc (C language).

SEA++ written in C++ (NTL).
Times for computing the cardinality of $E: Y^{2}=X^{3}+4589 X+91128$ modulo the smallest p with given \# dd, on an AMD 64 Processor 3400+ (2.4GHz).

what	500dd	1000dd	1500dd	2005dd	2100dd
X^{p}	6 h	134 h	35 d	133 d	121 d
Total	10 h	180 h	77 d	195 d	190 d

What's left to be done?

- Mihăilescu's approach: injecting more cyclotomic properties seems promising (Gauss and Jacobi sums, etc.).
- Computing E^{*} from E is a $O\left(\ell^{2}\right)$ process. Can we go down to $O(\mathrm{M}(\ell))$???
- Modular equations still the stumbling block of all this (as a result, AE has filled all our disks...). Can we dream of doing without Φ 's????
- Much much harder: still a lot of work to be done in higher genus.

