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Introduction

Why Study the Weil-Pairing?

The Weil pairing does for Elliptic Curve groups what the inner
product does for real vector spaces.

It relates the algebra of adding points on an elliptic curve to
multiplying non-zero elements in a field.

It can also be used to construct identity-based cryptosystems.
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Elliptic Curves

Algebraic Groups

K – a field

V /K – an affine variety – solutions to a finite system of polynomials
with coefficients in K .

If L/K is a field, V (L) is the set of solutions with coordinates in L.

V /K is projective if the equations are all homogeneous (exclude 0
and identify points which are scalar multiples).

V is a group variety – group law given by polynomials in coordinates.

Gm : {(x , y)|xy = 1}, and (x1, y1) · (x2, y2) := (x1x2, y1y2).
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Elliptic Curves

Elliptic Curves

Simplest example of a projective group variety.

Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where ai ∈ K (wt(x) = 2,wt(y) = 3,wt(aj) = j).

LP1,P2 = 0: equation of line passing through Pi .

P1 ∗ P2 = third point of intersection of LP1,P2 with E .

P + Q := (P ∗ Q) ∗ 0, where 0 is the “point at ∞” on E . P ∗ 0 is
reflection in the line y + a1x + a3 = 0.
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Points of Finite Order

Points of finite order

G is a group variety, and n a positive integer, then G [n] is the
subvariety of points order dividing n: add the equation Pn = 1 to the
equations of G .

µn := Gm[n], the n-th roots of unity.

E [n] where E is an elliptic curve.

The Weil-pairing connects the two.

If Ω/K is algebraically closed, then E [n](Ω) ∼= Z/nZ× Z/nZ as a
group, if char(K ) - n.

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 8 / 30



The Weil Pairing

1 Introduction

2 Elliptic Curves

3 Points of Finite Order

4 The Weil Pairing
Functions and Their Divisors
The Classical Definition
The Algorithm

5 Applications

6 Conclusions

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 9 / 30



The Weil Pairing

The Weil Pairing

E/K an elliptic curve, n relatively prime to p := char(K ).

en : E [n]× E [n] −→ µn

Bilinear: P,Q,R ∈ E [n]

en(P + R,Q) = en(P,Q)en(R,Q)

en(P,Q + R) = en(P,Q)en(P,R)

Skew-Symmetric: en(P,P) = 1⇒ en(P,Q) = en(Q,P)−1

Non-degenerate: en(P,Q) = 1,∀Q ∈ E [n](Ω)⇒ P = 0.

Compatible: P ∈ E [mn],Q ∈ E [n] ⇒ emn(P,Q) = en(mP,Q).

Galois Action: σ ∈ Gal(Ω/K )⇒ en(P,Q)σ = en(P
σ,Qσ).

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 10 / 30



The Weil Pairing Functions and Their Divisors

Divisors on a Curve

C/K a curve.

Divisor on C is a formal finite sum of points: D =
∑

P∈C aP [P],
where aP ∈ Z.

deg(D) :=
∑

P aP .

If f : C −→ P1 is a function, then

div(f ) :=
∑
P∈C

vP(f )[P],

where vP(f ) is the order of the zero or pole of f at P.

Define D ∼ D′ ⇔ D −D′ = div(f ) for some function f .

Abel-Jacobi: E an elliptic curve, D = div(f ) for some f if and only if,
deg(D) = 0, and

∑
P aPP = 0.
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The Weil Pairing The Classical Definition

Weil’s Definition

supp(
∑

P aP [P]) := {P|aP 6= 0}.
f a function and D =

∑
P aP [P], set f (D) :=

∏
P f (P)aP when

supp(D) ∩ supp(div(f )) = ∅.
0 6= P ∈ E (K ), fn,P : div(fn,P) = n[P]− [nP]− (n − 1)[0]. Exists by
Abel-Jacobi. Constructed explicitly below.

D =
∑

P aP [P], then fn,D :=
∏

P 6=0 f aP
n,P

D,D′ such that nD, nD′ ∼ 0, and supp(D) ∩ supp(D′) = ∅ then
en(D,D′) := fn,D(D′)/fn,D′(D).

D1 ∼ D,D′1 ∼ D1 then en(D1,D′1) = en(D,D′), so function of ∼
class only.

