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The need for provable security

» Since the mid 1970’s, cryptographic protocols for
achieving various goals have been proposed at a
furious rate.

» Itis very desirable to obtain mathematically rigorous
proofs that protocols meet their goals under some
plausible assumptions.

e If nothing else, the desire for rigour encourages researchers
to carefully define their security notions and precisely state
their assumptions.

» Security proofs generally take the form of a reduction:

e Argue that if the protocol can be broken, then a
(reasonable) mathematical assumption is invalid.



Basic Rabin public-key encryption scheme

» First provably secure cryptographic scheme (1979).
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First provably secure cryptographic scheme (1979).
Public key: n

Private key: p and ¢ (where n = pq)

Encryption: ¢ = m? mod n

Decryption: Find the 4 square roots of ¢, and select the
appropriate one

Security proof:
1. SQUARE-ROOTS <p FACTOR-n
2. FACTOR-n <p SQUARE-ROQTS
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» Goldwasser & Micali (1982): Probabillistic encryption
e Semantic security, indistinguishabillity
» (1980’s). Asymptotic security analysis
e Goldreich: “Claims of plausibility”
» Bellare & Rogaway (1993):.
Practice-oriented provable security
e Prove the security of efficient protocols
e EXxact (non-asymptotic) security analysis
e Random oracle model

However, it is not always clear what these proofs really
mean in practice.



RSA key generation

Alice does the following:
1. Select primes p and ¢ of the same bitlength.
2. Computen=pgand ¢ =(p—1)(qg—1).
3. Select arbitrary e, 1 < e < ¢, with ged(e, ¢) = 1.
4. Compute d = e~ ! mod ¢.

Alice’s public key is (n, e); her private key Is d.

Computing d from (n, e) IS equivalent to factoring n.



Full-Domain-Hash RSA signature scheme

Signature generation: To sign m € {0, 1}*, Alice does:

1. Compute h = H(m), where H : {0,1}* — [0,n— 1] IS a
(public) hash function.

2. Compute s = A% mod n.
Alice’s signature on m IS s.

Signature verification: To verify, Bob does:
1. Obtain Alice’s public key (n, ¢e).
2. Compute h = H(m) and verify that h = s® mod n.
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Signature generation: To sign m € {0,1}*, Alice does:

1. Compute h = H(m), where H : {0,1}* — [0,n— 1] IS a
(public) hash function.

2. Compute s = A% mod n.
Alice’s signature on m IS s.

Signature verification: To verify, Bob does:
1. Obtain Alice’s public key (n, ¢e).
2. Compute h = H(m) and verify that h = s® mod n.

Question: Is RSA-FDH secure?



Security definition

Definition: (Goldwasser, Micali & Rivest; 1984)

A signature scheme is secure If a computationally bounded
attacker who has access to a signing oracle is unable (with

non-negligible probability) to obtain a valid signature for any
message that it did not previously present to the oracle.



Necessary conditions for security of RSA-FDH

1. The RSA problem should be intractable:
Given n, e, h, find s such that 2 = s mod n.

» Clearly RSA <p FACTOR-n.

» Open Question: FACTOR-n <p RSA?
» ¢ = 3Is commonly used in practice.
>

Boneh and Venkatesan (1998) proved that, if
FACTOR-n <p RSA-3 where the reduction algorithm
uses only algebraic operations, then FACTOR-n Is In
P.

» Nevertheless, we assume that RSA-3 and RSA are
as hard as FACTOR-n In practice.



Necessary conditions for security of RSA-FDH

2. H should be preimage resistant:

» Otherwise, an attacker could first select s, then
compute h = s mod n, and finally select m with
H(m) = h.



Necessary conditions for security of RSA-FDH

2. H should be preimage resistant:

» Otherwise, an attacker could first select s, then
compute h = s mod n, and finally select m with
H(m) = h.

3. H should be collision resistant:

» Otherwise, an attacker could find m, my with
H(m1) = H(msy) and induce Alice to sign m1, thereby
obtaining Alice’s signature on mso.



Necessary conditions for security of RSA-FDH

2. H should be preimage resistant:

» Otherwise, an attacker could first select s, then
compute h = s mod n, and finally select m with
H(m) = h.

3. H should be collision resistant:

» Otherwise, an attacker could find m, my with
H(m1) = H(msy) and induce Alice to sign m1, thereby
obtaining Alice’s signature on mso.

Question: Are these conditions sufficient?



Random oracle model
» The hash function H is modeled as a (public) random
function.

» The adversary’s probability of success is assessed over
all possible hash functions.

» This is the random oracle assumption.
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Security proof

Theorem (Bellare & Rogaway; 1993) RSA-FDH is a secure
signature scheme in the random oracle model under the
assumption that the RSA problem is intractable.

