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Outline

• Motivation and goal

• Background

• CUFFQI work: Theoretical part

– The Hass Theorem (function field version)

– Cubic fields from quadratic ideals

• CUFFQI work: Algorithm
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Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields

in an unpublished manuscript from the 1970s.
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Motivation and goal

Motivation: The CUFFQI method was first proposed by Shanks for number fields

in an unpublished manuscript from the 1970s.

Goal: Finding an efficient method for generating all non-conjugate cubic function

fields of a given squarefree discriminant, using the infrastructure of the dual real

function field associated with the hyperelliptic field of the same discriminant.
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Hyperelliptic function fields

Fq = the finite field of order q with q a power of an odd prime.

k = Fq(t) the rational function field with t transcendental over Fq.

P∞ = the prime at infinity (or the infinite place) of k defined by the negative degree

valuation, ord∞(g) = − deg (g) for g ∈ K∗.
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Hyperelliptic function fields

Fq = the finite field of order q with q a power of an odd prime.

k = Fq(t) the rational function field with t transcendental over Fq.

P∞ = the prime at infinity (or the infinite place) of k defined by the negative degree

valuation, ord∞(g) = − deg (g) for g ∈ K∗.

A hyperelliptic function field is defined by

K = k(y)

where y2 = D(t) and D ∈ Fq[t] is a squarefree polynomial.

The genus of K is g = b(deg(D)− 1)/2c,
and the discriminant of K/k is D.
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Signature

M/k algebraic extension.

The maximal order O of M/k, i.e. the integral closure of Fq[t] in M/k, is a Dedekind

domain.

So every place P of k splits in M uniquely, up to order of factors, as

(P ) = pe1
1 pe2

2 · · · pes
s , (1)

where pi is a place of M (a prime ideal in O) of residue degree fi = [O/pi : Fq] ∈ N
and ramification index ei ∈ N with

∑s
i=1 eifi = n.
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Signature

M/k algebraic extension.

The maximal order O of M/k, i.e. the integral closure of Fq[t] in M/k, is a Dedekind

domain.

So every place P of k splits in M uniquely, up to order of factors, as

(P ) = pe1
1 pe2

2 · · · pes
s , (1)

where pi is a place of M (a prime ideal in O) of residue degree fi = [O/pi : Fq] ∈ N
and ramification index ei ∈ N with

∑s
i=1 eifi = n.

The P -signature of M/k is the 2s-tuple (e1, f1, e2, f2, . . . , es, fs)

where the pairs (ei, fi), 1 ≤ i ≤ s, are sorted in lexicographical order.

If P is the place at infinity of k, we refer to the P -signature as simply the signature

(or the signature at infinity) of M/k.
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Hyperelliptic function fields - imaginary or real

The extension K/k is said to be real

if deg(D) is even (so deg(D) = 2g + 2) and

the leading coefficient sgn(D) of D is a square in Fq,

and imaginary otherwise.
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Hyperelliptic function fields - imaginary or real

The extension K/k is said to be real

if deg(D) is even (so deg(D) = 2g + 2) and

the leading coefficient sgn(D) of D is a square in Fq,

and imaginary otherwise.

More exactly,

(2, 1) if deg(D) is odd.

(1, 2) if deg(D) is even and sgn(D) is a non-square,

(1, 1, 1, 1) if deg(D) is even and sgn(D) is a square.

In the real case, if ε is any fundamental unit of K/k, then R = |deg(ε)| is the

regulator of K/k.
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The Scholz theorem for function fields

The polynomials D and D′ = nD with n ∈ Fq
∗ any non-square n ∈ Fq are said to

be dual discriminants.

Corresponding extensions K/k and K ′/k where K ′ = k(y′) and (y′)2 = D′ are dual

hyperelliptic fields.
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The Scholz theorem for function fields

The polynomials D and D′ = nD with n ∈ Fq
∗ any non-square n ∈ Fq are said to

be dual discriminants.

Corresponding extensions K/k and K ′/k where K ′ = k(y′) and (y′)2 = D′ are dual

hyperelliptic fields.

