# The Weil Pairing and its Efficient Calculation 

Victor S. Miller

IDA, Center for Communications Research
Princeton, NJ 08540 USA

30 Oct, 2006

## Why Study the Weil-Pairing?

- The Weil pairing does for Elliptic Curve groups what the inner product does for real vector spaces.
- It relates the algebra of adding points on an elliptic curve to multiplying non-zero elements in a field.
- It can also be used to construct identity-based cryptosystems.


## Outline

(1) Introduction
(2) Elliptic Curves
(3) Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications
(6) Conclusions


## (1) Introduction

(2) Elliptic Curves

## (3) Points of Finite Order

4. The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications

6 Conclusions

## Algebraic Groups

- $K-$ a field
- $V / K$ - an affine variety - solutions to a finite system of polynomials with coefficients in $K$.
- If $L / K$ is a field, $V(L)$ is the set of solutions with coordinates in $L$.
- $V / K$ is projective if the equations are all homogeneous (exclude 0 and identify points which are scalar multiples).
- $V$ is a group variety - group law given by polynomials in coordinates.
- $\mathbb{G}_{m}:\{(x, y) \mid x y=1\}$, and $\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right):=\left(x_{1} x_{2}, y_{1} y_{2}\right)$.


## Elliptic Curves

- Simplest example of a projective group variety.
- Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6},
$$

where $a_{i} \in K\left(w t(x)=2, w t(y)=3, w t\left(a_{j}\right)=j\right)$.

- $L_{P_{1}, P_{2}}=0$ : equation of line passing through $P_{i}$.
- $P_{1} * P_{2}=$ third point of intersection of $L_{P_{1}, P_{2}}$ with $E$.
- $P+Q:=(P * Q) * 0$, where 0 is the "point at $\infty$ " on $E . P * 0$ is reflection in the line $y+a_{1} x+a_{3}=0$.


## (1) Introduction

## (2) Elliptic Curves

## (3) Points of Finite Order

4. The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications

6 Conclusions

## Points of finite order

- $G$ is a group variety, and $n$ a positive integer, then $G[n]$ is the subvariety of points order dividing $n$ : add the equation $P^{n}=1$ to the equations of $G$.
- $\mu_{n}:=\mathbb{G}_{m}[n]$, the $n$-th roots of unity.
- $E[n]$ where $E$ is an elliptic curve.
- The Weil-pairing connects the two.
- If $\Omega / K$ is algebraically closed, then $E[n](\Omega) \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ as a group, if char $(K) \nmid n$.


## (2) Elliptic Curves

(3) Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications
(6) Conclusions


## The Weil Pairing

- $E / K$ an elliptic curve, $n$ relatively prime to $p:=\operatorname{char}(K)$.
- $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$
- Bilinear: $P, Q, R \in E[n]$

$$
\begin{aligned}
& e_{n}(P+R, Q)=e_{n}(P, Q) e_{n}(R, Q) \\
& e_{n}(P, Q+R)=e_{n}(P, Q) e_{n}(P, R)
\end{aligned}
$$

- Skew-Symmetric: $e_{n}(P, P)=1 \Rightarrow e_{n}(P, Q)=e_{n}(Q, P)^{-1}$
- Non-degenerate: $e_{n}(P, Q)=1, \forall Q \in E[n](\Omega) \Rightarrow P=0$.
- Compatible: $P \in E[m n], Q \in E[n] \Rightarrow e_{m n}(P, Q)=e_{n}(m P, Q)$.
- Galois Action: $\sigma \in \operatorname{Gal}(\Omega / K) \Rightarrow e_{n}(P, Q)^{\sigma}=e_{n}\left(P^{\sigma}, Q^{\sigma}\right)$.


