Yoonjin Lee
Department of Mathematics, Simon Fraser University yoonjinl@sfu.ca

Construction of Cubic Function Fields from Quadratic Infrastructure

Joint work with M. J. Jacobson, R. Scheidler, H. C. Williams at University of Calgary

Outline

- Motivation and goal
- Background
- CUFFQI work: Theoretical part
- The Hass Theorem (function field version)
- Cubic fields from quadratic ideals
- CUFFQI work: Algorithm

Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields in an unpublished manuscript from the 1970s.

Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields in an unpublished manuscript from the 1970s.

Goal: Finding an efficient method for generating all non-conjugate cubic function fields of a given squarefree discriminant, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

Hyperelliptic function fields

$\mathbb{F}_{q}=$ the finite field of order q with q a power of an odd prime.
$k=\mathbb{F}_{q}(t)$ the rational function field with t transcendental over \mathbb{F}_{q}.
$P_{\infty}=$ the prime at infinity (or the infinite place) of k defined by the negative degree valuation, $\operatorname{ord}_{\infty}(g)=-\operatorname{deg}(g)$ for $g \in K^{*}$.

Hyperelliptic function fields

$\mathbb{F}_{q}=$ the finite field of order q with q a power of an odd prime.
$k=\mathbb{F}_{q}(t)$ the rational function field with t transcendental over \mathbb{F}_{q}.
$P_{\infty}=$ the prime at infinity (or the infinite place) of k defined by the negative degree valuation, $\operatorname{ord}_{\infty}(g)=-\operatorname{deg}(g)$ for $g \in K^{*}$.

A hyperelliptic function field is defined by

$$
K=k(y)
$$

where $y^{2}=D(t)$ and $D \in \mathbb{F}_{q}[t]$ is a squarefree polynomial.
The genus of K is $g=\lfloor(\operatorname{deg}(D)-1) / 2\rfloor$, and the discriminant of K / k is D.

Signature

M / k algebraic extension.
The maximal order \mathcal{O} of M / k, i.e. the integral closure of $\mathbb{F}_{q}[t]$ in M / k, is a Dedekind domain.

So every place P of k splits in M uniquely, up to order of factors, as

$$
\begin{equation*}
(P)=\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{s}^{e_{s}}, \tag{1}
\end{equation*}
$$

where \mathfrak{p}_{i} is a place of M (a prime ideal in \mathcal{O}) of residue degree $f_{i}=\left[\mathcal{O} / \mathfrak{p}_{i}: \mathbb{F}_{q}\right] \in \mathbb{N}$ and ramification index $e_{i} \in \mathbb{N}$ with $\sum_{i=1}^{s} e_{i} f_{i}=n$.

Signature

M / k algebraic extension.
The maximal order \mathcal{O} of M / k, i.e. the integral closure of $\mathbb{F}_{q}[t]$ in M / k, is a Dedekind domain.

So every place P of k splits in M uniquely, up to order of factors, as

$$
\begin{equation*}
(P)=\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{s}^{e_{s}}, \tag{1}
\end{equation*}
$$

where \mathfrak{p}_{i} is a place of M (a prime ideal in \mathcal{O}) of residue degree $f_{i}=\left[\mathcal{O} / \mathfrak{p}_{i}: \mathbb{F}_{q}\right] \in \mathbb{N}$ and ramification index $e_{i} \in \mathbb{N}$ with $\sum_{i=1}^{s} e_{i} f_{i}=n$.

The P-signature of M / k is the $2 s$-tuple ($e_{1}, f_{1}, e_{2}, f_{2}, \ldots, e_{s}, f_{s}$) where the pairs $\left(e_{i}, f_{i}\right), 1 \leq i \leq s$, are sorted in lexicographical order.

If P is the place at infinity of k, we refer to the P-signature as simply the signature (or the signature at infinity) of M / k.

Hyperelliptic function fields - imaginary or real

The extension K / k is said to be real
if $\operatorname{deg}(D)$ is even (so $\operatorname{deg}(D)=2 g+2)$ and the leading coefficient $\operatorname{sgn}(D)$ of D is a square in \mathbb{F}_{q}, and imaginary otherwise.

Hyperelliptic function fields - imaginary or real

The extension K / k is said to be real
if $\operatorname{deg}(D)$ is even (so $\operatorname{deg}(D)=2 g+2$) and the leading coefficient $\operatorname{sgn}(D)$ of D is a square in \mathbb{F}_{q}, and imaginary otherwise.

More exactly,
$(2,1)$ if $\operatorname{deg}(D)$ is odd.
$(1,2)$ if $\operatorname{deg}(D)$ is even and $\operatorname{sgn}(D)$ is a non-square, $(1,1,1,1)$ if $\operatorname{deg}(D)$ is even and $\operatorname{sgn}(D)$ is a square.

In the real case, if ϵ is any fundamental unit of K / k, then $R=|\operatorname{deg}(\epsilon)|$ is the regulator of K / k.

The Scholz theorem for function fields

The polynomials D and $D^{\prime}=n D$ with $n \in \mathbb{F}_{q}^{*}$ any non-square $n \in \mathbb{F}_{q}$ are said to be dual discriminants.

Corresponding extensions K / k and K^{\prime} / k where $K^{\prime}=k\left(y^{\prime}\right)$ and $\left(y^{\prime}\right)^{2}=D^{\prime}$ are dual hyperelliptic fields.

The Scholz theorem for function fields

The polynomials D and $D^{\prime}=n D$ with $n \in \mathbb{F}_{q}^{*}$ any non-square $n \in \mathbb{F}_{q}$ are said to be dual discriminants.

Corresponding extensions K / k and K^{\prime} / k where $K^{\prime}=k\left(y^{\prime}\right)$ and $\left(y^{\prime}\right)^{2}=D^{\prime}$ are dual hyperelliptic fields.

Let $L=K K^{\prime}=K\left(\zeta_{\ell}, y\right)$, where ℓ is an odd prime dividing $q+1$.

