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Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields

in an unpublished manuscript from the 1970s.
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Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields

in an unpublished manuscript from the 1970s.

Goal: Finding an efficient method for generating all non-conjugate cubic function
flelds of a given squarefree discriminant, using the infrastructure of the dual real

function field associated with the hyperelliptic field of the same discriminant.
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Hyperelliptic function fields

[, = the finite field of order ¢ with ¢ a power of an odd prime.
k =T, (t) the rational function field with ¢ transcendental over F,.

P5o = the prime at infinity (or the infinite place) of k defined by the negative degree
valuation, ords(g) = — deg (g) for g € K*.
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Hyperelliptic function fields

[, = the finite field of order ¢ with ¢ a power of an odd prime.
k =T, (t) the rational function field with ¢ transcendental over F,.

P5o = the prime at infinity (or the infinite place) of k defined by the negative degree
valuation, ords(g) = — deg (g) for g € K*.

A hyperelliptic function field is defined by
K = k(y)

where y* = D(t) and D € F[t] is a squarefree polynomial.

The genus of K is g = |(deg(D) —1)/2],
and the discriminant of K/k is D.
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Signature

M /k algebraic extension.
The maximal order O of M /k, i.e. the integral closure of I, [t| in M /k, is a Dedekind

domain.

So every place P of k splits in M uniquely, up to order of factors, as
(P) = p1'p3* - pe°, (1)

where p; is a place of M (a prime ideal in O) of residue degree f; = [O/p, : F;] € N

and ramification index e; € N with Y7, e;f; = n.
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Signature

M /k algebraic extension.

The maximal order O of M /k, i.e. the integral closure of I, [t| in M /k, is a Dedekind

domain.

So every place P of k splits in M uniquely, up to order of factors, as

(P) = pi'p5” -+ 95,

(1)

where p; is a place of M (a prime ideal in O) of residue degree f; = [O/p, : F;] € N

and ramification index e; € N with Y7, e;fi = n.

The P-signature of M /k is the 2s-tuple (e1, f1, €2, fo, ..., €5, fs)

where the pairs (e;, f;), 1 <1 <'s, are sorted in lexicographical order.

If P is the place at infinity of k£, we refer to the P-signature as simply the signature

(or the signature at infinity) of M /k.
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Hyperelliptic function fields - imaginary or real

The extension K /k is said to be real

if deg(D) is even (so deg(D) =2g + 2) and
the leading coefficient sgn(D) of D is a square in F,,

and imaginary otherwise.
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Hyperelliptic function fields - imaginary or real

The extension K /k is said to be real

if deg(D) is even (so deg(D) =2g + 2) and
the leading coefficient sgn(D) of D is a square in F,,
and imaginary otherwise.
More exactly,
if deg(D) is odd.

if deg(D) is even and sgn(D) is a non-square,
if deg(D) is even and sgn(D) is a square.

In the real case, if € is any fundamental unit of K/k, then R = |deg(e)| is the
regulator of K/k.
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The Scholz theorem for function fields

The polynomials D and D’ = nD with n € F; any non-square n € F, are said to
be dual discriminants.

Corresponding extensions i /k and K'/k where K’ = k(y') and (y/)? = D’ are dual
hyperelliptic fields.
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The Scholz theorem for function fields

The polynomials D and D’ = nD with n € F; any non-square n € F, are said to

be dual discriminants.

Corresponding extensions i /k and K'/k where K’ = k(y') and (y/)? = D’ are dual
hyperelliptic fields.

Let L = KK' = K({s,y), where £ is an odd prime dividing ¢ + 1.

k(Cery)

Note that K'/k has signature (1, 2) (inert) if and only if K’/k has signature (1,1,1,1)
(splits completely).
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The Scholz theorem for function fields

k(Ce,y)

r = f-rank of the ideal class group of K/k.
7’ = (-rank of the ideal class group of K'/k.
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The Scholz theorem for function fields

k(Ce,y)

r = f-rank of the ideal class group of K/k.
7’ = (-rank of the ideal class group of K'/k.

Then r1

ro or 11 =719+ 1.
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The Scholz theorem for function fields

k(Ce,y)

r = f-rank of the ideal class group of K/k.
7’ = (-rank of the ideal class group of K'/k.