Proof:

1. Let F be an
attacker that breaks RSA-FDH.  (n,e) r (m, s)
F' can make calls to
two subroutines, a hash oracle
H and a signing oracle S.

At the end of its operation, F’

produces (with non-negligible

probability) a signature for a

message not presented to the signing oracle.

We show how

such a program F' can be used

to solve the RSA problem. 11




. Suppose that we are given an instance (n, e, y) of the RSA
problem. Our task is to find x such that y = ¢ (mod n).

. We make two assumptions about F’s operation:

a) Before querying S with m, F' always queries H with m.
b) F makes (at most) ¢ (distinct) H-queries, my, ma, ..., my.
c) I outputs a valid signature on one of the m;’s.

. We select a random index j € [1, q].

. We run F with input (n, e) and wait for its queries.
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6. For all H-queries except for the jth one, we select a random
z; € |[0,n — 1] and respond with H(m;) = ¢ mod n.
For the jth H-query, we respond with H(m;) = y.

7. If an S-query on m; Is issued (where 7 # 7) we respond with z;.
(Note: this is a valid signature.)
If an S-query on m; Is issued, we give up (restart F' and select

a new j).

-13



8. Suppose that F' outputs a valid signature s on m;. Then

s*=H(m;) =y (mod n), and so x = s is the solution to our
RSA problem instance.

If I” does not output a valid signature on m;, we restart I’ (and
select a new ).

9. If we repeat this procedure £ times, the probability that every
single time we fail is at most (1 — 1/¢)". ]

—14



Tightness of the reduction

The forgery program F would have to be used roughly ¢
times in order to find the desired e-th root of y.

e This is a highly non-tight reduction.
Suppose that n Is a 1024-bit integer.

The NFS takes about 2% steps to factor n.
e Suppose that the RSA problem cannot be solved in fewer
than 2%° steps.
Suppose the forger can make at most ¢ = 2’0 H queries.

Then the Bellare-Rogaway proof says that a successful
forger must require time at least 2'°.

So, if we desire the assurance that any forger must take
time at least 2% then we need to select n so that
factoring takes time at least 2'°Y steps.

e That is, we should use a ~ 4000-bit modulus n. _15



A tighter reduction

» In 2000, Coron gave a different reduction which lowered
the number to F-invocations to ¢ (where ¢, Is a bound
on the number of signature queries).

jeJ C{l,2,...,q}

» Coron (2001) proved that no “tighter” reduction is

possible.
- 16



Practical interpretation

Suppose that n Is a 1024-bit integer.

Suppose that the forger can make at most ¢, = 22V
signature queries.

Then Coron’s proof says that a successful forger must
require time at least 290,

So, If we desire the assurance that any forger must take
time at least 2% then we need to select n so that
factoring takes time at least 2'?° steps.

e That is, we should use a 1500-bit modulus n.
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RSA-PSS (simplified)

(Bellare & Rogaway, 1996)

Signature generation: To sign m € {0, 1}*, Alice does:
1. Select a random bit string r.

2. Compute h = H(m,r), where H : {0,1}* — [0,n — 1] IS a
(public) hash function.

3. Compute s = h% mod n.
Alice’s signature on m IS (s, 7).

Signature verification: To verify, Bob does:
1. Obtain Alice’s public key (n, ¢e).
2. Compute h = H(m,r) and verify that h = s® mod n.

- 18



Security proof

The security of RSA-PSS can be tightly related to the
hardness of the RSA problem.

(n,e) I3 (m, s, )

- -
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FDH versus PSS

» Both RSA-FDH and RSA-PSS have security proofs
under the same assumptions.

» The signing and verification procedures are equally fast.
» Advantage of RSA-FDH: No random numbers are

needed.

» Advantage of RSA-PSS: Has a tight reduction.

Standards have been favouring RSA-PSS.

- 20



FDH or PSS?

» The security of RSA-FDH is tightly related to the
hardness of the following problem:

e RSAL: Given (n,e), and a set of ¢q values y; randomly
chosen from [0, n — 1], you are permitted at any time to
select up to ¢, of those y; for which you will be given
solutions z; to zf = y; (mod n). You must produce a
solution z{ =y; (mod n) for one of the remaining ;.

» Even though there is no tight reduction from RSA to
RSAL, it is reasonable to conjecture that RSA and
RSAL are equivalent in practice — no one will ever be
able to find a solution to RSA1 without being able to
solve RSA in essentially the same amount of time.

» One reasonable conclusion: The lack of a tight security
reduction for RSA-FDH is not a concern.

=21



RSA-KW (Katz-Wang, 2003)

Key generation: Alice selects a (secret) random bit string R.

Signature generation: To sign m € {0, 1}*, Alice does:
1. Compute the bit b = Hy(m, R).
2. Compute h = H(m,b).
3. Compute s = h? mod n.

Alice’s signature on m IS (s, b).