Let L = KK ′ = K(ζ`, y), where ` is an odd prime dividing q + 1.

k(ζ`, y)

MMMMMMMMMM

K = k(y)

rrrrrrrrrr
k(ζ`) K ′ = k(y′)

k

pppppppppppp

MMMMMMMMMMMM

Note that K/k has signature (1, 2) (inert) if and only if K ′/k has signature (1, 1, 1, 1)
(splits completely).
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The Scholz theorem for function fields

k(ζ`, y)

MMMMMMMMMM

K = k(y)

rrrrrrrrrr
k(ζ`) K ′ = k(y′)

k

pppppppppppp

MMMMMMMMMMMM

r = `-rank of the ideal class group of K/k.

r′ = `-rank of the ideal class group of K ′/k.
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The Scholz theorem for function fields

k(ζ`, y)

MMMMMMMMMM

K = k(y)

rrrrrrrrrr
k(ζ`) K ′ = k(y′)

k

pppppppppppp

MMMMMMMMMMMM

r = `-rank of the ideal class group of K/k.

r′ = `-rank of the ideal class group of K ′/k.

Then r1 = r2 or r1 = r2 + 1.
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The Scholz theorem for function fields

k(ζ`, y)

MMMMMMMMMM

K = k(y)

rrrrrrrrrr
k(ζ`) K ′ = k(y′)

k

pppppppppppp

MMMMMMMMMMMM

r = `-rank of the ideal class group of K/k.

r′ = `-rank of the ideal class group of K ′/k.

Then r1 = r2 or r1 = r2 + 1.

• In the latter case, i.e. r1 = r2 + 1, the regulator R of K ′/k is divisible by `.

Equivalently, if ` - R , then r1 = r2.
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Linking a certain norm equation to ideal classes of order 1

or 3

Let A,B, Q, D′ ∈ Fq[t] (q odd) be non-zero polynomials

such that D′ is squarefree and

Q3 = A2 −B2D′.

file:index.html


9/32

P �

i ?

�

	

�

≫

≪

>

<

Linking a certain norm equation to ideal classes of order 1

or 3

Let A,B, Q, D′ ∈ Fq[t] (q odd) be non-zero polynomials

such that D′ is squarefree and

Q3 = A2 −B2D′.

Set G = gcd(A,Q) and assume that G divides D′,

and λ = A + By′.

Assume a = (Q,λ/G) is the ideal generated by Q and λ/G

in the maximal order O′ of the hyperelliptic function field K ′ of discriminant D′.
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Linking a certain norm equation to ideal classes of order 1

or 3

Let A,B, Q, D′ ∈ Fq[t] (q odd) be non-zero polynomials

such that D′ is squarefree and

Q3 = A2 −B2D′.

Set G = gcd(A,Q) and assume that G divides D′,

and λ = A + By′.

Assume a = (Q,λ/G) is the ideal generated by Q and λ/G

in the maximal order O′ of the hyperelliptic function field K ′ of discriminant D′.

Then a satisfies the following properties:

• a + a = g where g2 = (G);
• N(a) = sgn(Q)−1Q;
• a3 = (λ);
• a is primitive.
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Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

z3 − 3Qz + 2A = 0

with Q,A ∈ Fq[t].

• We may assume that L (and its defining polynomial F (Z) = Z3− 3QZ +2A) are

in standard form; that is, no non-constant polynomial G ∈ Fq[t] satisfies vG(Q) ≥ 2
and vG(A) ≥ 3.
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Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

z3 − 3Qz + 2A = 0

with Q,A ∈ Fq[t].

• We may assume that L (and its defining polynomial F (Z) = Z3− 3QZ +2A) are

in standard form; that is, no non-constant polynomial G ∈ Fq[t] satisfies vG(Q) ≥ 2
and vG(A) ≥ 3.

• The discriminant of F (Z) is ∆ = 4(3Q)3 − 27(2A)2 = 108(Q3 −A2).

• It is easy to compute the discriminant D of L/k from ∆ using the following

theorem:
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Cubic function fields

• Every cubic extension of k can be written in the form L = k(z), where

z3 − 3Qz + 2A = 0

with Q,A ∈ Fq[t].

• We may assume that L (and its defining polynomial F (Z) = Z3− 3QZ +2A) are

in standard form; that is, no non-constant polynomial G ∈ Fq[t] satisfies vG(Q) ≥ 2
and vG(A) ≥ 3.

• The discriminant of F (Z) is ∆ = 4(3Q)3 − 27(2A)2 = 108(Q3 −A2).