Then rr=mry or riy =719+ L.

e In the latter case, i.e. r1 = ro + 1, the regulator R of K'/k is divisible by /.
Equivalently, if |/ 1 R |, then r{ = 7.
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Linking a certain norm equation to ideal classes of order 1

or 3

Let A, B,Q, D’ € F,[t] (¢ odd) be non-zero polynomials

such that D’ is squarefree and

Q3 = A2 — B2D)'.
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Linking a certain norm equation to ideal classes of order 1

or 3

Let A, B,Q, D’ € F,[t] (¢ odd) be non-zero polynomials

such that D’ is squarefree and

Q3 = A2 — B2D)'.

Set G = ged(A, Q) and assume that G divides D,

and A=A+ By

Assume | a = (), A\/G) | is the ideal generated by @ and \/G
in the maximal order O’ of the hyperelliptic function field K’ of discriminant D’.
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Linking a certain norm equation to ideal classes of order 1

or 3

Let A, B,Q, D’ € F,[t] (¢ odd) be non-zero polynomials

such that D’ is squarefree and

QB — A2 o BQD/.

Set G = ged(A, Q) and assume that G divides D,

and A=A+ By

Assume | a = (), A\/G) | is the ideal generated by @ and \/G

in the maximal order O’ of the hyperelliptic function field K’ of discriminant D’.

Then a satisfies the following properties:

e a+a=g where g° = (G);
N(a) = sgn(Q) ™ Q;
a’ = ();
a Is primitive,
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Cubic function fields

e Every cubic extension of k can be written in the form L = k(z), where
23 —3Q2+2A=0

with @, A € F[t].

e We may assume that L (and its defining polynomial F'(Z) = Z3 —3QZ +2A) are

in standard form; that is, no non-constant polynomial G € F,|t] satisfies vg(@Q) > 2
and vg(A) > 3.
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Cubic function fields

e Every cubic extension of k can be written in the form L = k(z), where
23 —3Q2+2A=0

with @, A € F,[t].

e We may assume that L (and its defining polynomial F'(Z) = Z3 —3QZ +2A) are
in standard form; that is, no non-constant polynomial G € F,|t] satisfies vg(@Q) > 2
and vg(A) > 3.

e The discriminant of F'(Z) is A = 4(3Q)3 — 27(24)% = 108(Q? — A?).

e It is easy to compute the discriminant D of L/k from A using the following

theorem:
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Cubic function fields

e Every cubic extension of k can be written in the form L = k(z), where
23 —3Qz+24=0

with @, A € F[t].

e We may assume that L (and its defining polynomial F'(Z) = Z3 —3QZ +2A) are
in standard form; that is, no non-constant polynomial G € F,|t] satisfies vg(Q) > 2
and vg(A) > 3.

e The discriminant of F'(Z) is A = 4(3Q)3 — 27(24)? = 108(Q? — A?).

e It is easy to compute the discriminant D of L/k from A using the following

theorem:

Assume [, has characteristic at least 5, and let P be any irreducible divisor of A.
Then

e vp(D)=2if and only if vp(Q) > vp(A) > 1;
e vp(D) =1 if and only if vp(A) is odd;

e vp(D) = 0 otherwise.
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Cubic function fields - signature

e The signature of L/k at infinity is

(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), or (3,1).
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Cubic function fields - signature

e The signature of L/k at infinity is

(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), or (3,1).

e We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A, Q, A.
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Cubic function fields - signature

e The signature of L/k at infinity is

(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), or (3,1).

e We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A, Q, A.

o If 2,2, 2" are the three zeros of F(Z) = Z3 — 3QZ + 2A,
then L = k(2), L' = k(2'), L” = k(2") are conjugate fields;
obviously, they all have the same discriminant D.
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Cubic function fields - signature

e The signature of L/k at infinity is

(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), or (3,1).

e We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A, ), A.

o If 2,2, 2" are the three zeros of F(Z) = Z° — 3QZ + 2A,
then L = k(2), L' = k(2'), L” = k(2") are conjugate fields;
obviously, they all have the same discriminant D.

e The extension L/k is Galois if and only if D (and hence A) is a square in F|[¢],
and Gal(L/k) = 7Z/3Z.
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Cubic function fields - signature

e The signature of L/k at infinity is

(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), or (3,1).

e We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A, ), A.

o If 2,2, 2" are the three zeros of F(Z) = Z° — 3QZ + 2A,
then L = k(2), L' = k(2'), L” = k(2") are conjugate fields;
obviously, they all have the same discriminant D.

e The extension L/k is Galois if and only if D (and hence A) is a square in F|[¢],
and Gal(L/k) =7Z/3Z.

o If L/k is not Galois,

then the Galois closure of L/kis N = KK'K" = K(y)

where y? = the squarefree part of D.

