The Weil Pairing and its Efficient Calculation

Victor S. Miller

IDA, Center for Communications Research Princeton, NJ 08540 USA

30 Oct, 2006

Victor S. Miller (CCR)

The Weil Pairing

▶ ◀ 볼 ▶ 볼 ∽ ९. 30 Oct, 2006 1 / 30

イロト イヨト イヨト

Why Study the Weil-Pairing?

- The Weil pairing does for Elliptic Curve groups what the inner product does for real vector spaces.
- It relates the algebra of adding points on an elliptic curve to multiplying non-zero elements in a field.
- It can also be used to construct identity-based cryptosystems.

(日) (同) (三) (三)

Outline

Introduction

2 Elliptic Curves

Onts of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

6 Applications

6 Conclusions

< ロ > < 同 > < 三 > < 三

Elliptic Curves 2

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

-

• • • • • • • • • • • •

Algebraic Groups

- *K* a field
- V/K an affine variety solutions to a finite system of polynomials with coefficients in K.
- If L/K is a field, V(L) is the set of solutions with coordinates in L.
- V/K is projective if the equations are all homogeneous (exclude 0 and identify points which are scalar multiples).
- V is a group variety group law given by polynomials in coordinates.
- \mathbb{G}_m : {(x,y)|xy = 1}, and (x₁, y₁) · (x₂, y₂) := (x₁x₂, y₁y₂).

イロト 不得下 イヨト イヨト 二日

Elliptic Curves

- Simplest example of a projective group variety.
- Weierstrass equation

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where
$$a_i \in K$$
 (wt(x) = 2, wt(y) = 3, wt(a_j) = j).

- $L_{P_1,P_2} = 0$: equation of line passing through P_i .
- $P_1 * P_2$ = third point of intersection of L_{P_1,P_2} with E.
- P + Q := (P * Q) * 0, where 0 is the "point at ∞ " on E. P * 0 is reflection in the line $y + a_1x + a_3 = 0$.

(日) (周) (三) (三) (三) (000

Introduction

2 Elliptic Curves

Openation of Finite Order

The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

5 Applications

6 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Points of finite order

- *G* is a group variety, and *n* a positive integer, then *G*[*n*] is the subvariety of points order dividing *n*: add the equation *P*^{*n*} = 1 to the equations of *G*.
- $\mu_n := \mathbb{G}_m[n]$, the *n*-th roots of unity.
- *E*[*n*] where *E* is an elliptic curve.
- The Weil-pairing connects the two.
- If Ω/K is algebraically closed, then E[n](Ω) ≅ Z/nZ × Z/nZ as a group, if char(K) ∤ n.

Introduction

2 Elliptic Curves

3 Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

Applications

Conclusions

A (10) < A (10) </p>

The Weil Pairing

- E/K an elliptic curve, *n* relatively prime to p := char(K).
- $e_n: E[n] \times E[n] \to \mu_n$
- Bilinear: $P, Q, R \in E[n]$

$$e_n(P+R,Q) = e_n(P,Q)e_n(R,Q)$$
$$e_n(P,Q+R) = e_n(P,Q)e_n(P,R)$$

- Skew-Symmetric: $e_n(P,P) = 1 \Rightarrow e_n(P,Q) = e_n(Q,P)^{-1}$
- Non-degenerate: $e_n(P,Q) = 1, \forall Q \in E[n](\Omega) \Rightarrow P = 0.$
- Compatible: $P \in E[mn], Q \in E[n] \Rightarrow e_{mn}(P,Q) = e_n(mP,Q)$.
- Galois Action: $\sigma \in Gal(\Omega/K) \Rightarrow e_n(P,Q)^{\sigma} = e_n(P^{\sigma},Q^{\sigma}).$

Divisors on a Curve

- C/K a curve.
- Divisor on *C* is a formal finite sum of points: $\mathcal{D} = \sum_{P \in C} a_P[P]$, where $a_P \in \mathbb{Z}$.
- deg $(\mathcal{D}) := \sum_{P} a_{P}$.
- If $f: C \to \mathbb{P}^1$ is a function, then

$$\operatorname{div}(f) := \sum_{P \in C} v_P(f)[P],$$

where $v_P(f)$ is the order of the zero or pole of f at P.

