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The need for provable security

◮ Since the mid 1970’s, cryptographic protocols for
achieving various goals have been proposed at a
furious rate.

◮ It is very desirable to obtain mathematically rigorous
proofs that protocols meet their goals under some
plausible assumptions.
• If nothing else, the desire for rigour encourages researchers

to carefully define their security notions and precisely state
their assumptions.

◮ Security proofs generally take the form of a reduction:
• Argue that if the protocol can be broken, then a

(reasonable) mathematical assumption is invalid.
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Basic Rabin public-key encryption scheme

◮ First provably secure cryptographic scheme (1979).
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◮ Decryption: Find the 4 square roots of c, and select the
appropriate one

– 3



Basic Rabin public-key encryption scheme

◮ First provably secure cryptographic scheme (1979).

◮ Public key: n

◮ Private key: p and q (where n = pq)

◮ Encryption: c = m2 mod n

◮ Decryption: Find the 4 square roots of c, and select the
appropriate one

◮ Security proof:

1. SQUARE-ROOTS ≤P FACTOR-n

– 3
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◮ First provably secure cryptographic scheme (1979).

◮ Public key: n

◮ Private key: p and q (where n = pq)

◮ Encryption: c = m2 mod n

◮ Decryption: Find the 4 square roots of c, and select the
appropriate one

◮ Security proof:
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2. FACTOR-n ≤P SQUARE-ROOTS

– 3



Very brief history of provable security

◮ Goldwasser & Micali (1982): Probabilistic encryption
• Semantic security, indistinguishability
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Very brief history of provable security

◮ Goldwasser & Micali (1982): Probabilistic encryption
• Semantic security, indistinguishability

◮ (1980’s): Asymptotic security analysis
• Goldreich: “Claims of plausibility”

◮ Bellare & Rogaway (1993):
Practice-oriented provable security
• Prove the security of efficient protocols
• Exact (non-asymptotic) security analysis
• Random oracle model

However, it is not always clear what these proofs really
mean in practice.
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RSA key generation

Alice does the following:

1. Select primes p and q of the same bitlength.

2. Compute n = pq and φ = (p − 1)(q − 1).

3. Select arbitrary e, 1 < e < φ, with gcd(e, φ) = 1.

4. Compute d = e−1 mod φ.

Alice’s public key is (n, e); her private key is d.

Computing d from (n, e) is equivalent to factoring n.
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Full-Domain-Hash RSA signature scheme

Signature generation: To sign m ∈ {0, 1}∗, Alice does:

1. Compute h = H(m), where H : {0, 1}∗ → [0, n − 1] is a
(public) hash function.

2. Compute s = hd mod n.

Alice’s signature on m is s.

Signature verification: To verify, Bob does:

1. Obtain Alice’s public key (n, e).

2. Compute h = H(m) and verify that h = se mod n.
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Full-Domain-Hash RSA signature scheme

Signature generation: To sign m ∈ {0, 1}∗, Alice does:

1. Compute h = H(m), where H : {0, 1}∗ → [0, n − 1] is a
(public) hash function.

2. Compute s = hd mod n.

Alice’s signature on m is s.

Signature verification: To verify, Bob does:

1. Obtain Alice’s public key (n, e).

2. Compute h = H(m) and verify that h = se mod n.

Question: Is RSA-FDH secure?
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Security definition

Definition: (Goldwasser, Micali & Rivest; 1984)
A signature scheme is secure if a computationally bounded
attacker who has access to a signing oracle is unable (with
non-negligible probability) to obtain a valid signature for any
message that it did not previously present to the oracle.
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Necessary conditions for security of RSA-FDH

1. The RSA problem should be intractable:
Given n, e, h, find s such that h = se mod n.

◮ Clearly RSA ≤P FACTOR-n.

◮ Open Question: FACTOR-n ≤P RSA?

◮ e = 3 is commonly used in practice.

◮ Boneh and Venkatesan (1998) proved that, if
FACTOR-n ≤P RSA-3 where the reduction algorithm
uses only algebraic operations, then FACTOR-n is in
P .

◮ Nevertheless, we assume that RSA-3 and RSA are
as hard as FACTOR-n in practice.
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Necessary conditions for security of RSA-FDH

2. H should be preimage resistant:
◮ Otherwise, an attacker could first select s, then

compute h = se mod n, and finally select m with
H(m) = h.
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Necessary conditions for security of RSA-FDH

2. H should be preimage resistant:
◮ Otherwise, an attacker could first select s, then

compute h = se mod n, and finally select m with
H(m) = h.

3. H should be collision resistant:
◮ Otherwise, an attacker could find m1,m2 with

H(m1) = H(m2) and induce Alice to sign m1, thereby
obtaining Alice’s signature on m2.

Question: Are these conditions sufficient?
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Random oracle model

◮ The hash function H is modeled as a (public) random
function.

◮ The adversary’s probability of success is assessed over
all possible hash functions.

