Yoonjin Lee Department of Mathematics, Simon Fraser University yoonjinl@sfu.ca

Construction of Cubic Function Fields from Quadratic Infrastructure

Joint work with M. J. Jacobson, R. Scheidler, H. C. Williams at University of Calgary

Outline

- Motivation and goal
- Background
- CUFFQI work: Theoretical part
 - The Hass Theorem (function field version)
 - Cubic fields from quadratic ideals
- CUFFQI work: Algorithm

Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields in an unpublished manuscript from the 1970s.

Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields in an unpublished manuscript from the 1970s.

Goal: Finding an efficient method for generating all non-conjugate cubic function fields of a given squarefree discriminant, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

Hyperelliptic function fields

 \mathbb{F}_q = the finite field of order q with q a power of an odd prime.

 $k = \mathbb{F}_q(t)$ the rational function field with t transcendental over \mathbb{F}_q .

 P_{∞} = the prime at infinity (or the infinite place) of k defined by the negative degree valuation, $ord_{\infty}(g) = -\deg(g)$ for $g \in K^*$.

Hyperelliptic function fields

 \mathbb{F}_q = the finite field of order q with q a power of an odd prime.

 $k = \mathbb{F}_q(t)$ the rational function field with t transcendental over \mathbb{F}_q .

 P_{∞} = the prime at infinity (or the infinite place) of k defined by the negative degree valuation, $ord_{\infty}(g) = -\deg(g)$ for $g \in K^*$.

A hyperelliptic function field is defined by

$$K = k(y)$$

where $y^2 = D(t)$ and $D \in \mathbb{F}_q[t]$ is a squarefree polynomial.

The genus of K is $g = \lfloor (\deg(D) - 1)/2 \rfloor$, and the discriminant of K/k is D.

Signature

M/k algebraic extension.

The maximal order \mathcal{O} of M/k, i.e. the integral closure of $\mathbb{F}_q[t]$ in M/k, is a Dedekind domain.

So every place $P \mbox{ of } k$ splits in M uniquely, up to order of factors, as

$$(P) = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_s^{e_s}, \tag{1}$$

where \mathfrak{p}_i is a place of M (a prime ideal in \mathcal{O}) of residue degree $f_i = [\mathcal{O}/\mathfrak{p}_i : \mathbb{F}_q] \in \mathbb{N}$ and ramification index $e_i \in \mathbb{N}$ with $\sum_{i=1}^s e_i f_i = n$.

Signature

M/k algebraic extension.

The maximal order \mathcal{O} of M/k, i.e. the integral closure of $\mathbb{F}_q[t]$ in M/k, is a Dedekind domain.

So every place P of k splits in M uniquely, up to order of factors, as

$$(P) = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_s^{e_s}, \tag{1}$$

where \mathfrak{p}_i is a place of M (a prime ideal in \mathcal{O}) of residue degree $f_i = [\mathcal{O}/\mathfrak{p}_i : \mathbb{F}_q] \in \mathbb{N}$ and ramification index $e_i \in \mathbb{N}$ with $\sum_{i=1}^s e_i f_i = n$.

The *P*-signature of M/k is the 2*s*-tuple $(e_1, f_1, e_2, f_2, \ldots, e_s, f_s)$

where the pairs (e_i, f_i) , $1 \le i \le s$, are sorted in lexicographical order.

If P is the place at infinity of k, we refer to the P-signature as simply the signature (or the signature at infinity) of M/k.

Hyperelliptic function fields - imaginary or real

The extension K/k is said to be real

if $\deg(D)$ is even (so $\deg(D) = 2g + 2$) and

the leading coefficient $\operatorname{sgn}(D)$ of D is a square in \mathbb{F}_q ,

and imaginary otherwise.

Hyperelliptic function fields - imaginary or real

The extension K/k is said to be real

if $\deg(D)$ is even (so $\deg(D) = 2g + 2$) and the leading coefficient $\operatorname{sgn}(D)$ of D is a square in \mathbb{F}_q ,

and imaginary otherwise.

More exactly,

 $\begin{array}{ll} (2,1) & \text{if } \deg(D) \text{ is odd.} \\ (1,2) & \text{if } \deg(D) \text{ is even and } \operatorname{sgn}(D) \text{ is a non-square,} \\ (1,1,1,1) & \text{if } \deg(D) \text{ is even and } \operatorname{sgn}(D) \text{ is a square.} \end{array}$

In the real case, if ϵ is any fundamental unit of K/k, then $R = |\deg(\epsilon)|$ is the regulator of K/k.

The polynomials D and D' = nD with $n \in \mathbb{F}_q^*$ any non-square $n \in \mathbb{F}_q$ are said to be dual discriminants.

Corresponding extensions K/k and K'/k where K' = k(y') and $(y')^2 = D'$ are dual hyperelliptic fields.