## Divisors on a Curve

- C/K a curve.
- Divisor on $C$ is a formal finite sum of points: $\mathcal{D}=\sum_{P \in C} a_{P}[P]$, where $a_{p} \in \mathbb{Z}$.
- $\operatorname{deg}(\mathcal{D}):=\sum_{p} a_{P}$.
- If $f: C \rightarrow \mathbb{P}^{1}$ is a function, then

$$
\operatorname{div}(f):=\sum_{P \in C} v_{P}(f)[P],
$$

where $v_{P}(f)$ is the order of the zero or pole of $f$ at $P$.

- Define $\mathcal{D} \sim \mathcal{D}^{\prime} \Leftrightarrow \mathcal{D}-\mathcal{D}^{\prime}=\operatorname{div}(f)$ for some function $f$.
- Abel-Jacobi: $E$ an elliptic curve, $\mathcal{D}=\operatorname{div}(f)$ for some $f$ if and only if, $\operatorname{deg}(\mathcal{D})=0$, and $\sum_{P} a_{P} P=0$.


## Weil's Definition

- $\operatorname{supp}\left(\sum_{P} a_{P}[P]\right):=\left\{P \mid a_{P} \neq 0\right\}$.
- $f$ a function and $\mathcal{D}=\sum_{P} a_{P}[P]$, set $f(\mathcal{D}):=\prod_{P} f(P)^{a_{P}}$ when $\operatorname{supp}(\mathcal{D}) \cap \operatorname{supp}(\operatorname{div}(f))=\emptyset$.
- $0 \neq P \in E(K), f_{n, P}: \operatorname{div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[0]$. Exists by Abel-Jacobi. Constructed explicitly below.
- $\mathcal{D}=\sum_{P} a_{P}[P]$, then $f_{n, \mathcal{D}}:=\prod_{P \neq 0} f_{n, P}^{a P}$
- $\mathcal{D}, \mathcal{D}^{\prime}$ such that $n \mathcal{D}, n \mathcal{D}^{\prime} \sim 0$, and $\operatorname{supp}(\mathcal{D}) \cap \operatorname{supp}\left(\mathcal{D}^{\prime}\right)=\emptyset$ then $e_{n}\left(\mathcal{D}, \mathcal{D}^{\prime}\right):=f_{n, \mathcal{D}}\left(\mathcal{D}^{\prime}\right) / f_{n, \mathcal{D}^{\prime}}(\mathcal{D})$.
- $\mathcal{D}_{1} \sim \mathcal{D}, \mathcal{D}_{1}^{\prime} \sim \mathcal{D}_{1}$ then $e_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{\prime}\right)=e_{n}\left(\mathcal{D}, \mathcal{D}^{\prime}\right)$, so function of $\sim$ class only.
- $P, Q \in E[n], e_{n}(P, Q):=e_{n}([P]-[0],[Q+R]-[R])$, $R \neq 0,-Q, P, P-Q$.


## Explicit formula for $f_{n, P}(Q)$

- $L_{P, Q}=y+\lambda x+\nu$, if $x(P) \neq x(Q), x-x(P)$, otherwise.
- where $\lambda=\frac{y(P)-y(Q)}{x(P)-x(Q)}$, and $\nu=\frac{y(Q) x(P)-y(P) x(Q)}{x(P)-x(Q)}$.
- $g_{P, Q}=\frac{L_{P, Q}}{L_{P+Q,-(P+Q)}}$.
- $\operatorname{div}\left(g_{P, Q}\right)=[P]+[Q]-[P+Q]-[0]$.
- $f_{1, P}:=1$.
- $f_{n+1, P}:=f_{n, P} g_{P, n P}$
- $f_{-n, P}:=\frac{1}{f_{n, P} g_{n} P,-n P}$.