Then [N : k| = 6, and the Galois group of N/k is S3 (=the symmetric group on 3
letters).
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at Py (signature (1,2)),
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.
If K/k is inert at Py (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields {L, L', L"}

over k of discriminant D of unit rank 1 is

(3" —1)/2.
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.
If K/k is inert at Py (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields {L, L', L"}

over k of discriminant D of unit rank 1 is

(3" —1)/2.

If K/k is splits completely at P, (signature (1,1,1,1)),
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic
at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at Py (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields {L, L’ L"}
over k of discriminant D of unit rank 1 is

(3" — 1)/2.

If K/k is splits completely at P, (signature (1,1,1,1)),

then the number of distinct unordered triples of conjugate cubic fields {L, L', L"}
over k of discriminant D of unit rank 2 is

(3" —1)/2.
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Hasse’'s Theorem: Idea Sketch

e Let H be the maximal unramified abelian extension of K (in K;) with exponent

3 in which Py splits completely.
Then H/K is Galois, and let C1(K)(3) := CI(K)/CI(K)*.
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Hasse’'s Theorem: Idea Sketch

e Let H be the maximal unramified abelian extension of K (in K;) with exponent

3 in which Py splits completely.
Then H/K is Galois, and let C1(K)(3) := CI(K)/CI(K)*.

e From Class field Theory,
Gg=Gal(H/K) ~CI(K)(3)

by the Artin symbol ( , H/K). They are isomorphic as F3[(G]-modules.
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Hasse’'s Theorem: Idea Sketch

e Let H be the maximal unramified abelian extension of K (in K;) with exponent

3 in which P, splits completely.
Then H/K is Galois, and let C1(K)(3) := CI(K)/CI(K)*.

e From Class field Theory,
Gg=Gal(H/K) ~CI(K)(3)

by the Artin symbol ( , H/K). They are isomorphic as F3[G]-modules.

e Since the 3-rank of CI(K) is r, G has exactly 3 =1 distinct subgroups of index 3.
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Hasse’'s Theorem: Idea Sketch

e Let H be the maximal unramified abelian extension of K (in K;) with exponent

3 in which P, splits completely.
Then H/K is Galois, and let C1(K)(3) := CI(K)/CI(K)*.

e From Class field Theory,
G=Gal(H/K)~CI(K)(3)
by the Artin symbol ( , H/K). They are isomorphic as F3[G]-modules.
e Since the 3-rank of CI(K) is r, G has exactly 3 =1 distinct subgroups of index 3.

e Let IV be a subgroup of G of index 3.

Then the corresponding fixed field M of N is a Galois extension of k containing K
with Gal(M /k) ~ S
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Hasse’'s Theorem: lIdea Sketch - cont’d

e There are three elements of order 2 in S3, which are all conjugate. The fixed
fields K1, Ko, K3 of the elements of order 2 in Gal(M/k) are all isomorphic cubic

extensions of k.
H

K17K27K3

k
e We can show that K7, K5, K3 have the same discriminants as that of K up to

constant factors in ™.
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Cubic fields from quadratic ideals

e Henceforth, ¢ = —1 (mod 3) (so, —3 is a non-square in [F,).

e Fix a squarefree polynomial D € F[t] of even degree

whose leading coefficient is a nonsquare.

o D' :=D/(—3).
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Cubic fields from quadratic ideals

e Henceforth, ¢ = —1 (mod 3) (so, —3 is a non-square in [F,).

e Fix a squarefree polynomial D € F[t] of even degree

whose leading coefficient is a nonsquare.
e D' :=D/(-3).

e Then K = k(y) with 4> = D
is an imaginary hyperelliptic function field of signature (1,2).

o K' = k(y') with (y/)? = D’
is the dual real hyperelliptic function field.

o O := the maximal order of K.