Note that K / k has signature $(1,2)$ (inert) if and only if K^{\prime} / k has signature $(1,1,1,1)$ (splits completely).

The Scholz theorem for function fields

$r=\ell$-rank of the ideal class group of K / k.
$r^{\prime}=\ell$-rank of the ideal class group of K^{\prime} / k.

The Scholz theorem for function fields

$r=\ell$-rank of the ideal class group of K / k.
$r^{\prime}=\ell$-rank of the ideal class group of K^{\prime} / k.

Then

$$
r_{1}=r_{2} \quad \text { or } \quad r_{1}=r_{2}+1
$$

The Scholz theorem for function fields

$r=\ell$-rank of the ideal class group of K / k.
$r^{\prime}=\ell$-rank of the ideal class group of K^{\prime} / k.

Then $\quad r_{1}=r_{2}$ or $\quad r_{1}=r_{2}+1$.

- In the latter case, i.e. $r_{1}=r_{2}+1$, the regulator R of K^{\prime} / k is divisible by ℓ. Equivalently, if $\ell \nmid R$, then $r_{1}=r_{2}$.

Linking a certain norm equation to ideal classes of order 1

 or 3Let $A, B, Q, D^{\prime} \in \mathbb{F}_{q}[t]$ (q odd) be non-zero polynomials
such that D^{\prime} is squarefree and

$$
Q^{3}=A^{2}-B^{2} D^{\prime}
$$

Linking a certain norm equation to ideal classes of order 1

 or 3Let $A, B, Q, D^{\prime} \in \mathbb{F}_{q}[t]$ (q odd) be non-zero polynomials
such that D^{\prime} is squarefree and

$$
Q^{3}=A^{2}-B^{2} D^{\prime}
$$

Set $G=\operatorname{gcd}(A, Q)$ and assume that G divides D^{\prime}, and

$$
\lambda=A+B y^{\prime} .
$$

Assume $\mathfrak{a}=(Q, \lambda / G)$ is the ideal generated by Q and λ / G in the maximal order \mathcal{O}^{\prime} of the hyperelliptic function field K^{\prime} of discriminant D^{\prime}.

Linking a certain norm equation to ideal classes of order 1

 or 3Let $A, B, Q, D^{\prime} \in \mathbb{F}_{q}[t]$ (q odd) be non-zero polynomials such that D^{\prime} is squarefree and

$$
Q^{3}=A^{2}-B^{2} D^{\prime}
$$

Set $G=\operatorname{gcd}(A, Q)$ and assume that G divides D^{\prime}, and

$$
\lambda=A+B y^{\prime} .
$$

Assume $\mathfrak{a}=(Q, \lambda / G)$ is the ideal generated by Q and λ / G in the maximal order \mathcal{O}^{\prime} of the hyperelliptic function field K^{\prime} of discriminant D^{\prime}.

Then \mathfrak{a} satisfies the following properties:

- $\mathfrak{a}+\overline{\mathfrak{a}}=\mathfrak{g}$ where $\mathfrak{g}^{2}=(G)$;
- $N(\mathfrak{a})=\operatorname{sgn}(Q)^{-1} Q$;
- $\mathfrak{a}^{3}=(\lambda)$;
- \mathfrak{a} is primitive.

Cubic function fields

- Every cubic extension of k can be written in the form $L=k(z)$, where

$$
z^{3}-3 Q z+2 A=0
$$

with $Q, A \in \mathbb{F}_{q}[t]$.

- We may assume that L (and its defining polynomial $F(Z)=Z^{3}-3 Q Z+2 A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_{q}[t]$ satisfies $v_{G}(Q) \geq 2$ and $v_{G}(A) \geq 3$.

Cubic function fields

- Every cubic extension of k can be written in the form $L=k(z)$, where

$$
z^{3}-3 Q z+2 A=0
$$

with $Q, A \in \mathbb{F}_{q}[t]$.

- We may assume that L (and its defining polynomial $F(Z)=Z^{3}-3 Q Z+2 A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_{q}[t]$ satisfies $v_{G}(Q) \geq 2$ and $v_{G}(A) \geq 3$.
- The discriminant of $F(Z)$ is $\Delta=4(3 Q)^{3}-27(2 A)^{2}=108\left(Q^{3}-A^{2}\right)$.
- It is easy to compute the discriminant D of L / k from Δ using the following theorem:

Cubic function fields

- Every cubic extension of k can be written in the form $L=k(z)$, where

$$
z^{3}-3 Q z+2 A=0
$$

with $Q, A \in \mathbb{F}_{q}[t]$.

- We may assume that L (and its defining polynomial $F(Z)=Z^{3}-3 Q Z+2 A$) are in standard form; that is, no non-constant polynomial $G \in \mathbb{F}_{q}[t]$ satisfies $v_{G}(Q) \geq 2$ and $v_{G}(A) \geq 3$.
- The discriminant of $F(Z)$ is $\Delta=4(3 Q)^{3}-27(2 A)^{2}=108\left(Q^{3}-A^{2}\right)$.
- It is easy to compute the discriminant D of L / k from Δ using the following theorem:

Assume \mathbb{F}_{q} has characteristic at least 5 , and let P be any irreducible divisor of Δ. Then

- $v_{P}(D)=2$ if and only if $v_{P}(Q) \geq v_{P}(A) \geq 1$;
- $v_{P}(D)=1$ if and only if $v_{P}(\Delta)$ is odd;
- $v_{P}(D)=0$ otherwise.

Cubic function fields - signature

- The signature of L / k at infinity is

$$
(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), \text { or }(3,1) .
$$

Cubic function fields - signature

- The signature of L / k at infinity is

$$
(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), \text { or }(3,1)
$$

- We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ.