The polynomials D and D' = nD with $n \in \mathbb{F}_q^*$ any non-square $n \in \mathbb{F}_q$ are said to be dual discriminants.

Corresponding extensions K/k and K'/k where K' = k(y') and $(y')^2 = D'$ are dual hyperelliptic fields.

Let $L = KK' = K(\zeta_{\ell}, y)$, where ℓ is an odd prime dividing q + 1.

Note that K/k has signature (1, 2) (inert) if and only if K'/k has signature (1, 1, 1, 1) (splits completely).

<

 $r = \ell$ -rank of the ideal class group of K/k. $r' = \ell$ -rank of the ideal class group of K'/k.

 $r = \ell$ -rank of the ideal class group of K/k. $r' = \ell$ -rank of the ideal class group of K'/k.

Then
$$r_1 = r_2$$
 or $r_1 = r_2 + 1$.

 $r = \ell$ -rank of the ideal class group of K/k. $r' = \ell$ -rank of the ideal class group of K'/k.

Then
$$r_1 = r_2$$
 or $r_1 = r_2 + 1$.

• In the latter case, i.e. $r_1 = r_2 + 1$, the regulator R of K'/k is divisible by ℓ . Equivalently, if $\ell \nmid R$, then $r_1 = r_2$.

Linking a certain norm equation to ideal classes of order 1 or 3

Let $A, B, Q, D' \in \mathbb{F}_q[t]$ (q odd) be non-zero polynomials

such that D' is squarefree and

$$Q^3 = A^2 - B^2 D'.$$

Linking a certain norm equation to ideal classes of order 1 or 3

Let $A, B, Q, D' \in \mathbb{F}_q[t]$ (q odd) be non-zero polynomials

such that D' is squarefree and

 $Q^3 = A^2 - B^2 D'.$

Set G = gcd(A, Q) and assume that G divides D',

and

 $\lambda = A + By'.$

Assume $\mathbf{a} = (Q, \lambda/G)$ is the ideal generated by Q and λ/G

in the maximal order \mathcal{O}' of the hyperelliptic function field K' of discriminant D'.

Linking a certain norm equation to ideal classes of order 1 or 3

Let $A, B, Q, D' \in \mathbb{F}_q[t]$ (q odd) be non-zero polynomials

such that D' is squarefree and

 $Q^3 = A^2 - B^2 D'.$

Set $G = \operatorname{gcd}(A, Q)$ and assume that G divides D',

and

$$\lambda = A + By'.$$

Assume $\mathbf{a} = (Q, \lambda/G)$ is the ideal generated by Q and λ/G in the maximal order \mathcal{O}' of the hyperelliptic function field K' of discriminant D'.

Then \mathfrak{a} satisfies the following properties:

- $\mathfrak{a} + \overline{\mathfrak{a}} = \mathfrak{g}$ where $\mathfrak{g}^2 = (G);$
- $N(\mathfrak{a}) = \operatorname{sgn}(Q)^{-1}Q;$
- $\mathfrak{a}^3 = (\lambda);$
- \mathfrak{a} is primitive.

Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

 $z^3 - 3Qz + 2A = 0$

with $Q, A \in \mathbb{F}_q[t]$.

• We may assume that L (and its defining polynomial $F(Z) = Z^3 - 3QZ + 2A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_q[t]$ satisfies $v_G(Q) \ge 2$ and $v_G(A) \ge 3$.

Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

 $z^3 - 3Qz + 2A = 0$

with $Q, A \in \mathbb{F}_q[t]$.

- We may assume that L (and its defining polynomial $F(Z) = Z^3 3QZ + 2A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_q[t]$ satisfies $v_G(Q) \ge 2$ and $v_G(A) \ge 3$.
- The discriminant of F(Z) is $\Delta = 4(3Q)^3 27(2A)^2 = 108(Q^3 A^2)$.
- It is easy to compute the discriminant D of L/k from Δ using the following theorem:

Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

$$z^3 - 3Qz + 2A = 0$$

with $Q, A \in \mathbb{F}_q[t]$.

- We may assume that L (and its defining polynomial $F(Z) = Z^3 3QZ + 2A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_q[t]$ satisfies $v_G(Q) \ge 2$ and $v_G(A) \ge 3$.
- The discriminant of F(Z) is $\Delta = 4(3Q)^3 27(2A)^2 = 108(Q^3 A^2)$.
- It is easy to compute the discriminant D of L/k from Δ using the following theorem:

Assume \mathbb{F}_q has characteristic at least 5, and let P be any irreducible divisor of Δ . Then

- $v_P(D) = 2$ if and only if $v_P(Q) \ge v_P(A) \ge 1$;
- $v_P(D) = 1$ if and only if $v_P(\Delta)$ is odd;
- $v_P(D) = 0$ otherwise.

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ .

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ .

• If z, z', z'' are the three zeros of $F(Z) = Z^3 - 3QZ + 2A$, then L = k(z), L' = k(z'), L'' = k(z'') are conjugate fields; obviously, they all have the same discriminant D.

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ .

• If z, z', z'' are the three zeros of $F(Z) = Z^3 - 3QZ + 2A$, then L = k(z), L' = k(z'), L'' = k(z'') are conjugate fields; obviously, they all have the same discriminant D.

• The extension L/k is Galois if and only if D (and hence Δ) is a square in $\mathbb{F}_q[t]$, and $\operatorname{Gal}(L/k) = \mathbb{Z}/3\mathbb{Z}$.

<
≥
⊗
⊙
⊙
i
?
P
□

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ .

• If z, z', z'' are the three zeros of $F(Z) = Z^3 - 3QZ + 2A$, then L = k(z), L' = k(z'), L'' = k(z'') are conjugate fields; obviously, they all have the same discriminant D.

• The extension L/k is Galois if and only if D (and hence Δ) is a square in $\mathbb{F}_q[t]$, and $\operatorname{Gal}(L/k) = \mathbb{Z}/3\mathbb{Z}$.

• If L/k is not Galois,

then the Galois closure of L/k is N = KK'K'' = K(y)

where $y^2 =$ the squarefree part of D.

Then [N:k] = 6, and the Galois group of N/k is S_3 (=the symmetric group on 3 letters).

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P_{∞} (signature (1,2)),

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P_{∞} (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields $\{L, L', L''\}$ over k of discriminant D of unit rank 1 is

 $(3^r - 1)/2.$

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P_{∞} (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields $\{L, L', L''\}$ over k of discriminant D of unit rank 1 is

 $(3^r - 1)/2.$

If K/k is splits completely at P_{∞} (signature (1, 1, 1, 1)),

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P_{∞} (signature (1,2)),

then the number of distinct unordered triples of conjugate cubic fields $\{L, L', L''\}$ over k of discriminant D of unit rank 1 is

 $(3^r - 1)/2.$

If K/k is splits completely at P_{∞} (signature (1, 1, 1, 1)),

then the number of distinct unordered triples of conjugate cubic fields $\{L, L', L''\}$ over k of discriminant D of unit rank 2 is

$$(3^r - 1)/2.$$

• Let H be the maximal unramified abelian extension of K (in K_s) with exponent 3 in which P_{∞} splits completely.

Then H/K is Galois, and let $Cl(K)(3) := Cl(K)/Cl(K)^3$.

• Let H be the maximal unramified abelian extension of K (in K_s) with exponent 3 in which P_{∞} splits completely.

Then H/K is Galois, and let $Cl(K)(3) := Cl(K)/Cl(K)^3$.

• From Class field Theory,

 $\mathcal{G} = \operatorname{Gal}(H/K) \simeq Cl(K)(3)$

by the Artin symbol (, H/K). They are isomorphic as $\mathbb{F}_3[G]$ -modules.

• Let H be the maximal unramified abelian extension of K (in K_s) with exponent 3 in which P_{∞} splits completely.

Then H/K is Galois, and let $Cl(K)(3) := Cl(K)/Cl(K)^3$.

• From Class field Theory,

 $\mathcal{G} = \operatorname{Gal}(H/K) \simeq Cl(K)(3)$

by the Artin symbol (, H/K). They are isomorphic as $\mathbb{F}_3[G]$ -modules.

• Since the 3-rank of Cl(K) is r, \mathcal{G} has exactly $\frac{3^r-1}{3-1}$ distinct subgroups of index 3.

• Let H be the maximal unramified abelian extension of K (in K_s) with exponent 3 in which P_{∞} splits completely.

Then H/K is Galois, and let $Cl(K)(3) := Cl(K)/Cl(K)^3$.

• From Class field Theory,

 $\mathcal{G} = \operatorname{Gal}(H/K) \simeq Cl(K)(3)$

by the Artin symbol (, H/K). They are isomorphic as $\mathbb{F}_3[G]$ -modules.

- Since the 3-rank of Cl(K) is r, \mathcal{G} has exactly $\frac{3^r-1}{3-1}$ distinct subgroups of index 3.
- Let N be a subgroup of \mathcal{G} of index 3.

Then the corresponding fixed field M of N is a Galois extension of k containing K with $\operatorname{Gal}(M/k) \simeq S_3$.

Hasse's Theorem: Idea Sketch - cont'd

• There are three elements of order 2 in S_3 , which are all conjugate. The fixed fields K_1 , K_2 , K_3 of the elements of order 2 in Gal(M/k) are all isomorphic cubic extensions of k.

• We can show that K_1 , K_2 , K_3 have the same discriminants as that of K up to constant factors in \mathbb{F}_q^* .

<
 </td>

- Henceforth, $q \equiv -1 \pmod{3}$ (so, -3 is a non-square in \mathbb{F}_q).
- Fix a squarefree polynomial $D \in \mathbb{F}_q[t]$ of even degree whose leading coefficient is a nonsquare.
- D' := D/(-3).