◮ This is the random oracle assumption.
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Security proof

Theorem (Bellare & Rogaway; 1993) RSA-FDH is a secure
signature scheme in the random oracle model under the
assumption that the RSA problem is intractable.
Proof:

SH

(m, s)(n, e) F

1. Let F be an
attacker that breaks RSA-FDH.
F can make calls to
two subroutines, a hash oracle
H and a signing oracle S.
At the end of its operation, F
produces (with non-negligible
probability) a signature for a
message not presented to the signing oracle.
We show how
such a program F can be used
to solve the RSA problem. – 11



SH

(m, s)(n, e) F

2. Suppose that we are given an instance (n, e, y) of the RSA
problem. Our task is to find x such that y ≡ xe (mod n).

3. We make two assumptions about F ’s operation:

a) Before querying S with m, F always queries H with m.

b) F makes (at most) q (distinct) H-queries, m1, m2, . . . , mq.

c) F outputs a valid signature on one of the mi’s.

4. We select a random index j ∈ [1, q].

5. We run F with input (n, e) and wait for its queries.
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(mj , s)

mjy

xe
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mj
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SH

F

−
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(n, e)

6. For all H-queries except for the jth one, we select a random
xi ∈ [0, n − 1] and respond with H(mi) = xe

i mod n.
For the jth H-query, we respond with H(mj) = y.

7. If an S-query on mi is issued (where i 6= j) we respond with xi.
(Note: this is a valid signature.)
If an S-query on mj is issued, we give up (restart F and select
a new j).
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8. Suppose that F outputs a valid signature s on mj . Then
se ≡ H(mj) ≡ y (mod n), and so x = s is the solution to our
RSA problem instance.
If F does not output a valid signature on mj , we restart F (and
select a new j).

9. If we repeat this procedure k times, the probability that every
single time we fail is at most (1 − 1/q)k. �
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Tightness of the reduction

◮ The forgery program F would have to be used roughly q
times in order to find the desired e-th root of y.
• This is a highly non-tight reduction.

◮ Suppose that n is a 1024-bit integer.

◮ The NFS takes about 280 steps to factor n.
• Suppose that the RSA problem cannot be solved in fewer

than 280 steps.

◮ Suppose the forger can make at most q = 270 H queries.

◮ Then the Bellare-Rogaway proof says that a successful
forger must require time at least 210.

◮ So, if we desire the assurance that any forger must take
time at least 280 then we need to select n so that
factoring takes time at least 2150 steps.
• That is, we should use a ≈ 4000-bit modulus n. – 15



A tighter reduction

◮ In 2000, Coron gave a different reduction which lowered
the number to F -invocations to qs (where qs is a bound
on the number of signature queries).

j ∈ J ⊆ {1, 2, . . . , q}

yze
j

(mj , s)

mj

xe
i

mj

mi

SH

F

−

ximi

(n, e)

◮ Coron (2001) proved that no “tighter” reduction is
possible.
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Practical interpretation

◮ Suppose that n is a 1024-bit integer.

◮ Suppose that the forger can make at most qs = 220

signature queries.

◮ Then Coron’s proof says that a successful forger must
require time at least 260.

◮ So, if we desire the assurance that any forger must take
time at least 280 then we need to select n so that
factoring takes time at least 2100 steps.
• That is, we should use a 1500-bit modulus n.
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RSA-PSS (simplified)

(Bellare & Rogaway, 1996)

Signature generation: To sign m ∈ {0, 1}∗, Alice does:

1. Select a random bit string r.

2. Compute h = H(m, r), where H : {0, 1}∗ → [0, n − 1] is a
(public) hash function.

3. Compute s = hd mod n.

Alice’s signature on m is (s, r).

Signature verification: To verify, Bob does:

1. Obtain Alice’s public key (n, e).

2. Compute h = H(m, r) and verify that h = se mod n.
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Security proof

The security of RSA-PSS can be tightly related to the
hardness of the RSA problem.

(mi, ri)

H(mi, r
∗

i ) = xe
i

(m, s, r)
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FDH versus PSS

◮ Both RSA-FDH and RSA-PSS have security proofs
under the same assumptions.

◮ The signing and verification procedures are equally fast.

◮ Advantage of RSA-FDH: No random numbers are
needed.

◮ Advantage of RSA-PSS: Has a tight reduction.

Standards have been favouring RSA-PSS.
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FDH or PSS?

◮ The security of RSA-FDH is tightly related to the
hardness of the following problem:
• RSA1: Given (n, e), and a set of q values yi randomly

chosen from [0, n − 1], you are permitted at any time to
select up to qs of those yi for which you will be given
solutions xi to xe

i ≡ yi (mod n). You must produce a
solution xe

i ≡ yi (mod n) for one of the remaining yi.

◮ Even though there is no tight reduction from RSA to
RSA1, it is reasonable to conjecture that RSA and
RSA1 are equivalent in practice — no one will ever be
able to find a solution to RSA1 without being able to
solve RSA in essentially the same amount of time.

◮ One reasonable conclusion: The lack of a tight security
reduction for RSA-FDH is not a concern.

– 21



RSA-KW (Katz-Wang, 2003)

Key generation: Alice selects a (secret) random bit string R.

