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Why Study the Weil-Pairing?

@ The Weil pairing does for Elliptic Curve groups what the inner
product does for real vector spaces.

o It relates the algebra of adding points on an elliptic curve to
multiplying non-zero elements in a field.

@ It can also be used to construct identity-based cryptosystems.
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Elliptic Curves

© Elliptic Curves
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Algebraic Groups

K — a field

V /K — an affine variety — solutions to a finite system of polynomials
with coefficients in K.

If L/K is a field, V(L) is the set of solutions with coordinates in L.

V/K is projective if the equations are all homogeneous (exclude 0
and identify points which are scalar multiples).

V is a group variety — group law given by polynomials in coordinates.

Gm  {(x,y)Ixy =1}, and (x1, y1) - (X2, y2) := (x1x2, y1)2)-
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Elliptic Curves

@ Simplest example of a projective group variety.

@ Weierstrass equation
L2 _ .3 2
E:y°+aixy + azy = x> + apx” + agx + as,

where a; € K (wt(x) = 2, wt(y) = 3, wt(aj) =J).
@ Lp, p, = 0: equation of line passing through P;.
@ P1* P> = third point of intersection of Lp, p, with E.

@ P+ Q:=(Px*Q)=x0, where 0 is the “point at o0” on E. P 0 is
reflection in the line y + a1x + a3 = 0.
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Points of Finite Order

© Points of Finite Order
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Points of finite order

G is a group variety, and n a positive integer, then G[n] is the
subvariety of points order dividing n: add the equation P” =1 to the
equations of G.

tn := Gm[n], the n-th roots of unity.
E[n] where E is an elliptic curve.
The Weil-pairing connects the two.

If Q/K is algebraically closed, then E[n|(Q) = Z/nZ x 7/nZ as a
group, if char(K) 1 n.

® 6 o6 o

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 8 /30



The Weil Pairing

@ The Weil Pairing
@ Functions and Their Divisors
@ The Classical Definition
@ The Algorithm

Victor S. Miller (CCR) The Weil Pairing

30 Oct, 2006

9/ 30



The Weil Pairing

E/K an elliptic curve, n relatively prime to p := char(K).

en: E[n] x E[n] — pun
Bilinear: P, Q,R € E|[n]

en(P+R,Q) = es(P, Q)en(R, Q)
en(P,Q+ R) =en(P,Q)en(P,R)

Skew-Symmetric: e,(P,P) =1 = e,(P, Q) = e,(Q, P)~!
Non-degenerate: e (P, Q) = 1,VQ € E[n](Q2) = P =0.
Compatible: P € E[mn], Q € E[n] = emn(P, Q) = en(mP, Q).
Galois Action: o € Gal(2/K) = en(P, Q)7 = en(P?, Q7).

e 6 o6 o
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Divisors on a Curve

e C/K a curve.

@ Divisor on C is a formal finite sum of points: D = ap[P],
where ap € Z.

e deg(D) := > pap.
e If f: C — P! is a function, then

div(f) ==Y vp(NI[P],
pPeC
where vp(f) is the order of the zero or pole of f at P.
e Define D ~ D' < D — D' = div(f) for some function f.

@ Abel-Jacobi: E an elliptic curve, D = div(f) for some f if and only if,
deg(D) =0, and > papP =0.
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Tle Clpssiee! Defimites
Weil's Definition

o supp(¥p ap[P]) = {Plap £ 0}.

e f afunction and D = ) ap[P], set f(D) :=[[p f(P)?" when
supp(D) Nsupp(div(f)) =

e 0# P e E(K), fop: div(f,p) = n[P] — [nP] — (n —1)[0]. Exists by
Abel-Jacobi. Constructed explicitly below.

© D=3} pap[P], then 0 :=[lpo frp

e D, D’ such that nD, nD’ ~ 0, and supp(D) Nsupp(D’) = O then
en(D, D) := f,p(D')/ o0 (D).

e Dy ~ D, D] ~ Dj then e,(D1, D) = es(D,D’), so function of ~

class only.
°o P.Qc E[”] en(P, Q) == en([P] = [0], [Q + R] — [R]).
R#0,-Q,P,P— Q.
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N L LG The Algorithm
Explicit formula for f, p(Q)

Lpg =y + Xx+v, if x(P) # x(Q), x — x(P), otherwise.