For any ideal a € (0, the ideal class of a is denoted by [a].

Finally, if L/k is a cubic extension, we denote by L’ and L” the conjugate fields of
L.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.
e \We consider the following sets:
L={{L,L',L"}|[L:k] =3, L/k has discriminant D },
T ={{[a],[a]} | ais a primitive ideal in O’ and [a]? = [O'] }.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.
e \We consider the following sets:
L={{L,L',L"}|[L:k] =3, L/k has discriminant D },
T ={{[a],[a]} | ais a primitive ideal in O’ and [a]? = [O'] }.

e Define a surjection @ : £ — 7.
e Then we prove that for any s = {la], [a]} € Z,
the pre-image ®1(s) of s under ® contains
three distinct triples in L if a is a non-principal ideal,

and one such triple if a is principal.
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The map ¢ from L to 7

Let F(Z) = Z3 — 3QZ + 2A with Q, A € F[t] be a defining polynomial of L/k in

standard form.

e Note that @) # 0 since L/k has squarefree discriminant, and A # 0 since F is

irreducible over k. Then we have L = k(z) where

73 —3Qz+2A = 0.
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The map ¢ from L to 7

Let F(Z) = Z3 — 3QZ + 2A with Q, A € F[t] be a defining polynomial of L/k in
standard form.

e Note that @) # 0 since L/k has squarefree discriminant, and A # 0 since F is
irreducible over k. Then we have L = k(z) where

73 —3Qz+2A = 0.

e If A is the discriminant of F'(Z), then A = 108(Q? — A?). Let I be the index of
2,50 A =12D and set B=1/6. Then A = (6B)?(—3D’) = —108B2D’ and hence

A2 o BQD/ — QS-
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The map ¢ from L to 7

Let F(Z) = Z3 — 3QZ + 2A with Q, A € F[t] be a defining polynomial of L/k in
standard form.

e Note that @) # 0 since L/k has squarefree discriminant, and A # 0 since F is
irreducible over k. Then we have L = k(z) where

73 —3Qz+2A = 0.

e If A is the discriminant of F'(Z), then A = 108(Q? — A?). Let I be the index of
2,50 A =12D and set B=1/6. Then A = (6B)?(—3D’) = —108B2D’ and hence

A2 o BQD/ _ QS-

The unordered pair {\,A\} where A\ = A + By’ € O is called a pair of quadratic
generators of {L, L' L"}.

e Pairs of quadratic generators <= | z° — 3Qz + 24 = 0. | (one-to-one correspon-

dence):

{\, A} = quadratic generators of {L, L', L"} | <= |Tr()\) =24, N(\) = @Q°.
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The map ¢ from £ to 7 -continued

o Let \c O
{\, \} is a pair of quadratic generators of a triple {L, L', L"} € L.

U}

A # X, Ais not a cube in O, and () is the cube of a primitive ideal in O'.
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The map ¢ from £ to 7 -continued

o Let \c O
{\, \} is a pair of quadratic generators of a triple {L, L', L"} € L.

U}

A # X, Ais not a cube in O, and () is the cube of a primitive ideal in O'.

We now investigate under what circumstances different pairs of quadratic generators
correspond to the same triple of fields in L:

e Fori=1,2, let {\;, \;} be a pair of quadratic generators of a triple {L;, L}, L"} €
L. Then (L1, LY, L)) = (Lg, L}, LY) if and only if there exists a non-zero element
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The map ¢ from £ to 7 -continued

e Cor. Fori = 1,2, let {\;,\;} be two pairs of quadratic generators of a triple
{L,L',L"} € L, and let a; be the primitive ideal in O’ such that ()\;) = a3.

Then a; is equivalent to as or as.
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The map ¢ from £ to 7 -continued

e Cor. Fori = 1,2, let {\;,\;} be two pairs of quadratic generators of a triple
{L,L',L"} € L, and let a; be the primitive ideal in O’ such that ()\;) = a3.

Then ay is equivalent to as or as.

e Themap ®: L — 1 :

{L, L, L"} = each unordered triple of conjugate cubic fields of discriminant D

l

s := {[a],[@]} = the unordered pair of ideal classes such that (\) = a® for some pair
{)\, A} of quadratic generators of {L, L, L"}.
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The map ¢ from £ to 7 -continued

e Cor. Fori = 1,2, let {\;,\;} be two pairs of quadratic generators of a triple
{L,L',L"} € L, and let a; be the primitive ideal in O’ such that ()\;) = a3.