Cubic function fields - signature

- The signature of L / k at infinity is

$$
(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), \text { or }(3,1)
$$

- We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ.
- If $z, z^{\prime}, z^{\prime \prime}$ are the three zeros of $F(Z)=Z^{3}-3 Q Z+2 A$, then $L=k(z), L^{\prime}=k\left(z^{\prime}\right), L^{\prime \prime}=k\left(z^{\prime \prime}\right)$ are conjugate fields; obviously, they all have the same discriminant D.

Cubic function fields - signature

- The signature of L / k at infinity is

$$
(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), \text { or }(3,1)
$$

- We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ.
- If $z, z^{\prime}, z^{\prime \prime}$ are the three zeros of $F(Z)=Z^{3}-3 Q Z+2 A$, then $L=k(z), L^{\prime}=k\left(z^{\prime}\right), L^{\prime \prime}=k\left(z^{\prime \prime}\right)$ are conjugate fields; obviously, they all have the same discriminant D.
- The extension L / k is Galois if and only if D (and hence Δ) is a square in $\mathbb{F}_{q}[t]$, and $\operatorname{Gal}(L / k)=\mathbb{Z} / 3 \mathbb{Z}$.

Cubic function fields - signature

- The signature of L / k at infinity is

$$
(1,1,1,1,1,1),(1,1,1,2),(1,3),(1,1,2,1), \text { or }(3,1)
$$

- We have an explicit signature characterization for cubic extensions (Renate, Lee) only depending on degree and sgn conditions of A, Q, Δ.
- If $z, z^{\prime}, z^{\prime \prime}$ are the three zeros of $F(Z)=Z^{3}-3 Q Z+2 A$, then $L=k(z), L^{\prime}=k\left(z^{\prime}\right), L^{\prime \prime}=k\left(z^{\prime \prime}\right)$ are conjugate fields; obviously, they all have the same discriminant D.
- The extension L / k is Galois if and only if D (and hence Δ) is a square in $\mathbb{F}_{q}[t]$, and $\operatorname{Gal}(L / k)=\mathbb{Z} / 3 \mathbb{Z}$.
- If L / k is not Galois, then the Galois closure of L / k is $N=K K^{\prime} K^{\prime \prime}=K(y)$ where $y^{2}=$ the squarefree part of D.
Then $[N: k]=6$, and the Galois group of N / k is \mathcal{S}_{3} (=the symmetric group on 3 letters).

Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version
Let K / k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5 , and let r be the 3 -rank of the ideal class group of K / k.

If K / k is inert at P_{∞} (signature $\left.(1,2)\right)$,

Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K / k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5 , and let r be the 3 -rank of the ideal class group of K / k.

If K / k is inert at P_{∞} (signature $\left.(1,2)\right)$,
then the number of distinct unordered triples of conjugate cubic fields $\left\{L, L^{\prime}, L^{\prime \prime}\right\}$ over k of discriminant D of unit rank 1 is

$$
\left(3^{r}-1\right) / 2 .
$$

Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K / k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5 , and let r be the 3 -rank of the ideal class group of K / k.

If K / k is inert at P_{∞} (signature $\left.(1,2)\right)$,
then the number of distinct unordered triples of conjugate cubic fields $\left\{L, L^{\prime}, L^{\prime \prime}\right\}$ over k of discriminant D of unit rank 1 is

$$
\left(3^{r}-1\right) / 2 .
$$

If K / k is splits completely at P_{∞} (signature $(1,1,1,1)$),

Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed by Hasse for number fields.

Hasse's Theorem: function field version

Let K / k be a hyperelliptic extension of squarefree discriminant D and characteristic at least 5 , and let r be the 3 -rank of the ideal class group of K / k.

If K / k is inert at P_{∞} (signature $\left.(1,2)\right)$, then the number of distinct unordered triples of conjugate cubic fields $\left\{L, L^{\prime}, L^{\prime \prime}\right\}$ over k of discriminant D of unit rank 1 is

$$
\left(3^{r}-1\right) / 2 .
$$

If K / k is splits completely at P_{∞} (signature $(1,1,1,1)$), then the number of distinct unordered triples of conjugate cubic fields $\left\{L, L^{\prime}, L^{\prime \prime}\right\}$ over k of discriminant D of unit rank 2 is

$$
\left(3^{r}-1\right) / 2
$$

Hasse's Theorem: Idea Sketch

- Let H be the maximal unramified abelian extension of K (in K_{s}) with exponent 3 in which P_{∞} splits completely.

Then H / K is Galois, and let $C l(K)(3):=C l(K) / C l(K)^{3}$.

Hasse's Theorem: Idea Sketch

- Let H be the maximal unramified abelian extension of K (in K_{s}) with exponent 3 in which P_{∞} splits completely.

Then H / K is Galois, and let $C l(K)(3):=C l(K) / C l(K)^{3}$.

- From Class field Theory,

$$
\mathcal{G}=\operatorname{Gal}(H / K) \simeq C l(K)(3)
$$

by the Artin symbol $(, H / K)$. They are isomorphic as $\mathbb{F}_{3}[G]$-modules.

Hasse's Theorem: Idea Sketch

- Let H be the maximal unramified abelian extension of K (in K_{s}) with exponent 3 in which P_{∞} splits completely.

Then H / K is Galois, and let $C l(K)(3):=C l(K) / C l(K)^{3}$.

- From Class field Theory,

$$
\mathcal{G}=\operatorname{Gal}(H / K) \simeq C l(K)(3)
$$

by the Artin symbol $(, H / K)$. They are isomorphic as $\mathbb{F}_{3}[G]$-modules.

- Since the 3-rank of $C l(K)$ is r, \mathcal{G} has exactly $\frac{3^{r}-1}{3-1}$ distinct subgroups of index 3 .

Hasse's Theorem: Idea Sketch

- Let H be the maximal unramified abelian extension of K (in K_{s}) with exponent 3 in which P_{∞} splits completely.

Then H / K is Galois, and let $C l(K)(3):=C l(K) / C l(K)^{3}$.