Signature generation: To sign m ∈ {0, 1}∗, Alice does:

1. Compute the bit b = H2(m,R).

2. Compute h = H(m, b).

3. Compute s = hd mod n.

Alice’s signature on m is (s, b).

Signature verification: To verify, Bob does:

1. Obtain Alice’s public key (n, e).

2. Compute h = H(m, b) and verify that h = se mod n.
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Security proof

The security of RSA-KW can be tightly related to the
hardness of the RSA problem.

teiy

xe
i
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(mi, bi)
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′
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FDH or KW?

◮ The security of RSA-KW is also tightly related to the
hardness of the following problem:
RSA2: Given (n, e), and a set of q pairs of values (yi, zi)

chosen at random from [0, n − 1], you are permitted at any time
to select up to qs of those pairs for which you will be given the
e-th root modulo n of exactly one (randomly selected) element
of the pair. You must produce an e-th root of either element in
one of the remaining pairs.

◮ Coron’s result implies that there is no tight reduction
from the RSA2 problem to the RSA1 problem.

◮ However, it seems very unlikely that RSA1 would be
easier to solve in practice than RSA2.
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Random oracle assumption

◮ In practice, H is not a random function, so the security
proof is no longer valid.

◮ Nevertheless, the security proof does guarantee
security against attackers who do not exploit any
property whatsoever of the hash function H.

◮ Several researchers have designed protocols that are
provably secure in the random oracle model, but
provably insecure whenever the random oracle is
replaced by a real hash function.

◮ However, these protocols are very contrived and
arguably support the random oracle model.
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Canetti-Goldreich-Halevi example

◮ Suppose signature scheme S is secure in the random
oracle model (with random function H).

◮ Make the following modification to S to obtain a scheme
S′ that is also secure in the random oracle model:
• If H(m) = SHA-1(0) then include the private key in the

signature for m.

◮ However, S′ is clearly insecure if SHA-1 is used as the
hash function.
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Canetti-Goldreich-Halevi example

◮ Suppose signature scheme S is secure in the random
oracle model (with random function H).

◮ Make the following modification to S to obtain a scheme
S′ that is also secure in the random oracle model:
• If H(m) = SHA-1(0) then include the private key in the

signature for m.

◮ However, S′ is clearly insecure if SHA-1 is used as the
hash function.

◮ The example is extended so that S′ is insecure no
matter what real-world hash function is used.
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General issues with provable security

◮ Are the definitions the ‘right’ ones?
• Signatures, public-key encryption, key establishment, etc.

• No resistance to side-channel attacks.
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• Halevi (2005): “...as a community, we generate more proofs
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• Halevi (2005): “...I do not expect anyone in his right mind to
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General issues with provable security

◮ Are the definitions the ‘right’ ones?
• Signatures, public-key encryption, key establishment, etc.

• No resistance to side-channel attacks.

◮ Are the proofs correct?
• The security reductions are intricate and lengthy.

• Halevi (2005): “...as a community, we generate more proofs
than we carefully verify...”

• Halevi (2005): “...I do not expect anyone in his right mind to
even read the proof, let alone carefully verify it.”

◮ What do the proofs really mean?
• Open problem: Devise a public-key protocol P so that (i) a

computational problem X has an optimal but non-tight
reduction to the problem of breaking P ; (ii) if the parameters
for P are selected so that breaking the related problem X is
intractable, then P can be broken. – 27



Some questions to ponder

Let A, B be two cryptographic protocols for the same task.
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Let A, B be two cryptographic protocols for the same task.

1. If A has a security proof and B doesn’t, is A necessarily
better than B?
◮ Example: DSA versus Schnorr.

2. If both A and B have security proofs, which is better?
◮ Depends on the assumptions (e.g. Rabin versus RSA)

3. If A, B have security proofs under the same
assumptions but the reduction for A is tighter, which is
better?
◮ Example: RSA signatures (FDH vs PSS vs KW).
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◮ Example: Schnorr signatures.
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Some questions to ponder

4. If the reduction for A is highly non-tight, should we have
any confidence in the security of A?
◮ Example: Schnorr signatures.

5. If A has a security proof in the random oracle model,
but B has a proof in a standard model (but with a
non-standard computational assumption), which is
better?
◮ Example: Identity-based encryption.

6. If A has a tight security proof under standard
assumptions, but is twice as slow as competing
protocols, should we use A?
◮ Example: Cramer-Shoup encryption.
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Summary

◮ Reductionist security arguments are an important tool
in the design and analysis of cryptographic protocols.

◮ More work needs to be done to understand what these
reductions really mean.

◮ Too early to abandon good old-fashioned cryptanalysis
and prudent security engineering practices.

◮ Provable security: Still as much an art as a science.
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Further reading

◮ N. Koblitz and A. Menezes
Another look at “provable security”
http://eprint.iacr.org/2004/152.

◮ N. Koblitz and A. Menezes
Another look at “provable security”. II
http://eprint.iacr.org/2006/229.

◮ N. Koblitz and A. Menezes
Another look at generic groups
http://eprint.iacr.org/2006/230.
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