• It is easy to compute the discriminant D of L/k from ∆ using the following

theorem:

Assume Fq has characteristic at least 5, and let P be any irreducible divisor of ∆.

Then

• vP (D) = 2 if and only if vP (Q) ≥ vP (A) ≥ 1;

• vP (D) = 1 if and only if vP (∆) is odd;

• vP (D) = 0 otherwise.
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Cubic function fields - signature

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).
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Cubic function fields - signature

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A,Q,∆.
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Cubic function fields - signature

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A,Q,∆.

• If z, z′, z′′ are the three zeros of F (Z) = Z3 − 3QZ + 2A,

then L = k(z), L′ = k(z′), L′′ = k(z′′) are conjugate fields;

obviously, they all have the same discriminant D.
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Cubic function fields - signature

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A,Q,∆.

• If z, z′, z′′ are the three zeros of F (Z) = Z3 − 3QZ + 2A,

then L = k(z), L′ = k(z′), L′′ = k(z′′) are conjugate fields;

obviously, they all have the same discriminant D.

• The extension L/k is Galois if and only if D (and hence ∆) is a square in Fq[t],
and Gal(L/k) = Z/3Z.
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Cubic function fields - signature

• The signature of L/k at infinity is

(1, 1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 3), (1, 1, 2, 1), or (3, 1).

• We have an explicit signature characterization for cubic extensions (Renate, Lee)

only depending on degree and sgn conditions of A,Q,∆.

• If z, z′, z′′ are the three zeros of F (Z) = Z3 − 3QZ + 2A,

then L = k(z), L′ = k(z′), L′′ = k(z′′) are conjugate fields;

obviously, they all have the same discriminant D.

• The extension L/k is Galois if and only if D (and hence ∆) is a square in Fq[t],
and Gal(L/k) = Z/3Z.

• If L/k is not Galois,

then the Galois closure of L/k is N = KK ′K ′′ = K(y)
where y2 = the squarefree part of D.

Then [N : k] = 6, and the Galois group of N/k is S3 (=the symmetric group on 3

letters).
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse’s Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P∞ (signature (1, 2)),
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse’s Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P∞ (signature (1, 2)),

then the number of distinct unordered triples of conjugate cubic fields {L,L′, L′′}
over k of discriminant D of unit rank 1 is

(3r − 1)/2.
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse’s Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P∞ (signature (1, 2)),

then the number of distinct unordered triples of conjugate cubic fields {L,L′, L′′}
over k of discriminant D of unit rank 1 is

(3r − 1)/2.

If K/k is splits completely at P∞ (signature (1, 1, 1, 1)),
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Connections between cubic and hyperelliptic Function Fields

A very deep connection between cubic and quadratic extensions was first observed

by Hasse for number fields.

Hasse’s Theorem: function field version

Let K/k be a hyperelliptic extension of squarefree discriminant D and characteristic

at least 5, and let r be the 3-rank of the ideal class group of K/k.

If K/k is inert at P∞ (signature (1, 2)),

then the number of distinct unordered triples of conjugate cubic fields {L,L′, L′′}
over k of discriminant D of unit rank 1 is

(3r − 1)/2.

If K/k is splits completely at P∞ (signature (1, 1, 1, 1)),

then the number of distinct unordered triples of conjugate cubic fields {L,L′, L′′}
over k of discriminant D of unit rank 2 is

(3r − 1)/2.
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Hasse’s Theorem: Idea Sketch

• Let H be the maximal unramified abelian extension of K (in Ks) with exponent

3 in which P∞ splits completely.

Then H/K is Galois, and let Cl(K)(3) := Cl(K)/Cl(K)3.
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Hasse’s Theorem: Idea Sketch

• Let H be the maximal unramified abelian extension of K (in Ks) with exponent

3 in which P∞ splits completely.

Then H/K is Galois, and let Cl(K)(3) := Cl(K)/Cl(K)3.

• From Class field Theory,

G = Gal(H/K) ' Cl(K)(3)

by the Artin symbol ( ,H/K). They are isomorphic as F3[G]-modules.
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Hasse’s Theorem: Idea Sketch

• Let H be the maximal unramified abelian extension of K (in Ks) with exponent

3 in which P∞ splits completely.

Then H/K is Galois, and let Cl(K)(3) := Cl(K)/Cl(K)3.