- Define $\mathcal{D} \sim \mathcal{D}' \Leftrightarrow \mathcal{D} \mathcal{D}' = \operatorname{div}(f)$ for some function f.
- Abel-Jacobi: E an elliptic curve, D = div(f) for some f if and only if, deg(D) = 0, and ∑_P a_P P = 0.

Weil's Definition

- supp $(\sum_P a_P[P]) := \{P | a_P \neq 0\}.$
- f a function and $\mathcal{D} = \sum_{P} a_{P}[P]$, set $f(\mathcal{D}) := \prod_{P} f(P)^{a_{P}}$ when $\operatorname{supp}(\mathcal{D}) \cap \operatorname{supp}(\operatorname{div}(f)) = \emptyset$.
- $0 \neq P \in E(K)$, $f_{n,P}$: div $(f_{n,P}) = n[P] [nP] (n-1)[0]$. Exists by Abel-Jacobi. Constructed explicitly below.
- $\mathcal{D} = \sum_{P} a_{P}[P]$, then $f_{n,\mathcal{D}} := \prod_{P \neq 0} f_{n,P}^{a_{P}}$
- $\mathcal{D}, \mathcal{D}'$ such that $n\mathcal{D}, n\mathcal{D}' \sim 0$, and $\operatorname{supp}(\mathcal{D}) \cap \operatorname{supp}(\mathcal{D}') = \emptyset$ then $e_n(\mathcal{D}, \mathcal{D}') := f_{n, \mathcal{D}}(\mathcal{D}') / f_{n, \mathcal{D}'}(\mathcal{D}).$
- $\mathcal{D}_1 \sim \mathcal{D}, \mathcal{D}'_1 \sim \mathcal{D}_1$ then $e_n(\mathcal{D}_1, \mathcal{D}'_1) = e_n(\mathcal{D}, \mathcal{D}')$, so function of \sim class only.

•
$$P, Q \in E[n], e_n(P, Q) := e_n([P] - [0], [Q + R] - [R]),$$

 $R \neq 0, -Q, P, P - Q.$

Explicit formula for $f_{n,P}(Q)$

•
$$L_{P,Q} = y + \lambda x + \nu$$
, if $x(P) \neq x(Q)$, $x - x(P)$, otherwise
• where $\lambda = \frac{y(P) - y(Q)}{x(P) - x(Q)}$, and $\nu = \frac{y(Q)x(P) - y(P)x(Q)}{x(P) - x(Q)}$.
• $g_{P,Q} = \frac{L_{P,Q}}{L_{P+Q,-(P+Q)}}$.
• $\operatorname{div}(g_{P,Q}) = [P] + [Q] - [P + Q] - [0]$.
• $f_{1,P} := 1$.
• $f_{n+1,P} := f_{n,P}g_{P,nP}$

•
$$f_{-n,P} := \frac{1}{f_{n,P}g_{nP,-nP}}$$
.

・ロト ・四ト ・ヨト ・ヨト

Laurent Series

• Formal power series with a finite number of negative powers.

$$f(t) = \sum_{j=m}^{\infty} a_j t^j, a_m \neq 0.$$

• Example:
$$t^{-2} + 3t^{-1} + 2 - 4t + \dots$$

- Leading Coefficient: $lc(f) := a_m$, lc(fg) = lc(f) lc(g).
- $\deg_t(f) := m$, $\deg_t(fg) = \deg_t(f) + \deg_t(g)$.
- f(x, y) = 0 a curve, and D_xf(P) or D_yf(P) ≠ 0 there is a rational function u_P of x, y which is a uniformizer at P.
- That is $u_P(P) = 0$ and x and y can be written as Laurent series in u_P . $v_P(f) := \deg_{u_P}(f)$.

(日) (周) (三) (三) (三) (000

Recursive formulas for $f_{n,P}$

• $div(f_{n,P}) = n[P] - [nP] - (n-1)[P]$, by easy induction.

$$\operatorname{div}(f_{m+n,P}) = \operatorname{div}(f_{m,P}f_{n,P}g_{mP,nP})$$
(1)

$$\operatorname{div}(f_{mn,P}) = \operatorname{div}(f_{m,P}^n f_{n,mP}) = \operatorname{div}(f_{n,P}^m f_{m,nP})$$
(2)

- But all functions have leading coefficient of 1 at 0.
- More specifically, let $u_0 = y/x$, uniformizer at 0.
- $lc_{u_0}(f_{n,P}), lc_{u_0}(g_{P,Q}) = 1.$
- So previous formulas yield equality of the functions!