- From Class field Theory,

$$
\mathcal{G}=\operatorname{Gal}(H / K) \simeq C l(K)(3)
$$

by the Artin symbol $(, H / K)$. They are isomorphic as $\mathbb{F}_{3}[G]$-modules.

- Since the 3-rank of $C l(K)$ is r, \mathcal{G} has exactly $\frac{3^{r}-1}{3-1}$ distinct subgroups of index 3 .
- Let N be a subgroup of \mathcal{G} of index 3 .

Then the corresponding fixed field M of N is a Galois extension of k containing K with $\operatorname{Gal}(M / k) \simeq S_{3}$.

Hasse's Theorem: Idea Sketch - cont'd

- There are three elements of order 2 in S_{3}, which are all conjugate. The fixed fields K_{1}, K_{2}, K_{3} of the elements of order 2 in $\operatorname{Gal}(M / k)$ are all isomorphic cubic extensions of k.

- We can show that K_{1}, K_{2}, K_{3} have the same discriminants as that of K up to constant factors in $\mathbb{F}_{q}{ }^{*}$.

Cubic fields from quadratic ideals

- Henceforth, $q \equiv-1(\bmod 3) \quad\left(\right.$ so, -3 is a non-square in $\left.\mathbb{F}_{q}\right)$.
- Fix a squarefree polynomial $D \in \mathbb{F}_{q}[t]$ of even degree whose leading coefficient is a nonsquare.
- $D^{\prime}:=D /(-3)$.

Cubic fields from quadratic ideals

- Henceforth, $q \equiv-1(\bmod 3) \quad\left(\right.$ so, -3 is a non-square in $\left.\mathbb{F}_{q}\right)$.
- Fix a squarefree polynomial $D \in \mathbb{F}_{q}[t]$ of even degree whose leading coefficient is a nonsquare.
- $D^{\prime}:=D /(-3)$.
- Then $K=k(y)$ with $y^{2}=D$
is an imaginary hyperelliptic function field of signature $(1,2)$.
- $K^{\prime}=k\left(y^{\prime}\right)$ with $\left(y^{\prime}\right)^{2}=D^{\prime}$
is the dual real hyperelliptic function field.
- $\mathcal{O}^{\prime}:=$ the maximal order of K^{\prime}.

For any ideal $\mathfrak{a} \in \mathcal{O}^{\prime}$, the ideal class of \mathfrak{a} is denoted by $[\mathfrak{a}]$.
Finally, if L / k is a cubic extension, we denote by L^{\prime} and $L^{\prime \prime}$ the conjugate fields of L.

Cubic fields from quadratic ideals

Our goal: Generating every element in \mathcal{L}.

Cubic fields from quadratic ideals

Our goal: Generating every element in \mathcal{L}.

- We consider the following sets:

$$
\begin{aligned}
& \mathcal{L}=\left\{\left\{L, L^{\prime}, L^{\prime \prime}\right\} \mid[L: k]=3, L / k \text { has discriminant } D\right\}, \\
& \mathcal{I}=\left\{\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\} \mid \mathfrak{a} \text { is a primitive ideal in } \mathcal{O}^{\prime} \text { and }[\mathfrak{a}]^{3}=\left[\mathcal{O}^{\prime}\right]\right\} .
\end{aligned}
$$

Cubic fields from quadratic ideals

Our goal: Generating every element in \mathcal{L}.

- We consider the following sets:

$$
\begin{aligned}
& \mathcal{L}=\left\{\left\{L, L^{\prime}, L^{\prime \prime}\right\} \mid[L: k]=3, L / k \text { has discriminant } D\right\} \\
& \mathcal{I}=\left\{\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\} \mid \mathfrak{a} \text { is a primitive ideal in } \mathcal{O}^{\prime} \text { and }[\mathfrak{a}]^{3}=\left[\mathcal{O}^{\prime}\right]\right\}
\end{aligned}
$$

- Define a surjection $\Phi: \mathcal{L} \rightarrow \mathcal{I}$.
- Then we prove that for any $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\} \in \mathcal{I}$, the pre-image $\Phi^{-1}(s)$ of s under Φ contains three distinct triples in \mathcal{L} if \mathfrak{a} is a non-principal ideal, and one such triple if \mathfrak{a} is principal.

The map Φ from \mathcal{L} to \mathcal{I}

Let $F(Z)=Z^{3}-3 Q Z+2 A$ with $Q, A \in \mathbb{F}_{q}[t]$ be a defining polynomial of L / k in standard form.

- Note that $Q \neq 0$ since L / k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have $L=k(z)$ where

$$
z^{3}-3 Q z+2 A=0
$$

The map Φ from \mathcal{L} to \mathcal{I}

Let $F(Z)=Z^{3}-3 Q Z+2 A$ with $Q, A \in \mathbb{F}_{q}[t]$ be a defining polynomial of L / k in standard form.

- Note that $Q \neq 0$ since L / k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have $L=k(z)$ where

$$
z^{3}-3 Q z+2 A=0
$$

- If Δ is the discriminant of $F(Z)$, then $\Delta=108\left(Q^{3}-A^{2}\right)$. Let I be the index of z, so $\Delta=I^{2} D$ and set $B=I / 6$. Then $\Delta=(6 B)^{2}\left(-3 D^{\prime}\right)=-108 B^{2} D^{\prime}$ and hence

$$
\mathrm{A}^{2}-B^{2} D^{\prime}=Q^{3}
$$

The map Φ from \mathcal{L} to \mathcal{I}

Let $F(Z)=Z^{3}-3 Q Z+2 A$ with $Q, A \in \mathbb{F}_{q}[t]$ be a defining polynomial of L / k in standard form.