Then ay is equivalent to as or as.

e Themap ®: L — 1 :

{L, L, L"} = each unordered triple of conjugate cubic fields of discriminant D

l

s := {[a],[@]} = the unordered pair of ideal classes such that (\) = a® for some pair
{)\, A} of quadratic generators of {L, L, L"}.

e The map ® is well-defined and surjective.
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Pre-lmages under ¢

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map ® have cardinality 3,

and the pre-image of the pair {[0'],[®']} under ® contains one triple in L.
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Pre-lmages under ¢

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map ® have cardinality 3,

and the pre-image of the pair {[0'],[®']} under ® contains one triple in L.

o Let s e Z, s {[O0,[O']}, and let {Lq, L, LY}, {Lo, L, L} € ®1(s). For i =
1,2, let {\;, \;} be a pair of quadratic generators of L;, L}, L. Then {Ly, L}, L]} =
{Lo, LY, LY} if and only if A\ = a?)s or Ay = )\, for some non-zero o € K.
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Pre-lmages under ¢

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map ® have cardinality 3,

and the pre-image of the pair {[©'],[©’]} under ® contains one triple in L.

o Let s €T, s # {[O], [0}, and let {Ly, L}, L/}, {La, L, L4} € ®(s). For i =
1,2, let {\;, \;} be a pair of quadratic generators of L;, L}, L. Then {Ly, L}, L]} =
{Lo, LY, LY} if and only if A\ = a?)s or Ay = )\, for some non-zero o € K.

e Lemma. Let s € Z, a any primitive ideal such that s = {[a], [a]}, and X a gen-
erator of a? such that A # X and \ not a cube in O'. Then any pair of quadratic
generators of any triple of fields in ®71(s) is of the form {u, i} where u = /o’
with j € {0,1,2}, o € K’ non-zero, and 3 € {), \}.
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Pre-lmages under ¢

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under
the map ® have cardinality 3,

and the pre-image of the pair {[0'],[®']} under ® contains one triple in L.

o Let seZ, s+ {[0),[0]}, and let {L1, L}, L}, {Ls, L), L4} € & 1(s). Fori=
1,2, let {\;, \;} be a pair of quadratic generators of L;, L}, L. Then {Ly, L}, L]} =
{Lo, L, LY} if and only if Ay = o)y or Ay = o\, for some non-zero o € K.

e Lemma. Let s € Z, a any primitive ideal such that s = {[a], [a]}, and X\ a gen-
erator of a3 such that A # X and ) not a cube in O'. Then any pair of quadratic
generators of any triple of fields in ®71(s) is of the form {u, i} where i = /o’
with j € {0,1,2}, o € K’ non-zero, and 3 € {\, \}.

o Let s € Z. If s = {[O],[O']}, then ®L(s) contains exactly one triple of fields
in £. If sis a pair of ideal classes of order 3, then ®~!(s) contains exactly three
distinct triples of fields in L.
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The Count

e If 7/ := the 3-rank of the ideal class group of K'/k,
then since [a] and [a] are distinct ideal classes of order 3,

the number of unordered pairs s = {[a], [a]} of conjugate ideal classes of order 3 is

(3" —1)/2.
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The Count

e If 7/ := the 3-rank of the ideal class group of K'/k,

then since [a] and [a] are distinct ideal classes of order 3,

the number of unordered pairs s = {[a], [a]} of conjugate ideal classes of order 3 is

/

(37 —1)/2.

e These pairs correspond to 3(3" — 1)/2 pre-images under ® in L,

and the pair s = ([O'], [O]) yields one more pre-image under ®,

for a total of 3(3" —1)/2+1 =

(37“’—|—1 _ 1)/2

distinct triples of fields in L.
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The Count - cont’d

o If K is an escalatory field, i.e. » =" + 1,

then the (3711 —1)/2 distinct triples of fields in the pre-image ®~1(Z) are exactly
the (3" — 1)/2 fields in L.
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o If K is an escalatory field, i.e. » =" + 1,

then the (3711 —1)/2 distinct triples of fields in the pre-image ®~1(Z) are exactly
the (3" — 1)/2 fields in L.