Addition-Subtraction Chains

- Addition subtraction chain: $A : 1 = a_0, a_1, \dots, a_t, 0 \le r_i, l_i < i \\ \epsilon_i = \pm 1.$
- $a_i = a_{r_i} + \epsilon_i a_{l_i}$.
- The value $v(\mathcal{A}) = a_t$. The length $\ell(\mathcal{A}) = t$.
- If all $\epsilon_i = 1$, it is an addition chain.
- Example: 1, 2, 3, 6, 12, 24, 21
- Given n > 0 there is an addition chain whose value is n and whose length is ≤ 1 + 2 log₂ n. Can usually do much better.

Algorithm to evaluate $f_{n,P}(Q)$

- Fix an addition-subtraction chain A : r_i, l_i, e_i of length t, whose value is n.
- 2 Set $w_1 = 1$, $L_1 = P$, i = 1.
- **3** Set i := i + 1
- If i > t return w_t .
- Set $L_t = L_{l_i} + \epsilon_i L_{r_i}$, $w_t = w_{l_i} w_{r_i} \log_Q(g_{L_{l_i}, \epsilon_i L_{r_i}})$ (here we use (1)).
- Seturn to step 3.

Mumford's Theta Groups

- Algorithm for calculating f_{n,P} is connected with Mumford's Theta Groups (Frey-Müller-Rück).
- \mathcal{D} a divisor on E/K of degree 0.
- $L \subseteq K$ an extension field, $G = L^* \times E(L)$.
- Group law: $(a_1, P_1) \cdot (a_2, P_2) := (a_1 a_2 g_{P_1, P_2}(\mathcal{D}), P_1 + P_2).$
- $(a, P)^{-1} := (a^{-1}g_{P,-P}(\mathcal{D})^{-1}, -P)$, unit (1, 0).
- Then $(1, P)^m = (f_{m,P}(\mathcal{D}), mP)$

The Algorithm

A simple formula for $e_n(P, Q)$

• If
$$P, Q \in E[n]$$
 and $P \neq Q$ then

$$e_n(P,Q) = (-1)^n \frac{f_{n,P}(Q)}{f_{n,Q}(P)}.$$
(3)

• Let z be a transcendental, and a point T be defined by

$$x(T) := \frac{1}{z^2} - \frac{a_1}{z} - a_2 - a_3 z + O(z^2)$$

$$y(T) := -\frac{1}{z^3} + \frac{a_1}{z^2} + \frac{a_2}{z} + a_3 + O(z).$$

We have

$$e_n(P,Q) = \frac{f_{n,P}(Q)}{f_{n,Q}(P)} \frac{f_{n,Q}(P)}{f_{n,Q}(P+T)} \frac{f_{n,P}(Q-T)}{f_{n,P}(Q)} \frac{f_{n,Q}(T)}{f_{n,P}(-T)}.$$
 (4)

イロト イ団ト イヨト イヨト

Complexity and calculation of e_n

- The number of point additions/subtractions in step 5 is t.
- To calculate $lc_Q(g_{L_{l_i},\epsilon_i L_{r_i}})$ takes a fixed amount of arithmetic in K because the curve is cubic, and g is a ratio of linear functions.
- Total complexity is thus O(t) operations in K.
- Since we can find A with $t \le 1 + 2\log_2(n)$, we have complexity $O(\log n)$.
- By (3) we need two calculations like $f_{n,P}(Q)$ to calculate $e_n(P,Q)$.
- To calculate $e_n(P, Q)$ also takes $O(\log n)$ K-operations.

Introduction

2 Elliptic Curves

3 Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

5 Applications

6 Conclusions

<ロト </p>

Elliptic DL and Multiplicative Group DL

- Suppose $P \in E[n](K)$ has order n.
- By non-degeneracy of $e_n \exists Q \in E[n](\Omega)$ such that $\operatorname{ord}(\zeta) = n$, where $\zeta := e_n(P, Q)$.
- Let $f: E[n](\Omega) \to \mu_n$ be given by $f(R) := e_n(R, Q)$.
- If R = aP, then $f(R) = \zeta^a$. Conversely, if $R \in \langle P \rangle$, and $f(R) = \zeta^a$, then R = aP.
- So Elliptic DL over K is reduced to the multiplicative group DL over L := K(Q).
- However, deg_K L is almost always of order q := |K|.
- Notable exception: E is supersingular, then deg_K L ≤ 2 (except in characteristic 2 or 3, where it is ≤ 12).