- Note that $Q \neq 0$ since L / k has squarefree discriminant, and $A \neq 0$ since F is irreducible over k. Then we have $L=k(z)$ where

$$
z^{3}-3 Q z+2 A=0
$$

- If Δ is the discriminant of $F(Z)$, then $\Delta=108\left(Q^{3}-A^{2}\right)$. Let I be the index of z, so $\Delta=I^{2} D$ and set $B=I / 6$. Then $\Delta=(6 B)^{2}\left(-3 D^{\prime}\right)=-108 B^{2} D^{\prime}$ and hence

$$
\mathrm{A}^{2}-B^{2} D^{\prime}=Q^{3}
$$

The unordered pair $\{\lambda, \bar{\lambda}\}$ where $\lambda=A+B y^{\prime} \in \mathcal{O}^{\prime}$ is called a pair of quadratic generators of $\left\{L, L^{\prime}, L^{\prime \prime}\right\}$.

- Pairs of quadratic generators $\Longleftrightarrow z^{3}-3 Q z+2 A=0$. (one-to-one correspondence):

$$
\{\lambda, \bar{\lambda}\}=\text { quadratic generators of }\left\{L, L^{\prime}, L^{\prime \prime}\right\} \Longleftrightarrow \operatorname{Tr}(\lambda)=2 A, N(\lambda)=Q^{3} .
$$

The map Φ from \mathcal{L} to \mathcal{I}-continued

- Let $\lambda \in \mathcal{O}^{\prime}$.
$\{\lambda, \bar{\lambda}\}$ is a pair of quadratic generators of a triple $\left\{L, L^{\prime}, L^{\prime \prime}\right\} \in \mathcal{L}$. §
$\lambda \neq \bar{\lambda}, \lambda$ is not a cube in \mathcal{O}^{\prime}, and (λ) is the cube of a primitive ideal in \mathcal{O}^{\prime}.

The map Φ from \mathcal{L} to \mathcal{I}-continued

- Let $\lambda \in \mathcal{O}^{\prime}$.
$\{\lambda, \bar{\lambda}\}$ is a pair of quadratic generators of a triple $\left\{L, L^{\prime}, L^{\prime \prime}\right\} \in \mathcal{L}$.
§
$\lambda \neq \bar{\lambda}, \lambda$ is not a cube in \mathcal{O}^{\prime}, and (λ) is the cube of a primitive ideal in \mathcal{O}^{\prime}.

We now investigate under what circumstances different pairs of quadratic generators correspond to the same triple of fields in \mathcal{L} :

- For $i=1,2$, let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be a pair of quadratic generators of a triple $\left\{L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}\right\} \in$ \mathcal{L}. Then $\left(L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right)=\left(L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right)$ if and only if there exists a non-zero element $\beta \in K^{\prime}$ such that

$$
\frac{\lambda_{1}}{\overline{\lambda_{1}}}\left(\frac{\beta}{\bar{\beta}}\right)^{3} \in\left\{\begin{array}{l}
\left.\frac{\lambda_{2}}{\overline{\lambda_{2}}}, \frac{\bar{\lambda}_{2}}{\lambda_{2}}\right\} . . . ~ . ~
\end{array}\right.
$$

The map Φ from \mathcal{L} to \mathcal{I}-continued

- Cor. For $i=1,2$, let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be two pairs of quadratic generators of a triple $\left\{L, L^{\prime}, L^{\prime \prime}\right\} \in \mathcal{L}$, and let \mathfrak{a}_{i} be the primitive ideal in \mathcal{O}^{\prime} such that $\left(\lambda_{i}\right)=\mathfrak{a}_{i}^{3}$.

Then \mathfrak{a}_{1} is equivalent to \mathfrak{a}_{2} or $\overline{\mathfrak{a}}_{2}$.

The map Φ from \mathcal{L} to \mathcal{I}-continued

- Cor. For $i=1,2$, let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be two pairs of quadratic generators of a triple $\left\{L, L^{\prime}, L^{\prime \prime}\right\} \in \mathcal{L}$, and let \mathfrak{a}_{i} be the primitive ideal in \mathcal{O}^{\prime} such that $\left(\lambda_{i}\right)=\mathfrak{a}_{i}^{3}$.

Then \mathfrak{a}_{1} is equivalent to \mathfrak{a}_{2} or $\overline{\mathfrak{a}}_{2}$.

- The map $\Phi: \mathcal{L} \rightarrow \mathcal{I}$:
$\left\{L, L, L^{\prime \prime}\right\}=$ each unordered triple of conjugate cubic fields of discriminant D \downarrow
$s:=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}=$ the unordered pair of ideal classes such that $(\lambda)=\mathfrak{a}^{3}$ for some pair $\{\lambda, \bar{\lambda}\}$ of quadratic generators of $\left\{L, L, L^{\prime \prime}\right\}$.

The map Φ from \mathcal{L} to \mathcal{I}-continued

- Cor. For $i=1,2$, let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be two pairs of quadratic generators of a triple $\left\{L, L^{\prime}, L^{\prime \prime}\right\} \in \mathcal{L}$, and let \mathfrak{a}_{i} be the primitive ideal in \mathcal{O}^{\prime} such that $\left(\lambda_{i}\right)=\mathfrak{a}_{i}^{3}$.

Then \mathfrak{a}_{1} is equivalent to \mathfrak{a}_{2} or $\overline{\mathfrak{a}}_{2}$.

- The map $\Phi: \mathcal{L} \rightarrow \mathcal{I}$:
$\left\{L, L, L^{\prime \prime}\right\}=$ each unordered triple of conjugate cubic fields of discriminant D \downarrow
$s:=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}=$ the unordered pair of ideal classes such that $(\lambda)=\mathfrak{a}^{3}$ for some pair $\{\lambda, \bar{\lambda}\}$ of quadratic generators of $\left\{L, L, L^{\prime \prime}\right\}$.
- The map Φ is well-defined and surjective.

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3 , and the pre-image of the pair $\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}}^{\prime}\right]\right\}$ under Φ contains one triple in \mathcal{L}.

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3 , and the pre-image of the pair $\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$ under Φ contains one triple in \mathcal{L}.