e If K is non-escalatory, i.e. r = 7/,
then 3" fields in £ are covered multiple times by the pre-images of ¢

(since (3" —1)/2—(3"—1)/2 = 3"), and one would need a way to eliminate these

duplicates.
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o If K is an escalatory field, i.e. » =" + 1,

then the (3711 —1)/2 distinct triples of fields in the pre-image ®~1(Z) are exactly
the (3" — 1)/2 fields in L.

e If K is non-escalatory, i.e. r =17,

then 3" fields in £ are covered multiple times by the pre-images of ®

(since (3" —1)/2—(3"—1)/2 = 3"), and one would need a way to eliminate these

duplicates.

e We can determine the signatures of triples of fields in £ constructed as above:
Every triple of fields in £ has signature, i.e. (1,1,1,2) ori.e. (3,1).
We can eliminate the latter case by adding 3  deg(A) (and sgn(A) is a cube in F).
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The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each s € Z defining polynomials
for all triples of fields in the pre-image ®~1(s).
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Goal: Giving efficient algorithms for constructing for each s € Z defining polynomials

for all triples of fields in the pre-image ®~1(s).

e We define a small generator of a principal ideal in O’

to be a generator \ such that deg()\) < 3g + 1 and deg(\) < 3g + 1.
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The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each s € 7 defining polynomials

for all triples of fields in the pre-image ®~1(s).

e We define a small generator of a principal ideal in O’

to be a generator \ such that deg()\) < 3g + 1 and deg()\) < 3¢g + 1.

If A= A+ By is a small generator,

then deg(A) < 3g+ 1 and deg(B) < 3g + 1 — deg(y’) = 2g,

so A can be represented by at most (39 +2) + (29 + 1) = 5g + 3 elements in F,,.
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The CUFFQI Algorithm

ldea:

For each pair s = {[a], [a]},

our goal is to compute generators of ideals equivalent to a or @
that produce the three triples of fields if a is non-principal,

or the one triple of fields if a is principal, in ®~1(s),

and we wish to do this computationally efficiently.
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The CUFFQI Algorithm

|dea:

For each pair s = {[a], [a]},

our goal is to compute generators of ideals equivalent to a or @
that produce the three triples of fields if a is non-principal,

or the one triple of fields if a is principal, in ®~1(s),

and we wish to do this computationally efficiently.

e If [a] is non-principal, we will generate three distinct reduced ideals equivalent to a

such that each of these ideals has a small generator, and each such generator produces
a different triple of fields in L.

e If a is principal, we find a reduced ideal equivalent to a with a small generator

and use this to produce the unique triple of fields in ®71(s).
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Infrastructure - Giant step and Baby step

e An ideal in O is primitive if it is not contained in any principal ideal of the form
(S) with S € F,[t].
e An reduced ideal in O is a primitive ideal a in O with deg(N(a)) < g.
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e An ideal in O is primitive if it is not contained in any principal ideal of the form
(S) with S € F,[t].
e An reduced ideal in O is a primitive ideal a in O with deg(N(a)) < g.

e The number r of reduced ideals in each ideal class is finite; for fields of signature
(2,1), we have r = 1, for signature (1,2), r < 1, and for real hyperelliptic fields,

r =~ R and r varies with each ideal class.
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Infrastructure - Giant step and Baby step

e An ideal in O is primitive if it is not contained in any principal ideal of the form
(S) with S € F,[t].

e An reduced ideal in O is a primitive ideal a in O with deg(N(a)) < g.

e The number r of reduced ideals in each ideal class is finite; for fields of signature
(2,1), we have r = 1, for signature (1,2), r < 1, and for real hyperelliptic fields,

r =~ R and r varies with each ideal class.

e Stein showed Shanks' infrastructure idea for a real number field also applies to the

set of reduced principal ideals in a real quadratic function field.