P,Q ∈ E [n], en(P,Q) := en([P]− [0], [Q + R]− [R]),
R 6= 0,−Q,P,P − Q.
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The Weil Pairing The Algorithm

Explicit formula for fn,P(Q)

LP,Q = y + λx + ν, if x(P) 6= x(Q), x − x(P), otherwise.

where λ = y(P)−y(Q)
x(P)−x(Q) , and ν = y(Q)x(P)−y(P)x(Q)

x(P)−x(Q) .

gP,Q =
LP,Q

LP+Q,−(P+Q)
.

div(gP,Q) = [P] + [Q]− [P + Q]− [0].

f1,P := 1.

fn+1,P := fn,PgP,nP

f−n,P := 1
fn,PgnP,−nP

.
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The Weil Pairing The Algorithm

Laurent Series

Formal power series with a finite number of negative powers.

f (t) =
∞∑

j=m

aj t
j , am 6= 0.

Example: t−2 + 3t−1 + 2− 4t + . . . .

Leading Coefficient: lc(f ) := am, lc(fg) = lc(f ) lc(g).

degt(f ) := m, degt(fg) = degt(f ) + degt(g).

f (x , y) = 0 a curve, and Dx f (P) or Dy f (P) 6= 0 there is a rational
function uP of x , y which is a uniformizer at P.

That is uP(P) = 0 and x and y can be written as Laurent series in
uP . vP(f ) := deguP

(f ).

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 14 / 30



The Weil Pairing The Algorithm

Recursive formulas for fn,P

div(fn,P) = n[P]− [nP]− (n − 1)[P], by easy induction.

div(fm+n,P) = div(fm,P fn,PgmP,nP) (1)

div(fmn,P) = div(f n
m,P fn,mP) = div(f m

n,P fm,nP) (2)

But all functions have leading coefficient of 1 at 0.

More specifically, let u0 = y/x , uniformizer at 0.

lcu0(fn,P), lcu0(gP,Q) = 1.

So previous formulas yield equality of the functions!
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The Weil Pairing The Algorithm

Addition-Subtraction Chains

Addition subtraction chain: A : 1 = a0, a1, . . . , at , 0 ≤ ri , li < i
εi = ±1.

ai = ari + εiali .

The value v(A) = at . The length `(A) = t.

If all εi = 1, it is an addition chain.

Example: 1, 2, 3, 6, 12, 24, 21

Given n > 0 there is an addition chain whose value is n and whose
length is ≤ 1 + 2 log2 n. Can usually do much better.
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The Weil Pairing The Algorithm

Algorithm to evaluate fn,P(Q)

1 Fix an addition-subtraction chain A : ri , li , εi of length t, whose value
is n.

2 Set w1 = 1, L1 = P, i = 1.
3 Set i := i + 1
4 If i > t return wt .
5 Set Lt = Lli + εiLri , wt = wli wri lcQ(gLli

,εiLri
) (here we use (1)).

6 Return to step 3.
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The Weil Pairing The Algorithm

Mumford’s Theta Groups

Algorithm for calculating fn,P is connected with Mumford’s Theta
Groups (Frey-Müller-Rück).

D a divisor on E/K of degree 0.

L ⊆ K an extension field, G = L∗ × E (L).

Group law: (a1,P1) · (a2,P2) := (a1a2gP1,P2(D),P1 + P2).

(a,P)−1 := (a−1gP,−P(D)−1,−P), unit (1, 0).

Then (1,P)m = (fm,P(D),mP)
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The Weil Pairing The Algorithm

A simple formula for en(P , Q)

If P,Q ∈ E [n] and P 6= Q then

en(P,Q) = (−1)n
fn,P(Q)

fn,Q(P)
. (3)

Let z be a transcendental, and a point T be defined by

x(T ) :=
1

z2
− a1

z
− a2 − a3z + O(z2)

y(T ) := − 1

z3
+

a1

z2
+

a2

z
+ a3 + O(z).

We have

en(P,Q) =
fn,P(Q)

fn,Q(P)

fn,Q(P)

fn,Q(P + T )

fn,P(Q − T )

fn,P(Q)

fn,Q(T )

fn,P(−T )
. (4)
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The Weil Pairing The Algorithm

Complexity and calculation of en

The number of point additions/subtractions in step 5 is t.

To calculate lcQ(gLli
,εiLri

) takes a fixed amount of arithmetic in K
because the curve is cubic, and g is a ratio of linear functions.