The Group Structure of E(K)

- If K is a finite field, E/K elliptic curve, can calculate |E(K)| quickly using Schoof's algorithm, or one of its variants.
- One knows that, as a group, $E(K) \cong Z_d \times Z_e$, where d|e.
- Problem: Given E/K, find d and e, the elementary divisors of E(K).
- Can use the Weil pairing to solve the following: Given P, Q ∈ E(K), do they generate E(K)?
- P, Q generate E(K) if and only if $m \operatorname{ord}(e_m(P, Q)) = N$, where $m = \operatorname{lcm}(\operatorname{ord}(P), \operatorname{ord}(Q))$, and N = |E(K)|.
- In that case the elementary divisors of E(K) are N/m, m.

Algorithm for Elementary Divisors of E(K)

- Calculate N = |E(K)|.
- ② Pick $P, Q ∈_R E(K)$ (uniformly and independently).
- Calculate $m := \operatorname{lcm}(\operatorname{ord}(P), \operatorname{ord}(Q))$.
- Calculate $\zeta := e_m(P, Q)$.
- Solution $d := \operatorname{ord}(\zeta).$
- If md = N, return (d, m), and P, Q as generators, else go to step 2.

イロト 不得下 イヨト イヨト 二日

Analysis of the Algorithm

- Calculating ord(P) and ord(Q) requires factorization of N be known.
- Each iteration of the loop takes time O(log² q) operations in K, where q = |K|.
- Expected number of iterations is

$$\frac{1}{\Pr(P \text{ and } Q \text{ generate } E(K))}.$$

• But, there is an absolute constant C > 0 such that

$$\Pr(P \text{ and } Q \text{ generate } E(K)) \geq rac{C}{\log \log N}.$$

A Modified Algorithm

If md = r, return (d, N/d), else go to step 2.

(日) (四) (三) (三) (三)

Probability of Generating a finite abelian group

- Let A be a finite abelian group.
- $\phi_k(A) := |\{(a_1, \ldots, a_k) \in A^k | (a_i) \text{ generates } A\}|.$
- \$\phi_i(A)/|A|^k\$ = probability that A is generated by a random k-tuple of elements of A.
- Multiplicativity:

$$\frac{\phi_k(A)}{|A|^k} = \prod_{p \mid |A|} \frac{\phi_k(A/pA)}{|A/pA|^k}.$$

イロト 不得下 イヨト イヨト 二日

Lower Bounds for the Probability

- $P_1, \ldots, P_r \in A$ are independent if $m_1P_1 + \cdots + m_rP_r = 0 \Rightarrow m_iP_i = 0.$
- Torsion Rank of A: the maximum number of independent torsion elements of $A_{i} = \max_{p} \dim_{\mathbb{F}_{p}} A/pA$.
- V/k vector space of dimension r. Probability of being generated by a random r + k-tuple is $(1 q^{k+1}) \dots (1 q^{k+r})$.
- If r =torsion rank of A, then

$$\frac{\phi_{r+k}(A)}{|A|^{r+k}} \ge \begin{cases} \frac{\phi(|A|)}{|A|} \prod_{j=2}^{r} \zeta(j)^{-1} & \text{if } k = 0\\ \prod_{j=k+1}^{r} \zeta(j)^{-1} & \text{if } k > 0 \end{cases}$$

30 Oct, 2006 28 / 30

イロト 不得下 イヨト イヨト 二日

Introduction

2 Elliptic Curves

3 Points of Finite Order

4 The Weil Pairing

- Functions and Their Divisors
- The Classical Definition
- The Algorithm

5 Applications

6 Conclusions

< ロ > < 同 > < 三 > < 三

- The Weil pairing can be computed quickly.
- It can be used to reduced the ECDL to the ordinary DL, in an extension field, usually of very large degree.
- It can be used to give a fast random algorithm for finding the group structure of a group of rational points on an elliptic curve.
- The same construction given here (suitably generalized) also works for Jacobians of curves.