- Let $s \in \mathcal{I}, s \neq\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$, and let $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\},\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\} \in \Phi^{-1}(s)$. For $i=$ 1,2 , let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be a pair of quadratic generators of $L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}$. Then $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\}=$ $\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\}$ if and only if $\lambda_{1}=\alpha^{3} \lambda_{2}$ or $\lambda_{1}=\alpha^{3} \bar{\lambda}_{2}$ for some non-zero $\alpha \in K^{\prime}$.

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3 , and the pre-image of the pair $\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$ under Φ contains one triple in \mathcal{L}.

- Let $s \in \mathcal{I}, s \neq\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$, and let $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\},\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\} \in \Phi^{-1}(s)$. For $i=$ 1,2 , let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be a pair of quadratic generators of $L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}$. Then $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\}=$ $\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\}$ if and only if $\lambda_{1}=\alpha^{3} \lambda_{2}$ or $\lambda_{1}=\alpha^{3} \bar{\lambda}_{2}$ for some non-zero $\alpha \in K^{\prime}$.
- Lemma. Let $s \in \mathcal{I}, \mathfrak{a}$ any primitive ideal such that $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$, and λ a generator of \mathfrak{a}^{3} such that $\lambda \neq \bar{\lambda}$ and λ not a cube in \mathcal{O}^{\prime}. Then any pair of quadratic generators of any triple of fields in $\Phi^{-1}(s)$ is of the form $\{\mu, \bar{\mu}\}$ where $\mu=e^{j} \alpha^{3} \beta$ with $j \in\{0,1,2\}, \alpha \in K^{\prime}$ non-zero, and $\beta \in\{\lambda, \bar{\lambda}\}$.

Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under the map Φ have cardinality 3 ,
and the pre-image of the pair $\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$ under Φ contains one triple in \mathcal{L}.

- Let $s \in \mathcal{I}, s \neq\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$, and let $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\},\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\} \in \Phi^{-1}(s)$. For $i=$ 1,2 , let $\left\{\lambda_{i}, \bar{\lambda}_{i}\right\}$ be a pair of quadratic generators of $L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}$. Then $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\}=$ $\left\{L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}\right\}$ if and only if $\lambda_{1}=\alpha^{3} \lambda_{2}$ or $\lambda_{1}=\alpha^{3} \bar{\lambda}_{2}$ for some non-zero $\alpha \in K^{\prime}$.
- Lemma. Let $s \in \mathcal{I}, \mathfrak{a}$ any primitive ideal such that $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$, and λ a generator of \mathfrak{a}^{3} such that $\lambda \neq \bar{\lambda}$ and λ not a cube in \mathcal{O}^{\prime}. Then any pair of quadratic generators of any triple of fields in $\Phi^{-1}(s)$ is of the form $\{\mu, \bar{\mu}\}$ where $\mu=e^{j} \alpha^{3} \beta$ with $j \in\{0,1,2\}, \alpha \in K^{\prime}$ non-zero, and $\beta \in\{\lambda, \bar{\lambda}\}$.
- Let $s \in \mathcal{I}$. If $s=\left\{\left[\mathcal{O}^{\prime}\right],\left[\overline{\mathcal{O}^{\prime}}\right]\right\}$, then $\Phi^{-1}(s)$ contains exactly one triple of fields in \mathcal{L}. If s is a pair of ideal classes of order 3 , then $\Phi^{-1}(s)$ contains exactly three distinct triples of fields in \mathcal{L}.

The Count

- If $r^{\prime}:=$ the 3 -rank of the ideal class group of K^{\prime} / k, then since $[\mathfrak{a}]$ and $[\overline{\mathfrak{a}}]$ are distinct ideal classes of order 3, the number of unordered pairs $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$ of conjugate ideal classes of order 3 is

$$
\left(3^{r^{\prime}}-1\right) / 2
$$

The Count

- If $r^{\prime}:=$ the 3 -rank of the ideal class group of K^{\prime} / k, then since $[\mathfrak{a}]$ and $[\overline{\mathfrak{a}}]$ are distinct ideal classes of order 3,
the number of unordered pairs $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$ of conjugate ideal classes of order 3 is

$$
\left(3^{r^{\prime}}-1\right) / 2
$$

- These pairs correspond to $3\left(3^{r^{\prime}}-1\right) / 2$ pre-images under Φ in \mathcal{L},
and the pair $s=\left(\left[\mathcal{O}^{\prime}\right],\left[\mathcal{O}^{\prime}\right]\right)$ yields one more pre-image under Φ, for a total of $3\left(3^{r^{\prime}}-1\right) / 2+1=\left(3^{r^{\prime}+1}-1\right) / 2$ distinct triples of fields in \mathcal{L}.

The Count - cont'd

- If K is an escalatory field, i.e. $r=r^{\prime}+1$,
then the $\left(3^{r^{\prime}+1}-1\right) / 2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $\left(3^{r}-1\right) / 2$ fields in \mathcal{L}.

The Count - cont'd

- If K is an escalatory field, i.e. $r=r^{\prime}+1$,
then the $\left(3^{r^{\prime}+1}-1\right) / 2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $\left(3^{r}-1\right) / 2$ fields in \mathcal{L}.
- If K is non-escalatory, i.e. $r=r^{\prime}$,
then 3^{r} fields in \mathcal{L} are covered multiple times by the pre-images of Φ (since $\left.\left(3^{r+1}-1\right) / 2-\left(3^{r}-1\right) / 2=3^{r}\right)$, and one would need a way to eliminate these duplicates.

The Count - cont'd

- If K is an escalatory field, i.e. $r=r^{\prime}+1$, then the $\left(3^{r^{\prime}+1}-1\right) / 2$ distinct triples of fields in the pre-image $\Phi^{-1}(\mathcal{I})$ are exactly the $\left(3^{r}-1\right) / 2$ fields in \mathcal{L}.
- If K is non-escalatory, i.e. $r=r^{\prime}$,
then 3^{r} fields in \mathcal{L} are covered multiple times by the pre-images of Φ (since $\left(3^{r+1}-1\right) / 2-\left(3^{r}-1\right) / 2=3^{r}$), and one would need a way to eliminate these duplicates.
- We can determine the signatures of triples of fields in \mathcal{L} constructed as above:

Every triple of fields in \mathcal{L} has signature, i.e. $(1,1,1,2)$ or i.e. $(3,1)$.
We can eliminate the latter case by adding $3 \nmid \operatorname{deg}(A)$ (and $\operatorname{sgn}(A)$ is a cube in \mathbb{F}_{q}).