Total complexity is thus O(t) operations in K .

Since we can find A with t ≤ 1 + 2 log2(n), we have complexity
O(log n).

By (3) we need two calculations like fn,P(Q) to calculate en(P,Q).

To calculate en(P,Q) also takes O(log n) K -operations.
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Applications

Elliptic DL and Multiplicative Group DL

Suppose P ∈ E [n](K ) has order n.

By non-degeneracy of en ∃Q ∈ E [n](Ω) such that ord(ζ) = n, where
ζ := en(P,Q).

Let f : E [n](Ω) −→ µn be given by f (R) := en(R,Q).

If R = aP, then f (R) = ζa. Conversely, if R ∈ 〈P〉, and f (R) = ζa,
then R = aP.

So Elliptic DL over K is reduced to the multiplicative group DL over
L := K (Q).

However, degK L is almost always of order q := |K |.
Notable exception: E is supersingular, then degK L ≤ 2 (except in
characteristic 2 or 3, where it is ≤ 12).
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Applications

The Group Structure of E (K )

If K is a finite field, E/K elliptic curve, can calculate |E (K )| quickly
using Schoof’s algorithm, or one of its variants.

One knows that, as a group, E (K ) ∼= Zd × Ze , where d |e.

Problem: Given E/K , find d and e, the elementary divisors of E (K ).

Can use the Weil pairing to solve the following: Given P,Q ∈ E (K ),
do they generate E (K )?

P,Q generate E (K ) if and only if m ord(em(P,Q)) = N, where
m = lcm(ord(P), ord(Q)), and N = |E (K )|.
In that case the elementary divisors of E (K ) are N/m,m.
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Applications

Algorithm for Elementary Divisors of E (K )

1 Calculate N = |E (K )|.
2 Pick P,Q ∈R E (K ) (uniformly and independently).
3 Calculate m := lcm(ord(P), ord(Q)).
4 Calculate ζ := em(P,Q).
5 Calculate d := ord(ζ).
6 If md = N, return (d ,m), and P,Q as generators, else go to step 2.
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Applications

Analysis of the Algorithm

Calculating ord(P) and ord(Q) requires factorization of N be known.

Each iteration of the loop takes time O(log2 q) operations in K ,
where q = |K |.
Expected number of iterations is

1

Pr(P and Q generate E (K ))
.

But, there is an absolute constant C > 0 such that

Pr(P and Q generate E (K )) ≥ C

log log N
.
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Applications

A Modified Algorithm

1 Calculate N = |E (K )|.
2 Set r ← gcd(N, q − 1).
3 Write N = N0N1, where gcd(N0,N1) = 1, and `|r ⇔ `|N0.
4 Pick P,Q ∈R E (K ); P ′ ← N1P,Q ′ ← N1Q.
5 Calculate m := lcm(ord(P ′), ord(Q ′)).
6 Calculate ζ := em(P ′,Q ′).
7 Calculate d := ord(ζ).
8 If md = r , return (d ,N/d), else go to step 2.
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Applications

Probability of Generating a finite abelian group

Let A be a finite abelian group.

φk(A) := |{(a1, . . . , ak) ∈ Ak |(ai ) generates A}|.
φi (A)/|A|k = probability that A is generated by a random k-tuple of
elements of A.

Multiplicativity:
φk(A)

|A|k
=

∏
p||A|

φk(A/pA)

|A/pA|k
.
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Applications

Lower Bounds for the Probability

P1, . . . ,Pr ∈ A are independent if
m1P1 + · · ·+ mrPr = 0⇒ miPi = 0.

Torsion Rank of A: the maximum number of independent torsion
elements of A, = maxp dimFp A/pA.

V /k vector space of dimension r . Probability of being generated by a
random r + k-tuple is (1− qk+1) . . . (1− qk+r ).

If r = torsion rank of A, then

φr+k(A)

|A|r+k
≥

{
φ(|A|)
|A|

∏r
j=2 ζ(j)−1 if k = 0∏r

j=k+1 ζ(j)−1 if k > 0
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Conclusions

Conclusions

The Weil pairing can be computed quickly.

It can be used to reduced the ECDL to the ordinary DL, in an
extension field, usually of very large degree.

It can be used to give a fast random algorithm for finding the group
structure of a group of rational points on an elliptic curve.

The same construction given here (suitably generalized) also works for
Jacobians of curves.
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