Signature verification: To verify, Bob does:
1. Obtain Alice’s public key (n,e).
2. Compute h = H(m,b) and verify that ~ = s° mod n.
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Security proof

The security of RSA-KW can be tightly related to the
hardness of the RSA problem.

(n,e) 5 (m;, s, b)
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FDH or KW?

» The security of RSA-KW is also tightly related to the
hardness of the following problem:
RSA2: Given (n, e), and a set of ¢ pairs of values (y;, z;)
chosen at random from [0,n — 1], you are permitted at any time
to select up to ¢, of those pairs for which you will be given the
e-th root modulo n of exactly one (randomly selected) element
of the pair. You must produce an e-th root of either element in
one of the remaining pairs.

» Coron’s result implies that there is no tight reduction
from the RSA2 problem to the RSA1 problem.

» However, it seems very unlikely that RSA1 would be
easier to solve in practice than RSA2.
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Random oracle assumption

In practice, H Is not a random function, so the security
proof is no longer valid.

Nevertheless, the security proof does guarantee
security against attackers who do not exploit any
property whatsoever of the hash function H.

Several researchers have designed protocols that are
provably secure in the random oracle model, but
provably insecure whenever the random oracle is
replaced by a real hash function.

However, these protocols are very contrived and
arguably support the random oracle model.
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Canetti-Goldreich-Halevi example

» Suppose sighature scheme S Is secure in the random
oracle model (with random function H).

» Make the following modification to S to obtain a scheme
S’ that is also secure in the random oracle model:

e If H(m) = SHA-1(0) then include the private key in the
signature for m.

» However, S’ is clearly insecure if SHA-1 is used as the
hash function.

— 26



Canetti-Goldreich-Halevi example

Suppose sighature scheme S Is secure in the random
oracle model (with random function H).

Make the following modification to S to obtain a scheme
S’ that is also secure in the random oracle model:

e If H(m) = SHA-1(0) then include the private key in the
signature for m.

However, S’ is clearly insecure if SHA-1 is used as the
hash function.

The example is extended so that S’ is insecure no
matter what real-world hash function i1s used.

- 26



General iIssues with provable security

» Are the definitions the ‘right’ ones?
e Signatures, public-key encryption, key establishment, etc.
e No resistance to side-channel attacks.
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General iIssues with provable security

» Are the definitions the ‘right’ ones?
e Signatures, public-key encryption, key establishment, etc.
e No resistance to side-channel attacks.

» Are the proofs correct?
e The security reductions are intricate and lengthy.

e Halevi (2005): “...as a community, we generate more proofs
than we carefully verify...”

e Halevi (2005): “...I do not expect anyone in his right mind to
even read the proof, let alone carefully verify it.”

» What do the proofs really mean?

e Open problem: Devise a public-key protocol P so that (i) a
computational problem X has an optimal but non-tight
reduction to the problem of breaking P; (ii) if the parameters
for P are selected so that breaking the related problem X is
Intractable, then P can be broken. - 27
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Let A, B be two cryptographic protocols for the same task.
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Let A, B be two cryptographic protocols for the same task.

1. If A has a security proof and B doesn’t, is A necessarily
better than B?

» Example: DSA versus Schnorr.

2. If both A and B have security proofs, which is better?
» Depends on the assumptions (e.g. Rabin versus RSA)

3. If A, B have security proofs under the same
assumptions but the reduction for A is tighter, which is
better?

» Example: RSA signatures (FDH vs PSS vs KW).
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» Example: Schnorr signatures.

- 29



Some questions to ponder

4. If the reduction for A is highly non-tight, should we have
any confidence in the security of A?

» Example: Schnorr signatures.

5. If A has a security proof in the random oracle model,
but B has a proof in a standard model (but with a
non-standard computational assumption), which is
better?

» Example: Identity-based encryption.

- 29



Some questions to ponder

4. If the reduction for A is highly non-tight, should we have
any confidence in the security of A?

» Example: Schnorr signatures.

5. If A has a security proof in the random oracle model,
but B has a proof in a standard model (but with a
non-standard computational assumption), which is
better?

» Example: Identity-based encryption.

6. If A has a tight security proof under standard
assumptions, but is twice as slow as competing
protocols, should we use A?

» Example: Cramer-Shoup encryption.
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Summary

Reductionist security arguments are an important tool
In the design and analysis of cryptographic protocols.

More work needs to be done to understand what these
reductions really mean.

Too early to abandon good old-fashioned cryptanalysis
and prudent security engineering practices.

Provable security: Still as much an art as a science.
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Further reading

» N. Koblitz and A. Menezes
Another look at “provable security”
http://eprint.iacr.org/2004/152.

» N. Koblitz and A. Menezes
Another look at “provable security”. I
http://eprint.iacr.org/2006/229.

» N. Koblitz and A. Menezes
Another look at generic groups
http://eprint.iacr.org/2006/230.
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