## Laurent Series

- Formal power series with a finite number of negative powers.

$$
f(t)=\sum_{j=m}^{\infty} a_{j} t^{j}, a_{m} \neq 0
$$

- Example: $t^{-2}+3 t^{-1}+2-4 t+\ldots$.
- Leading Coefficient: $\operatorname{lc}(f):=a_{m}, \operatorname{lc}(f g)=\operatorname{lc}(f) \operatorname{lc}(g)$.
- $\operatorname{deg}_{t}(f):=m, \operatorname{deg}_{t}(f g)=\operatorname{deg}_{t}(f)+\operatorname{deg}_{t}(g)$.
- $f(x, y)=0$ a curve, and $D_{x} f(P)$ or $D_{y} f(P) \neq 0$ there is a rational function $u_{P}$ of $x, y$ which is a uniformizer at $P$.
- That is $u_{P}(P)=0$ and $x$ and $y$ can be written as Laurent series in $u_{P} . v_{P}(f):=\operatorname{deg}_{u_{P}}(f)$.


## Recursive formulas for $f_{n, P}$

- $\operatorname{div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[P]$, by easy induction.

$$
\begin{gather*}
\operatorname{div}\left(f_{m+n, P}\right)=\operatorname{div}\left(f_{m, P} f_{n, P} g_{m P, n P}\right)  \tag{1}\\
\operatorname{div}\left(f_{m n, P}\right)=\operatorname{div}\left(f_{m, P}^{n} f_{n, m P}\right)=\operatorname{div}\left(f_{n, P}^{m} f_{m, n P}\right) \tag{2}
\end{gather*}
$$

- But all functions have leading coefficient of 1 at 0 .
- More specifically, let $u_{0}=y / x$, uniformizer at 0 .
- $\mathrm{lc}_{u_{0}}\left(f_{n, P}\right), \mathrm{l}_{\mathrm{u}_{0}}\left(g_{P, Q}\right)=1$.
- So previous formulas yield equality of the functions!


## Addition-Subtraction Chains

- Addition subtraction chain: $\mathcal{A}: 1=a_{0}, a_{1}, \ldots, a_{t}, 0 \leq r_{i}, l_{i}<i$ $\epsilon_{i}= \pm 1$.
- $a_{i}=a_{r_{i}}+\epsilon_{i} a_{l_{i}}$.
- The value $v(\mathcal{A})=a_{t}$. The length $\ell(\mathcal{A})=t$.
- If all $\epsilon_{i}=1$, it is an addition chain.
- Example: 1, 2, 3, 6, 12, 24, 21
- Given $n>0$ there is an addition chain whose value is $n$ and whose length is $\leq 1+2 \log _{2} n$. Can usually do much better.


## Algorithm to evaluate $f_{n, P}(Q)$

(1) Fix an addition-subtraction chain $\mathcal{A}: r_{i}, l_{i}, \epsilon_{i}$ of length $t$, whose value is $n$.
(2) Set $w_{1}=1, L_{1}=P, i=1$.
(3) Set $i:=i+1$
(3) If $i>t$ return $w_{t}$.
(6) Set $L_{t}=L_{l_{i}}+\epsilon_{i} L_{r_{i}}, w_{t}=w_{l_{i}} w_{r_{i}} \operatorname{lc}_{Q}\left(g_{L_{i} ; \epsilon_{i} L_{r_{i}}}\right)$ (here we use (1)).
(0) Return to step 3 .

## Mumford's Theta Groups

- Algorithm for calculating $f_{n, P}$ is connected with Mumford's Theta Groups (Frey-Müller-Rück).
- $\mathcal{D}$ a divisor on $E / K$ of degree 0 .
- $L \subseteq K$ an extension field, $G=L^{*} \times E(L)$.
- Group law: $\left(a_{1}, P_{1}\right) \cdot\left(a_{2}, P_{2}\right):=\left(a_{1} a_{2} g_{P_{1}, P_{2}}(\mathcal{D}), P_{1}+P_{2}\right)$.
- $(a, P)^{-1}:=\left(a^{-1} g_{P,-P}(\mathcal{D})^{-1},-P\right)$, unit $(1,0)$.
- Then $(1, P)^{m}=\left(f_{m, P}(\mathcal{D}), m P\right)$


## A simple formula for $e_{n}(P, Q)$

- If $P, Q \in E[n]$ and $P \neq Q$ then

$$
\begin{equation*}
e_{n}(P, Q)=(-1)^{n} \frac{f_{n, P}(Q)}{f_{n, Q}(P)} \tag{3}
\end{equation*}
$$