@ where A = yxigg;:iggg' and v = y(Q);((PP;:){((ggX(Q).
° BP0 =1, 0y

o div(gp,q) = [P +[Q] — [P + Q] - [0].

o fip:=1.

® for1,p = fnPgP NP

o f,p:i= m.
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e Algertéin
Laurent Series

Formal power series with a finite number of negative powers.

f(t) = Zajtj,am # 0.
Jj=m

Example: t72 +3t71 +2 — 4t +....

Leading Coefficient: Ic(f) := am, Ic(fg) = lc(f) Ic(g).

deg,(f) := m, deg,(fg) = deg,(f) + deg.(g).

f(x,y) =0 a curve, and Dyf(P) or D,f(P) # 0 there is a rational
function up of x,y which is a uniformizer at P.

That is up(P) = 0 and x and y can be written as Laurent series in
up. vp(f) := deg,, ().
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e Algertéin
Recursive formulas for f, p

e div(f, p) = n[P] — [nP] — (n — 1)[P], by easy induction.
diV(fern,P) = diV(fm,an,Png,nP) (1)
div(fmn,p) = div(fy pfamp) = div(f, pfm np) (2)

But all functions have leading coefficient of 1 at 0.
More specifically, let up = y/x, uniformizer at 0.

|Cuo(fn,P)a |CU0(gP,Q) =1
So previous formulas yield equality of the functions!

e 6 o6 o
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e Algertéin
Addition-Subtraction Chains

@ Addition subtraction chain: A:1=agp,a1,...,a:, 0<ri, [ <i
€ = *£1.
@ aj = ay, + €jay,.
@ The value v(A) = a;. The length ¢(A) = t.
o If all ¢, = 1, it is an addition chain.
o Example: 1,2,3,6,12,24 21
@ Given n > 0 there is an addition chain whose value is n and whose

length is < 1+ 2log, n. Can usually do much better.
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e Algertéin
Algorithm to evaluate f, p(Q)

© Fix an addition-subtraction chain A : r;, I;, ¢; of length t, whose value
is n.

Q Sethzl, Li =P, i=1.

Q Seti=i+1

Q If i >t return wy.

© Set Ly =L+ €Ly, wy =wwy, lco(gL, e1,.) (here we use (1)).

@ Return to step 3. Y
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e Algertéin
Mumford's Theta Groups

Algorithm for calculating f, p is connected with Mumford’s Theta
Groups (Frey-Miiller-Riick).

D a divisor on E/K of degree 0.

L C K an extension field, G = L* x E(L).

Group law: (a1, P1) - (a2, P2) := (a1228p,,p,(D), P1 + P2).
(a,P)7t:=(a'gp_p(D)~L,—P), unit (1,0).

Then (1, P)" = (fm p(D), mP)

e 6 66 o o
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e Algertéin
A simple formula for e,(P, Q)

e If P,Q € E[n] and P # Q then

en(P.Q) = (-1, )

@ Let z be a transcendental, and a point T be defined by

]. ail 2
T)i== -2 45— )
x(T) P a3z + O(z9)
1 al ar
y(T) Z:—;+?+;+33+O(Z).

@ We have
_ f'LP(Q) fn,Q(P) fn,P(Q - T) fn,Q(T)
P Q) = P aP+T) fup(@) fap(-T) P
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e Algertéin
Complexity and calculation of e,

@ The number of point additions/subtractions in step 5 is t.

@ To calculate IcQ(gL,_7€,L,i) takes a fixed amount of arithmetic in K
because the curve is cubic, and g is a ratio of linear functions.

e Total complexity is thus O(t) operations in K.

@ Since we can find A with t <1+ 2log,(n), we have complexity
O(log n).