- Henceforth, $q \equiv -1 \pmod{3}$ (so, -3 is a non-square in \mathbb{F}_q).
- Fix a squarefree polynomial $D \in \mathbb{F}_q[t]$ of even degree whose leading coefficient is a nonsquare.
- D' := D/(-3).
- Then K = k(y) with $y^2 = D$

is an imaginary hyperelliptic function field of signature (1,2).

 $\bullet \ K' = k(y') \ {\rm with} \ (y')^2 = D'$

is the dual real hyperelliptic function field.

• $\mathcal{O}' :=$ the maximal order of K'.

For any ideal $\mathfrak{a} \in \mathcal{O}'$, the ideal class of \mathfrak{a} is denoted by $[\mathfrak{a}]$.

Finally, if L/k is a cubic extension, we denote by L' and L'' the conjugate fields of L.

Our goal: Generating every element in \mathcal{L} .

Our goal: Generating every element in \mathcal{L} .

• We consider the following sets:

 $\mathcal{L} = \{ \{L, L', L''\} \mid [L:k] = 3, L/k \text{ has discriminant } D \}, \\ \mathcal{I} = \{ \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\} \mid \mathfrak{a} \text{ is a primitive ideal in } \mathcal{O}' \text{ and } [\mathfrak{a}]^3 = [\mathcal{O}'] \}.$

Our goal: Generating every element in \mathcal{L} .

• We consider the following sets:

 $\mathcal{L} = \{ \{L, L', L''\} \mid [L:k] = 3, L/k \text{ has discriminant } D \},\$ $\mathcal{I} = \{ \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\} \mid \mathfrak{a} \text{ is a primitive ideal in } \mathcal{O}' \text{ and } [\mathfrak{a}]^3 = [\mathcal{O}'] \}.$

- Define a surjection $\Phi : \mathcal{L} \to \mathcal{I}$.
- \bullet Then we prove that for any $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}\in\mathcal{I}$,

the pre-image $\Phi^{-1}(s)$ of s under Φ contains

three distinct triples in \mathcal{L} if \mathfrak{a} is a non-principal ideal,

and one such triple if α is principal.

The map Φ from ${\mathcal L}$ to ${\mathcal I}$

Let $F(Z) = Z^3 - 3QZ + 2A$ with $Q, A \in \mathbb{F}_q[t]$ be a defining polynomial of L/k in standard form.

• Note that $Q \neq 0$ since L/k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have L = k(z) where

$$\mathbf{z}^3 - 3Qz + 2A = 0.$$

The map Φ from ${\mathcal L}$ to ${\mathcal I}$

Let $F(Z) = Z^3 - 3QZ + 2A$ with $Q, A \in \mathbb{F}_q[t]$ be a defining polynomial of L/k in standard form.

• Note that $Q \neq 0$ since L/k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have L = k(z) where

 $\mathsf{z}^3 - 3Qz + 2A = 0.$

• If Δ is the discriminant of F(Z), then $\Delta = 108(Q^3 - A^2)$. Let I be the index of z, so $\Delta = I^2D$ and set B = I/6. Then $\Delta = (6B)^2(-3D') = -108B^2D'$ and hence

 $\mathsf{A}^2 - B^2 D' = Q^3.$

The map Φ from ${\mathcal L}$ to ${\mathcal I}$

Let $F(Z) = Z^3 - 3QZ + 2A$ with $Q, A \in \mathbb{F}_q[t]$ be a defining polynomial of L/k in standard form.

• Note that $Q \neq 0$ since L/k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have L = k(z) where

 $\mathsf{z}^3 - 3Qz + 2A = 0.$

• If Δ is the discriminant of F(Z), then $\Delta = 108(Q^3 - A^2)$. Let I be the index of z, so $\Delta = I^2D$ and set B = I/6. Then $\Delta = (6B)^2(-3D') = -108B^2D'$ and hence

 $\mathsf{A}^2 - B^2 D' = Q^3.$

The unordered pair $\{\lambda, \overline{\lambda}\}$ where $\lambda = A + By' \in \mathcal{O}'$ is called a pair of *quadratic* generators of $\{L, L', L''\}$.

• Pairs of quadratic generators $\iff \boxed{z^3 - 3Qz + 2A = 0}$ (one-to-one correspondence):

$$\{\lambda,\overline{\lambda}\} =$$
quadratic generators of $\{L,L',L''\} \iff Tr(\lambda) = 2A, N(\lambda) = Q^3.$

• Let $\lambda \in \mathcal{O}'$.

 $\{\lambda,\overline{\lambda}\}$ is a pair of quadratic generators of a triple $\{L,L',L''\}\in\mathcal{L}$.