The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

- We define a small generator of a principal ideal in \mathcal{O}^{\prime}
to be a generator λ such that $\operatorname{deg}(\lambda) \leq 3 g+1$ and $\operatorname{deg}(\bar{\lambda}) \leq 3 g+1$.

The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each $s \in \mathcal{I}$ defining polynomials for all triples of fields in the pre-image $\Phi^{-1}(s)$.

- We define a small generator of a principal ideal in \mathcal{O}^{\prime}
to be a generator λ such that $\operatorname{deg}(\lambda) \leq 3 g+1$ and $\operatorname{deg}(\bar{\lambda}) \leq 3 g+1$.
If $\lambda=A+B y^{\prime}$ is a small generator,
then $\operatorname{deg}(A) \leq 3 g+1$ and $\operatorname{deg}(B) \leq 3 g+1-\operatorname{deg}\left(y^{\prime}\right)=2 g$,
so λ can be represented by at most $(3 g+2)+(2 g+1)=5 g+3$ elements in \mathbb{F}_{q}.

The CUFFQI Algorithm

Idea:
For each pair $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$,
our goal is to compute generators of ideals equivalent to \mathfrak{a} or $\overline{\mathfrak{a}}$ that produce the three triples of fields if \mathfrak{a} is non-principal, or the one triple of fields if \mathfrak{a} is principal, in $\Phi^{-1}(s)$, and we wish to do this computationally efficiently.

The CUFFQI Algorithm

Idea:

For each pair $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$,
our goal is to compute generators of ideals equivalent to \mathfrak{a} or $\overline{\mathfrak{a}}$ that produce the three triples of fields if \mathfrak{a} is non-principal, or the one triple of fields if \mathfrak{a} is principal, in $\Phi^{-1}(s)$, and we wish to do this computationally efficiently.

- If $[\mathfrak{a}]$ is non-principal, we will generate three distinct reduced ideals equivalent to \mathfrak{a} such that each of these ideals has a small generator, and each such generator produces a different triple of fields in \mathcal{L}.
- If \mathfrak{a} is principal, we find a reduced ideal equivalent to \mathfrak{a} with a small generator and use this to produce the unique triple of fields in $\Phi^{-1}(s)$.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is primitive if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_{q}[t]$.
- An reduced ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\operatorname{deg}(N(\mathfrak{a})) \leq g$.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is primitive if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_{q}[t]$.
- An reduced ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\operatorname{deg}(N(\mathfrak{a})) \leq g$.
- The number r of reduced ideals in each ideal class is finite; for fields of signature $(2,1)$, we have $r=1$, for signature $(1,2), r \leq 1$, and for real hyperelliptic fields, $r \approx R$ and r varies with each ideal class.

Infrastructure - Giant step and Baby step

- An ideal in \mathcal{O} is primitive if it is not contained in any principal ideal of the form (S) with $S \in \mathbb{F}_{q}[t]$.
- An reduced ideal in \mathcal{O} is a primitive ideal \mathfrak{a} in \mathcal{O} with $\operatorname{deg}(N(\mathfrak{a})) \leq g$.
- The number r of reduced ideals in each ideal class is finite; for fields of signature $(2,1)$, we have $r=1$, for signature $(1,2), r \leq 1$, and for real hyperelliptic fields, $r \approx R$ and r varies with each ideal class.
- Stein showed Shanks' infrastructure idea for a real number field also applies to the set of reduced principal ideals in a real quadratic function field.

The set of reduced ideals can be found by the Baby Step - Giant step.

Conclusion and Future Work

Conclusion

- We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.

Conclusion and Future Work

Conclusion

- We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.
- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case $l=3$.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Conclusion and Future Work

Conclusion

- We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.
- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case $l=3$.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

- Implementation is being done.

Conclusion and Future Work

Conclusion

- We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.
- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case $l=3$.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

- Implementation is being done.
- Construction of cubic function fields of unit rank 2 with a given discriminant.
ex ex ex ex

Conclusion and Future Work

Conclusion

- We have an efficient method for generating non-conjugate cubic function fields of a given squarefree discriminant with unit rank 1, using the infrastructure of the dual real function field associated with the hyperelliptic field of the same discriminant.
- There are several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large l-rank, with particular emphasis on the case $l=3$.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

- Implementation is being done.
- Construction of cubic function fields of unit rank 2 with a given discriminant.
- Construction of cubic function fields of unit rank 0 with a given discriminant.

References

- M. L. Bauer, M. J. Jacobson, Jr., Y. Lee and R. Scheidler, Construction of Hyperelliptic Function Fields of High Three-Rank. Submitted to Math. Comp.
- G. W.-W. Fung, Computational Problems in Complex Cubic Fields. Doctoral Dissertation, University of Manitoba, 1990.
- H. Hasse, Arithmetische Theorie der kubischen Einheiten. Math. Zeitschrift 31 (1930), 565-582.
- Y. Lee, The Scholz theorem in function fields. To appear in J. Number Theory.
- P. Llorente \& E. Nart, Effective determination of the decomposition of the rational primes in a cuvic field. Proc.. Math. Soc. 87 (1983), 579-585.
- M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), 365-378.

References

- R. Scheidler, Algorithmic aspects of cubic function fields. In Proc. Sixth Algorithmic Number Theory Symposium ANTS-VI, Lecture Notes Comput. Sci. 3976, Springer, Berlin 2004, 395-410.
- D. Shanks, Determining all cubic fields having a given fundamental discriminant. Unpublished manuscript.
- A. Stein and E. Teske, The parallelized Pollard kangaroo method in real quadratic function fields. Math. Comp. 71 (2002), 793-814
- R. Scheidler, A. Stein and H. C. Williams, Key exchange in real quadratic congruence function fields. Designs, Codes Crypt. 7 (1996) 153-174.