@ By (3) we need two calculations like f, p(Q) to calculate e,(P, Q).

@ To calculate e,(P, Q) also takes O(log n) K-operations.
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Applications

e Applications
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Elliptic DL and Multiplicative Group DL

@ Suppose P € E[n](K) has order n.

@ By non-degeneracy of e, 3Q € E[n](Q2) such that ord(¢) = n, where
¢ = en(P, Q).

o Let f: E[n](Q) — pn be given by f(R) := en(R, Q).

e If R =aP, then f(R) = (°. Conversely, if R € (P), and f(R) = (?,
then R = aP.

@ So Elliptic DL over K is reduced to the multiplicative group DL over
L:=K(Q).
@ However, degy L is almost always of order q := |K]|.

o Notable exception: E is supersingular, then deg, L < 2 (except in
characteristic 2 or 3, where it is < 12).

Victor S. Miller (CCR) The Weil Pairing 30 Oct, 2006 22 /30



The Group Structure of E(K)

e If K is a finite field, E/K elliptic curve, can calculate |E(K)| quickly
using Schoof's algorithm, or one of its variants.

@ One knows that, as a group, E(K) = Z; X Z., where d|e.
@ Problem: Given E/K, find d and e, the elementary divisors of E(K).

@ Can use the Weil pairing to solve the following: Given P, Q € E(K),
do they generate E(K)?

e P, Q generate E(K) if and only if mord(en(P, Q)) = N, where
m = lem(ord(P),ord(Q)), and N = |E(K)|.

@ In that case the elementary divisors of E(K) are N/m, m.
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Algorithm for Elementary Divisors of E(K)

O Calculate N = |E(K)].

@ Pick P, Q €r E(K) (uniformly and independently).

© Calculate m := lcm(ord(P), ord(Q)).

O Calculate ¢ := en(P, Q).

@ Calculate d := ord(().

@ If md = N, return (d, m), and P, Q as generators, else go to step 2.
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Analysis of the Algorithm

o Calculating ord(P) and ord(Q) requires factorization of N be known.

e Each iteration of the loop takes time O(log? q) operations in K,
where g = |K]|.

@ Expected number of iterations is

1
Pr(P and Q generate E(K))

@ But, there is an absolute constant C > 0 such that

Pr(P and Q generate E(K)) > Toglog N
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A Modified Algorithm

O Calculate N = |E(K)].

@ Set r «— gcd(N,q —1).

@ Write N = NNy, where gcd(Ng, N1) = 1, and £|r < £ Np.
O Pick P,Q €g E(K); P/ — NP, Q' — N1 Q.

@ Calculate m := Icm(ord(P’), ord(Q")).

O Calculate ¢ :=en(P', Q").

@ Calculate d := ord(().

@ If md = r, return (d, N/d), else go to step 2.
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Probability of Generating a finite abelian group

@ Let A be a finite abelian group.
o ¢k(A) = [{(a1,...,ak) € A¥|(a;) generates A}|.

o ¢i(A)/|A|X = probability that A is generated by a random k-tuple of
elements of A.

o Multiplicativity:

ok(A) H ok(A/pA)

k IA/pAlk -
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Lower Bounds for the Probability

@ Pi,...,P, € A are independent if
mPy+---+mP,=0= m;P; =0.

@ Torsion Rank of A: the maximum number of independent torsion
elements of A, = max, dimp, A/pA.

e V//k vector space of dimension r. Probability of being generated by a
random r + k-tuple is (1 — g*¥*1) ... (1 — g¥*").

o If r = torsion rank of A, then

brik(A) o [P TT zco) if k =0
AT Tl ma €)™ if k>0
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Conclusions

@ Conclusions
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Conclusions

@ The Weil pairing can be computed quickly.

@ It can be used to reduced the ECDL to the ordinary DL, in an
extension field, usually of very large degree.

@ It can be used to give a fast random algorithm for finding the group
structure of a group of rational points on an elliptic curve.

@ The same construction given here (suitably generalized) also works for
Jacobians of curves.
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