 $\lambda \neq \overline{\lambda}$, λ is not a cube in \mathcal{O}' , and (λ) is the cube of a primitive ideal in \mathcal{O}' .

⇑

 $\{\lambda, \overline{\lambda}\}\$ is a pair of quadratic generators of a triple $\{L, L', L''\} \in \mathcal{L}$.

 $\lambda \neq \overline{\lambda}$, λ is not a cube in \mathcal{O}' , and (λ) is the cube of a primitive ideal in \mathcal{O}' .

We now investigate under what circumstances different pairs of quadratic generators correspond to the same triple of fields in \mathcal{L} :

• For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be a pair of quadratic generators of a triple $\{L_i, L'_i, L''_i\} \in \mathcal{L}$. Then $(L_1, L'_1, L''_1) = (L_2, L'_2, L''_2)$ if and only if there exists a non-zero element $\beta \in K'$ such that

$$\frac{\lambda_1}{\overline{\lambda}_1} \left(\frac{\beta}{\overline{\beta}}\right)^3 \in \left\{\frac{\lambda_2}{\overline{\lambda}_2}, \frac{\overline{\lambda}_2}{\lambda_2}\right\}.$$

• Cor. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be two pairs of quadratic generators of a triple $\{L, L', L''\} \in \mathcal{L}$, and let \mathfrak{a}_i be the primitive ideal in \mathcal{O}' such that $(\lambda_i) = \mathfrak{a}_i^3$.

Then \mathfrak{a}_1 is equivalent to \mathfrak{a}_2 or $\overline{\mathfrak{a}}_2$.

• Cor. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be two pairs of quadratic generators of a triple $\{L, L', L''\} \in \mathcal{L}$, and let \mathfrak{a}_i be the primitive ideal in \mathcal{O}' such that $(\lambda_i) = \mathfrak{a}_i^3$. Then \mathfrak{a}_1 is equivalent to \mathfrak{a}_2 or $\overline{\mathfrak{a}}_2$.

• The map $\Phi: \mathcal{L} \to \mathcal{I}$:

 $\{L, L, L''\}$ = each unordered triple of conjugate cubic fields of discriminant D

 $s := \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\} =$ the unordered pair of ideal classes such that $(\lambda) = \mathfrak{a}^3$ for some pair $\{\lambda, \overline{\lambda}\}$ of quadratic generators of $\{L, L, L''\}$.

• Cor. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be two pairs of quadratic generators of a triple $\{L, L', L''\} \in \mathcal{L}$, and let \mathfrak{a}_i be the primitive ideal in \mathcal{O}' such that $(\lambda_i) = \mathfrak{a}_i^3$. Then \mathfrak{a}_1 is equivalent to \mathfrak{a}_2 or $\overline{\mathfrak{a}}_2$.

• The map $\Phi: \mathcal{L} \to \mathcal{I}$:

 $\{L, L, L''\}$ = each unordered triple of conjugate cubic fields of discriminant D

 $s := \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\} =$ the unordered pair of ideal classes such that $(\lambda) = \mathfrak{a}^3$ for some pair $\{\lambda, \overline{\lambda}\}$ of quadratic generators of $\{L, L, L''\}$.

 \bullet The map Φ is well-defined and surjective.

$\textbf{Pre-Images under} \ \Phi$

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3,

and the pre-image of the pair $\{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$ under Φ contains one triple in \mathcal{L} .

$\textbf{Pre-Images under} \ \Phi$

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3,

and the pre-image of the pair $\{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$ under Φ contains one triple in \mathcal{L} .

• Let $s \in \mathcal{I}$, $s \neq \{[\mathcal{O}'], [\mathcal{O}']\}$, and let $\{L_1, L'_1, L''_1\}, \{L_2, L'_2, L''_2\} \in \Phi^{-1}(s)$. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be a pair of quadratic generators of L_i, L'_i, L''_i . Then $\{L_1, L'_1, L''_1\} = \{L_2, L'_2, L''_2\}$ if and only if $\lambda_1 = \alpha^3 \lambda_2$ or $\lambda_1 = \alpha^3 \overline{\lambda}_2$ for some non-zero $\alpha \in K'$.

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3,

and the pre-image of the pair $\{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$ under Φ contains one triple in \mathcal{L} .

• Let $s \in \mathcal{I}$, $s \neq \{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$, and let $\{L_1, L'_1, L''_1\}, \{L_2, L'_2, L''_2\} \in \Phi^{-1}(s)$. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be a pair of quadratic generators of L_i, L'_i, L''_i . Then $\{L_1, L'_1, L''_1\} = \{L_2, L'_2, L''_2\}$ if and only if $\lambda_1 = \alpha^3 \lambda_2$ or $\lambda_1 = \alpha^3 \overline{\lambda}_2$ for some non-zero $\alpha \in K'$.