- Let $z$ be a transcendental, and a point $T$ be defined by

$$
\begin{aligned}
& x(T):=\frac{1}{z^{2}}-\frac{a_{1}}{z}-a_{2}-a_{3} z+O\left(z^{2}\right) \\
& y(T):=-\frac{1}{z^{3}}+\frac{a_{1}}{z^{2}}+\frac{a_{2}}{z}+a_{3}+O(z)
\end{aligned}
$$

- We have

$$
\begin{equation*}
e_{n}(P, Q)=\frac{f_{n, P}(Q)}{f_{n, Q}(P)} \frac{f_{n, Q}(P)}{f_{n, Q}(P+T)} \frac{f_{n, P}(Q-T)}{f_{n, P}(Q)} \frac{f_{n, Q}(T)}{f_{n, P}(-T)} . \tag{4}
\end{equation*}
$$

## Complexity and calculation of $e_{n}$

- The number of point additions/subtractions in step 5 is $t$.
- To calculate $\operatorname{Ic}_{Q}\left(g_{L_{i} ;}, \epsilon_{i} L_{r_{i}}\right)$ takes a fixed amount of arithmetic in $K$ because the curve is cubic, and $g$ is a ratio of linear functions.
- Total complexity is thus $\mathrm{O}(t)$ operations in $K$.
- Since we can find $\mathcal{A}$ with $t \leq 1+2 \log _{2}(n)$, we have complexity $\mathrm{O}(\log n)$.
- By (3) we need two calculations like $f_{n, P}(Q)$ to calculate $e_{n}(P, Q)$.
- To calculate $e_{n}(P, Q)$ also takes $\mathrm{O}(\log n) K$-operations.


## (1) Introduction

## 2) Elliptic Curves

## (3) Points of Finite Order

## 4) The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications
(6) Conclusions


## Elliptic DL and Multiplicative Group DL

- Suppose $P \in E[n](K)$ has order $n$.
- By non-degeneracy of $e_{n} \exists Q \in E[n](\Omega)$ such that $\operatorname{ord}(\zeta)=n$, where $\zeta:=e_{n}(P, Q)$.
- Let $f: E[n](\Omega) \rightarrow \mu_{n}$ be given by $f(R):=e_{n}(R, Q)$.
- If $R=a P$, then $f(R)=\zeta^{a}$. Conversely, if $R \in\langle P\rangle$, and $f(R)=\zeta^{a}$, then $R=a P$.
- So Elliptic DL over $K$ is reduced to the multiplicative group DL over $L:=K(Q)$.
- However, $\operatorname{deg}_{K} L$ is almost always of order $q:=|K|$.
- Notable exception: $E$ is supersingular, then $\operatorname{deg}_{K} L \leq 2$ (except in characteristic 2 or 3 , where it is $\leq 12$ ).


## The Group Structure of $E(K)$

- If $K$ is a finite field, $E / K$ elliptic curve, can calculate $|E(K)|$ quickly using Schoof's algorithm, or one of its variants.
- One knows that, as a group, $E(K) \cong Z_{d} \times Z_{e}$, where $d \mid e$.
- Problem: Given $E / K$, find $d$ and $e$, the elementary divisors of $E(K)$.
- Can use the Weil pairing to solve the following: Given $P, Q \in E(K)$, do they generate $E(K)$ ?
- $P, Q$ generate $E(K)$ if and only if $m \operatorname{ord}\left(e_{m}(P, Q)\right)=N$, where $m=\operatorname{lcm}(\operatorname{ord}(P), \operatorname{ord}(Q))$, and $N=|E(K)|$.
- In that case the elementary divisors of $E(K)$ are $N / m, m$.