The set of reduced ideals can be found by the Baby Step - Giant step.
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Conclusion and Future Work

Conclusion

e We have an efficient method for generating non-conjugate cubic function fields of
a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.
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Conclusion

e We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

e There are several explicit constructions of hyperelliptic function fields whose Ja-
cobian or ideal class group has large [-rank, with particular emphasis on the case
[ =3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.
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cobian or ideal class group has large [-rank, with particular emphasis on the case
[ =3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

e Implementation is being done.
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Conclusion

e We have an efficient method for generating non-conjugate cubic function fields of
a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

e There are several explicit constructions of hyperelliptic function fields whose Ja-
cobian or ideal class group has large [-rank, with particular emphasis on the case
[ =3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

e Implementation is being done.

e Construction of cubic function fields of unit rank 2 with a given discriminant.
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Conclusion and Future Work

Conclusion

e We have an efficient method for generating non-conjugate cubic function fields of
a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

e There are several explicit constructions of hyperelliptic function fields whose Ja-
cobian or ideal class group has large [-rank, with particular emphasis on the case
[ =3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

e Implementation is being done.
e Construction of cubic function fields of unit rank 2 with a given discriminant.

e Construction of cubic function fields of unit rank 0 with a given discriminant.
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The CUFFQI Algorithm

We define a small generator of a principal ideal in O to be a generator \ such that
deg()\) < 3¢9 +1 and deg()\) < 3g+ 1. If A\ = A+ By is a small generator, then
deg(A) < 3g+1 and deg(B) <39+ 1 — deg(y') = 2¢g, so A can be represented by

at most (3g +2) + (29 + 1) = 59 + 3 elements in F,.

The following algorithm is for computing for each pair s = {[a], [a]} three reduced

ideals equivalent to a (one such ideal if a is principal) that possess small generators.

In the non-principal case, these generators and their conjugates form pairs of quadratic
generators for the three distinct triples of fields in ®~1(s), while for the principal
class, the small generator and its conjugate forms a pair of quadratic generators of
the unique triple of fields in ®~1(s).
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The CUFFQI Algorithm

Theorem 1. Let a be the reduced principal ideal closest to N = [R/3 + ¢/2]

3

with respect to @’. Then o’ has a small generator A = o3¢~ where « is the

minimal non-negative generator of a. Furthermore, if R > 3¢ + 2, then a # O'.

Theorem 2. Let vt be any reduced ideal whose class has order 3. Let ¢ be a
reduced principal ideal equivalent to t3, @ a relative generator of ¢ with respect
to t3, and write deg(0) —d(c, 0') = nR+r with —3(¢g+1)/2 <r < R—3(g+1)/2.
For i =0,1,2, set N; = [(r+iR)/3+ ¢g/2], and define a; to be the reduced ideal
closest to INV; with respect to t.

3¢t~ /0, where «; is the minimal non-

Then o’ has a small generator \; = «
negative relative generator of a; with respect to t, and + is the minimal non-

negative generator of c.
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The CUFFQI Algorithm

Input:
e an odd prime power ¢ with ¢ = —1 (mod 3);

e a polynomial D € F,[t] of even degree whose leading coeflicient is a non-
square in F;
the regulator R of the hyperelliptic function field K’ of discriminant D' =
D/(-3);
the fundamental unit € of K’ /k (in the case where R < 3¢ only);
the 3-rank 7’ of the ideal class group of K'/k;
a set of pairwise non-equivalent reduced ideals {v1,t2,...,t;} with [ = (37"/ —
1)/2 such that each v; is a representative of some ideal class of order 3 or its

conjugate class.

Output: Defining polynomials for (37"/le — 1)/2 distinct triples of conjugate

cubic fields of discriminant D.
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The CUFFQI Algorithm

Algorithm:

1. Compute the ideal a of Theorem 1 and for each v = t;, compute the three
ideals a;g, a;1, a;o of Theorem 2.
2. If R <3g+ 1, then

a) if a = O, set A\ = ¢, else compute a small generator A of a® as described

in Theorem 1;

b) for each i, compute small generators Ao, A\j1, Ai2 of a0, a;1, a;2, respec-

tively, as described in Theorem 2;
else compute a small generator \ of a*, and for each i small generators
Aio, Ai1, Ai2 of a;g, a;1, a;2, respectively, as described in Algorithm ?7.
. Set F(Z) =23 —3N(\)Y3Z +Tr(\), and for 1 <i<land 0 < j <2, set
Fii(Z) = Z% —3N(\ij)'/3 + Tr(\ij).

4. Output F and {Fi07FilaFi2} for 1 S 1 S .
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