• Lemma. Let $s \in \mathcal{I}$, \mathfrak{a} any primitive ideal such that $s = \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\}$, and λ a generator of \mathfrak{a}^3 such that $\lambda \neq \overline{\lambda}$ and λ not a cube in \mathcal{O}' . Then any pair of quadratic generators of any triple of fields in $\Phi^{-1}(s)$ is of the form $\{\mu, \overline{\mu}\}$ where $\mu = e^j \alpha^3 \beta$ with $j \in \{0, 1, 2\}$, $\alpha \in K'$ non-zero, and $\beta \in \{\lambda, \overline{\lambda}\}$.

>

>>>>

Ŏ

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3,

and the pre-image of the pair $\{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$ under Φ contains one triple in \mathcal{L} .

• Let $s \in \mathcal{I}$, $s \neq \{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$, and let $\{L_1, L'_1, L''_1\}, \{L_2, L'_2, L''_2\} \in \Phi^{-1}(s)$. For i = 1, 2, let $\{\lambda_i, \overline{\lambda}_i\}$ be a pair of quadratic generators of L_i, L'_i, L''_i . Then $\{L_1, L'_1, L''_1\} = \{L_2, L'_2, L''_2\}$ if and only if $\lambda_1 = \alpha^3 \lambda_2$ or $\lambda_1 = \alpha^3 \overline{\lambda}_2$ for some non-zero $\alpha \in K'$.

• Lemma. Let $s \in \mathcal{I}$, \mathfrak{a} any primitive ideal such that $s = \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\}$, and λ a generator of \mathfrak{a}^3 such that $\lambda \neq \overline{\lambda}$ and λ not a cube in \mathcal{O}' . Then any pair of quadratic generators of any triple of fields in $\Phi^{-1}(s)$ is of the form $\{\mu, \overline{\mu}\}$ where $\mu = e^j \alpha^3 \beta$ with $j \in \{0, 1, 2\}$, $\alpha \in K'$ non-zero, and $\beta \in \{\lambda, \overline{\lambda}\}$.

• Let $s \in \mathcal{I}$. If $s = \{[\mathcal{O}'], [\overline{\mathcal{O}'}]\}$, then $\Phi^{-1}(s)$ contains exactly one triple of fields in \mathcal{L} . If s is a pair of ideal classes of order 3, then $\Phi^{-1}(s)$ contains exactly three distinct triples of fields in \mathcal{L} . 20/32

The Count

• If r' := the 3-rank of the ideal class group of K'/k,

then since $[\mathfrak{a}]$ and $[\overline{\mathfrak{a}}]$ are distinct ideal classes of order 3,

the number of unordered pairs $s = \{[a], [\overline{a}]\}$ of conjugate ideal classes of order 3 is

$$(3^{r'}-1)/2.$$

The Count

• If r' := the 3-rank of the ideal class group of K'/k,

then since $[\mathfrak{a}]$ and $[\overline{\mathfrak{a}}]$ are distinct ideal classes of order 3,

the number of unordered pairs $s = \{[a], [\overline{a}]\}$ of conjugate ideal classes of order 3 is

$$(3^{r'}-1)/2.$$

• These pairs correspond to $3(3^{r'}-1)/2$ pre-images under Φ in \mathcal{L} ,

and the pair $s = ([\mathcal{O}'], [\mathcal{O}'])$ yields one more pre-image under Φ ,

for a total of $3(3^{r'}-1)/2 + 1 = \lfloor (3^{r'+1}-1)/2 \rfloor$ distinct triples of fields in \mathcal{L} .

The Count - cont'd

• If K is an escalatory field, i.e. r = r' + 1,

then the $(3^{r'+1}-1)/2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $(3^r-1)/2$ fields in \mathcal{L} .

The Count - cont'd

• If K is an escalatory field, i.e. r = r' + 1,

then the $(3^{r'+1}-1)/2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $(3^r-1)/2$ fields in \mathcal{L} .

• If K is non-escalatory, i.e. r = r',

then 3^r fields in \mathcal{L} are covered multiple times by the pre-images of Φ (since $(3^{r+1}-1)/2 - (3^r-1)/2 = 3^r$), and one would need a way to eliminate these duplicates.

The Count - cont'd

• If K is an escalatory field, i.e. r = r' + 1,

then the $(3^{r'+1}-1)/2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $(3^r-1)/2$ fields in \mathcal{L} .

• If K is non-escalatory, i.e. r = r',

then 3^r fields in \mathcal{L} are covered multiple times by the pre-images of Φ (since $(3^{r+1}-1)/2 - (3^r-1)/2 = 3^r$), and one would need a way to eliminate these duplicates.

We can determine the signatures of triples of fields in *L* constructed as above:
Every triple of fields in *L* has signature, i.e. (1, 1, 1, 2) or i.e. (3, 1).
We can eliminate the latter case by adding 3 ∤ deg(A) (and sgn(A) is a cube in F_q).