The CUFFQI Algorithm

We define a small generator of a principal ideal in \mathcal{O}^{\prime} to be a generator λ such that $\operatorname{deg}(\lambda) \leq 3 g+1$ and $\operatorname{deg}(\bar{\lambda}) \leq 3 g+1$. If $\lambda=A+B y^{\prime}$ is a small generator, then $\operatorname{deg}(A) \leq 3 g+1$ and $\operatorname{deg}(B) \leq 3 g+1-\operatorname{deg}\left(y^{\prime}\right)=2 g$, so λ can be represented by at most $(3 g+2)+(2 g+1)=5 g+3$ elements in \mathbb{F}_{q}.

The following algorithm is for computing for each pair $s=\{[\mathfrak{a}],[\overline{\mathfrak{a}}]\}$ three reduced ideals equivalent to \mathfrak{a} (one such ideal if \mathfrak{a} is principal) that possess small generators. In the non-principal case, these generators and their conjugates form pairs of quadratic generators for the three distinct triples of fields in $\Phi^{-1}(s)$, while for the principal class, the small generator and its conjugate forms a pair of quadratic generators of the unique triple of fields in $\Phi^{-1}(s)$.

The CUFFQI Algorithm

Theorem 1. Let \mathfrak{a} be the reduced principal ideal closest to $N=\lceil R / 3+g / 2\rfloor$ with respect to \mathcal{O}^{\prime}. Then \mathfrak{a}^{3} has a small generator $\lambda=\alpha^{3} \epsilon^{-1}$ where α is the minimal non-negative generator of \mathfrak{a}. Furthermore, if $R \geq 3 g+2$, then $\mathfrak{a} \neq \mathcal{O}^{\prime}$.

Theorem 2. Let \mathfrak{r} be any reduced ideal whose class has order 3 . Let \mathfrak{c} be a reduced principal ideal equivalent to \mathfrak{r}^{3}, θ a relative generator of \mathfrak{c} with respect to \mathfrak{r}^{3}, and write $\operatorname{deg}(\theta)-\delta\left(\mathfrak{c}, \mathcal{O}^{\prime}\right)=n R+r$ with $-3(g+1) / 2 \leq r<R-3(g+1) / 2$. For $i=0,1,2$, set $N_{i}=\lceil(r+i R) / 3+g / 2\rfloor$, and define \mathfrak{a}_{i} to be the reduced ideal closest to N_{i} with respect to \mathfrak{r}.

Then \mathfrak{a}_{i}^{3} has a small generator $\lambda_{i}=\alpha_{i}^{3} \epsilon^{n-i} \gamma / \theta$, where α_{i} is the minimal nonnegative relative generator of \mathfrak{a}_{i} with respect to \mathfrak{r}, and γ is the minimal nonnegative generator of \mathfrak{c}.

The CUFFQI Algorithm

Input:

- an odd prime power q with $q \equiv-1(\bmod 3)$;
- a polynomial $D \in \mathbb{F}_{q}[t]$ of even degree whose leading coefficient is a nonsquare in \mathbb{F}_{q};
- the regulator R of the hyperelliptic function field K^{\prime} of discriminant $D^{\prime}=$ $D /(-3)$;
- the fundamental unit ϵ of K^{\prime} / k (in the case where $R \leq 3 g$ only);
- the 3 -rank r^{\prime} of the ideal class group of K^{\prime} / k;
- a set of pairwise non-equivalent reduced ideals $\left\{\mathfrak{r}_{1}, \mathfrak{r}_{2}, \ldots, \mathfrak{r}_{l}\right\}$ with $l=\left(3^{r^{\prime}}-\right.$ 1)/ 2 such that each \mathfrak{r}_{i} is a representative of some ideal class of order 3 or its conjugate class.
Output: Defining polynomials for $\left(3^{r^{\prime}+1}-1\right) / 2$ distinct triples of conjugate cubic fields of discriminant D.

The CUFFQI Algorithm

Algorithm:

1. Compute the ideal \mathfrak{a} of Theorem 1 and for each $\mathfrak{r}=\mathfrak{r}_{i}$, compute the three ideals $\mathfrak{a}_{i 0}, \mathfrak{a}_{i 1}, \mathfrak{a}_{i 2}$ of Theorem 2.
2. If $R \leq 3 g+1$, then
a) if $\mathfrak{a}=\mathcal{O}^{\prime}$, set $\lambda=\epsilon$, else compute a small generator λ of \mathfrak{a}^{3} as described in Theorem 1;
b) for each i, compute small generators $\lambda_{i 0}, \lambda_{i 1}, \lambda_{i 2}$ of $\mathfrak{a}_{i 0}, \mathfrak{a}_{i 1}, \mathfrak{a}_{i 2}$, respectively, as described in Theorem 2;
else compute a small generator λ of \mathfrak{a}^{3}, and for each i small generators $\lambda_{i 0}, \lambda_{i 1}, \lambda_{i 2}$ of $\mathfrak{a}_{i 0}, \mathfrak{a}_{i 1}, \mathfrak{a}_{i 2}$, respectively, as described in Algorithm ??.
3. Set $F(Z)=Z^{3}-3 N(\lambda)^{1 / 3} Z+\operatorname{Tr}(\lambda)$, and for $1 \leq i \leq l$ and $0 \leq j \leq 2$, set
4. Output F and $\left\{F_{i 0}, F_{i 1}, F_{i 2}\right\}$ for $1 \leq i \leq l$.

$$
F_{i j}(Z)=Z^{3}-3 N\left(\lambda_{i j}\right)^{1 / 3}+\operatorname{Tr}\left(\lambda_{i j}\right)
$$