## Algorithm for Elementary Divisors of $E(K)$

(1) Calculate $N=|E(K)|$.
(2) Pick $P, Q \in_{R} E(K)$ (uniformly and independently).
(3) Calculate $m:=\operatorname{lcm}(\operatorname{ord}(P), \operatorname{ord}(Q))$.
(9) Calculate $\zeta:=e_{m}(P, Q)$.
(3) Calculate $d:=\operatorname{ord}(\zeta)$.
(0) If $m d=N$, return $(d, m)$, and $P, Q$ as generators, else go to step 2 .

## Analysis of the Algorithm

- Calculating $\operatorname{ord}(P)$ and $\operatorname{ord}(Q)$ requires factorization of $N$ be known.
- Each iteration of the loop takes time $\mathrm{O}\left(\log ^{2} q\right)$ operations in $K$, where $q=|K|$.
- Expected number of iterations is

$$
\frac{1}{\operatorname{Pr}(P \text { and } Q \text { generate } E(K))} .
$$

- But, there is an absolute constant $C>0$ such that

$$
\operatorname{Pr}(P \text { and } Q \text { generate } E(K)) \geq \frac{C}{\log \log N}
$$

## A Modified Algorithm

(1) Calculate $N=|E(K)|$.
(2) Set $r \leftarrow \operatorname{gcd}(N, q-1)$.
(3) Write $N=N_{0} N_{1}$, where $\operatorname{gcd}\left(N_{0}, N_{1}\right)=1$, and $\ell|r \Leftrightarrow \ell| N_{0}$.
(9) Pick $P, Q \in_{R} E(K) ; P^{\prime} \leftarrow N_{1} P, Q^{\prime} \leftarrow N_{1} Q$.
(5) Calculate $m:=\operatorname{lcm}\left(\operatorname{ord}\left(P^{\prime}\right), \operatorname{ord}\left(Q^{\prime}\right)\right)$.
(0) Calculate $\zeta:=e_{m}\left(P^{\prime}, Q^{\prime}\right)$.
(1) Calculate $d:=\operatorname{ord}(\zeta)$.
(3) If $m d=r$, return $(d, N / d)$, else go to step 2 .

## Probability of Generating a finite abelian group

- Let $A$ be a finite abelian group.
- $\phi_{k}(A):=\mid\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k} \mid\left(a_{i}\right)\right.$ generates $\left.A\right\} \mid$.
- $\phi_{i}(A) /|A|^{k}=$ probability that $A$ is generated by a random $k$-tuple of elements of $A$.
- Multiplicativity:

$$
\frac{\phi_{k}(A)}{|A|^{k}}=\prod_{p| | A \mid} \frac{\phi_{k}(A / p A)}{|A / p A|^{k}} .
$$

## Lower Bounds for the Probability

- $P_{1}, \ldots, P_{r} \in A$ are independent if $m_{1} P_{1}+\cdots+m_{r} P_{r}=0 \Rightarrow m_{i} P_{i}=0$.
- Torsion Rank of $A$ : the maximum number of independent torsion elements of $A,=\max _{p} \operatorname{dim}_{\mathbb{F}_{p}} A / p A$.
- $V / k$ vector space of dimension $r$. Probability of being generated by a random $r+k$-tuple is $\left(1-q^{k+1}\right) \ldots\left(1-q^{k+r}\right)$.
- If $r=$ torsion rank of $A$, then

$$
\frac{\phi_{r+k}(A)}{|A|^{r+k}} \geq \begin{cases}\frac{\phi(|A|)}{|A|} \prod_{j=2}^{r} \zeta(j)^{-1} & \text { if } k=0 \\ \prod_{j=k+1}^{r} \zeta(j)^{-1} & \text { if } k>0\end{cases}
$$

## (1) Introduction

## (2) Elliptic Curves

## (3) Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm
(5) Applications

6 Conclusions

## Conclusions

- The Weil pairing can be computed quickly.
- It can be used to reduced the ECDL to the ordinary DL, in an extension field, usually of very large degree.
- It can be used to give a fast random algorithm for finding the group structure of a group of rational points on an elliptic curve.
- The same construction given here (suitably generalized) also works for Jacobians of curves.