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

 \bullet We define a small generator of a principal ideal in \mathcal{O}'

to be a generator λ such that $\deg(\lambda) \leq 3g + 1$ and $\deg(\overline{\lambda}) \leq 3g + 1$.

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

 \bullet We define a small generator of a principal ideal in \mathcal{O}'

to be a generator λ such that $\deg(\lambda) \leq 3g + 1$ and $\deg(\overline{\lambda}) \leq 3g + 1$.

If $\lambda = A + By'$ is a small generator,

then $\deg(A) \leq 3g + 1$ and $\deg(B) \leq 3g + 1 - \deg(y') = 2g$,

so λ can be represented by at most (3g+2) + (2g+1) = 5g+3 elements in \mathbb{F}_q .

Idea:

For each pair $s = \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\},\$

our goal is to compute generators of ideals equivalent to $\mathfrak a$ or $\overline{\mathfrak a}$

that produce the three triples of fields if \mathfrak{a} is non-principal,

or the one triple of fields if a is principal, in $\Phi^{-1}(s)$,

and we wish to do this computationally efficiently.

Idea:

For each pair $s = \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\},\$

our goal is to compute generators of ideals equivalent to \mathfrak{a} or $\overline{\mathfrak{a}}$ that produce the three triples of fields if \mathfrak{a} is non-principal, or the one triple of fields if \mathfrak{a} is principal, in $\Phi^{-1}(s)$,

and we wish to do this computationally efficiently.

• If $[\mathfrak{a}]$ is non-principal, we will generate three distinct reduced ideals equivalent to \mathfrak{a} such that each of these ideals has a small generator, and each such generator produces a different triple of fields in \mathcal{L} .

• If α is principal, we find a reduced ideal equivalent to α with a small generator and use this to produce the unique triple of fields in $\Phi^{-1}(s)$.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is *primitive* if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_q[t]$.
- An *reduced* ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\deg(N(\mathfrak{a})) \leq g$.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is *primitive* if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_q[t]$.
- An *reduced* ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\deg(N(\mathfrak{a})) \leq g$.
- The number r of reduced ideals in each ideal class is finite; for fields of signature (2,1), we have r = 1, for signature (1,2), $r \leq 1$, and for real hyperelliptic fields, $r \approx R$ and r varies with each ideal class.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is *primitive* if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_q[t]$.
- An *reduced* ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\deg(N(\mathfrak{a})) \leq g$.
- The number r of reduced ideals in each ideal class is finite; for fields of signature (2,1), we have r = 1, for signature (1,2), $r \leq 1$, and for real hyperelliptic fields, $r \approx R$ and r varies with each ideal class.
- Stein showed Shanks' infrastructure idea for a real number field also applies to the set of reduced principal ideals in a real quadratic function field.

The set of reduced ideals can be found by the Baby Step - Giant step.

Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case l = 3.
- So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case l = 3.
- So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

• Implementation is being done.

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case l = 3.
- So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

- Implementation is being done.
- \bullet Construction of cubic function fields of unit rank 2 with a given discriminant.

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case l = 3.
- So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

- Implementation is being done.
- \bullet Construction of cubic function fields of unit rank 2 with a given discriminant.
- \bullet Construction of cubic function fields of unit rank 0 with a given discriminant.

References

• M. L. Bauer, M. J. Jacobson, Jr., Y. Lee and R. Scheidler, Construction of Hyperelliptic Function Fields of High Three-Rank. Submitted to *Math. Comp.*

• G. W.-W. Fung, *Computational Problems in Complex Cubic Fields*. Doctoral Dissertation, University of Manitoba, 1990.

• H. Hasse, Arithmetische Theorie der kubischen Einheiten. Math. Zeitschrift **31** (1930), 565-582.

• Y. Lee, The Scholz theorem in function fields. To appear in J. Number Theory.

• P. Llorente & E. Nart, Effective determination of the decomposition of the rational primes in a cuvic field. *Proc.*. *Math. Soc.* **87** (1983), 579-585.

• M. Rosen, The Hilbert class field in function fields. *Exposition. Math.* **5** (1987), 365–378.

References

• R. Scheidler, Algorithmic aspects of cubic function fields. In *Proc. Sixth Algorithmic Number Theory Symposium ANTS-VI*, *Lecture Notes Comput. Sci.* **3976**, Springer, Berlin 2004, 395-410.

- D. Shanks, *Determining all cubic fields having a given fundamental discriminant*. Unpublished manuscript.
- A. Stein and E. Teske, The parallelized Pollard kangaroo method in real quadratic function fields. *Math. Comp.* **71** (2002), 793–814
- R. Scheidler, A. Stein and H. C. Williams, Key exchange in real quadratic congruence function fields. *Designs, Codes Crypt.* **7** (1996) 153-174.

We define a small generator of a principal ideal in \mathcal{O}' to be a generator λ such that $\deg(\lambda) \leq 3g + 1$ and $\deg(\overline{\lambda}) \leq 3g + 1$. If $\lambda = A + By'$ is a small generator, then $\deg(A) \leq 3g + 1$ and $\deg(B) \leq 3g + 1 - \deg(y') = 2g$, so λ can be represented by at most (3g + 2) + (2g + 1) = 5g + 3 elements in \mathbb{F}_q .

The following algorithm is for computing for each pair $s = \{[\mathfrak{a}], [\overline{\mathfrak{a}}]\}$ three reduced ideals equivalent to \mathfrak{a} (one such ideal if \mathfrak{a} is principal) that possess small generators.

In the non-principal case, these generators and their conjugates form pairs of quadratic generators for the three distinct triples of fields in $\Phi^{-1}(s)$, while for the principal class, the small generator and its conjugate forms a pair of quadratic generators of the unique triple of fields in $\Phi^{-1}(s)$.

Theorem 1. Let \mathfrak{a} be the reduced principal ideal closest to $N = \lceil R/3 + g/2 \rfloor$ with respect to \mathcal{O}' . Then \mathfrak{a}^3 has a small generator $\lambda = \alpha^3 \epsilon^{-1}$ where α is the minimal non-negative generator of \mathfrak{a} . Furthermore, if $R \geq 3g + 2$, then $\mathfrak{a} \neq \mathcal{O}'$.

Theorem 2. Let \mathfrak{r} be any reduced ideal whose class has order 3. Let \mathfrak{c} be a reduced principal ideal equivalent to \mathfrak{r}^3 , θ a relative generator of \mathfrak{c} with respect to \mathfrak{r}^3 , and write $\deg(\theta) - \delta(\mathfrak{c}, \mathcal{O}') = nR + r$ with $-3(g+1)/2 \leq r < R - 3(g+1)/2$. For i = 0, 1, 2, set $N_i = \lceil (r+iR)/3 + g/2 \rceil$, and define \mathfrak{a}_i to be the reduced ideal closest to N_i with respect to \mathfrak{r} .

Then \mathfrak{a}_i^3 has a small generator $\lambda_i = \alpha_i^3 \epsilon^{n-i} \gamma/\theta$, where α_i is the minimal nonnegative relative generator of \mathfrak{a}_i with respect to \mathfrak{r} , and γ is the minimal nonnegative generator of \mathfrak{c} .

Input:

- an odd prime power q with $q \equiv -1 \pmod{3}$;
- a polynomial $D \in \mathbb{F}_q[t]$ of even degree whose leading coefficient is a non-square in \mathbb{F}_q ;
- the regulator R of the hyperelliptic function field K' of discriminant D' = D/(-3);
- the fundamental unit ϵ of K'/k (in the case where $R \leq 3g$ only);
- the 3-rank r' of the ideal class group of K'/k;
- a set of pairwise non-equivalent reduced ideals $\{\mathfrak{r}_1, \mathfrak{r}_2, \ldots, \mathfrak{r}_l\}$ with $l = (3^{r'} 1)/2$ such that each \mathfrak{r}_i is a representative of some ideal class of order 3 or its conjugate class.

Output: Defining polynomials for $(3^{r'+1} - 1)/2$ distinct triples of conjugate cubic fields of discriminant D.

Algorithm:

- 1. Compute the ideal \mathfrak{a} of Theorem 1 and for each $\mathfrak{r} = \mathfrak{r}_i$, compute the three ideals $\mathfrak{a}_{i0}, \mathfrak{a}_{i1}, \mathfrak{a}_{i2}$ of Theorem 2.
- 2. If $R \leq 3g + 1$, then
 - a) if $\mathfrak{a} = \mathcal{O}'$, set $\lambda = \epsilon$, else compute a small generator λ of \mathfrak{a}^3 as described in Theorem 1;
 - b) for each *i*, compute small generators $\lambda_{i0}, \lambda_{i1}, \lambda_{i2}$ of $\mathfrak{a}_{i0}, \mathfrak{a}_{i1}, \mathfrak{a}_{i2}$, respectively, as described in Theorem 2;

else compute a small generator λ of \mathfrak{a}^3 , and for each *i* small generators $\lambda_{i0}, \lambda_{i1}, \lambda_{i2}$ of $\mathfrak{a}_{i0}, \mathfrak{a}_{i1}, \mathfrak{a}_{i2}$, respectively, as described in Algorithm ??.

- 3. Set $F(Z) = Z^3 3N(\lambda)^{1/3}Z + Tr(\lambda)$, and for $1 \le i \le l$ and $0 \le j \le 2$, set $F_{ij}(Z) = Z^3 3N(\lambda_{ij})^{1/3} + Tr(\lambda_{ij})$.
- 4. Output *F* and $\{F_{i0}, F_{i1}, F_{i2}\}$ for $1 \le i \le l$.