• From Class field Theory,

G = Gal(H/K) ' Cl(K)(3)

by the Artin symbol ( ,H/K). They are isomorphic as F3[G]-modules.

• Since the 3-rank of Cl(K) is r, G has exactly 3r−1
3−1 distinct subgroups of index 3.
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Hasse’s Theorem: Idea Sketch

• Let H be the maximal unramified abelian extension of K (in Ks) with exponent

3 in which P∞ splits completely.

Then H/K is Galois, and let Cl(K)(3) := Cl(K)/Cl(K)3.

• From Class field Theory,

G = Gal(H/K) ' Cl(K)(3)

by the Artin symbol ( ,H/K). They are isomorphic as F3[G]-modules.

• Since the 3-rank of Cl(K) is r, G has exactly 3r−1
3−1 distinct subgroups of index 3.

• Let N be a subgroup of G of index 3.

Then the corresponding fixed field M of N is a Galois extension of k containing K

with Gal(M/k) ' S3.
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Hasse’s Theorem: Idea Sketch - cont’d

• There are three elements of order 2 in S3, which are all conjugate. The fixed

fields K1, K2, K3 of the elements of order 2 in Gal(M/k) are all isomorphic cubic

extensions of k.

H

rrrrrrrrrrr

M

KKKKKKKKKK

K1,K2,K3

K

LLLLLLLLLLLL

k

• We can show that K1, K2, K3 have the same discriminants as that of K up to

constant factors in Fq
∗.
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Cubic fields from quadratic ideals

• Henceforth, q ≡ −1 (mod 3) (so, −3 is a non-square in Fq).

• Fix a squarefree polynomial D ∈ Fq[t] of even degree

whose leading coefficient is a nonsquare.

• D′ := D/(−3).
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Cubic fields from quadratic ideals

• Henceforth, q ≡ −1 (mod 3) (so, −3 is a non-square in Fq).

• Fix a squarefree polynomial D ∈ Fq[t] of even degree

whose leading coefficient is a nonsquare.

• D′ := D/(−3).

• Then K = k(y) with y2 = D

is an imaginary hyperelliptic function field of signature (1, 2).

• K ′ = k(y′) with (y′)2 = D′

is the dual real hyperelliptic function field.

• O′ := the maximal order of K ′.

For any ideal a ∈ O′, the ideal class of a is denoted by [a].
Finally, if L/k is a cubic extension, we denote by L′ and L′′ the conjugate fields of

L.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.

• We consider the following sets:

L = { {L,L′, L′′} | [L : k] = 3, L/k has discriminant D },

I = { {[a], [a]} | a is a primitive ideal in O′ and [a]3 = [O′] }.
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Cubic fields from quadratic ideals

Our goal: Generating every element in L.

• We consider the following sets:

L = { {L,L′, L′′} | [L : k] = 3, L/k has discriminant D },

I = { {[a], [a]} | a is a primitive ideal in O′ and [a]3 = [O′] }.

• Define a surjection Φ : L → I.

• Then we prove that for any s = {[a], [a]} ∈ I,

the pre-image Φ−1(s) of s under Φ contains

three distinct triples in L if a is a non-principal ideal,

and one such triple if a is principal.
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The map Φ from L to I

Let F (Z) = Z3 − 3QZ + 2A with Q,A ∈ Fq[t] be a defining polynomial of L/k in

standard form.

• Note that Q 6= 0 since L/k has squarefree discriminant, and A 6= 0 since F is

irreducible over k. Then we have L = k(z) where

z3 − 3Qz + 2A = 0.
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The map Φ from L to I

Let F (Z) = Z3 − 3QZ + 2A with Q,A ∈ Fq[t] be a defining polynomial of L/k in

standard form.

• Note that Q 6= 0 since L/k has squarefree discriminant, and A 6= 0 since F is

irreducible over k. Then we have L = k(z) where

z3 − 3Qz + 2A = 0.

• If ∆ is the discriminant of F (Z), then ∆ = 108(Q3 −A2). Let I be the index of

z, so ∆ = I2D and set B = I/6. Then ∆ = (6B)2(−3D′) = −108B2D′ and hence

A2 −B2D′ = Q3.
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The map Φ from L to I

Let F (Z) = Z3 − 3QZ + 2A with Q,A ∈ Fq[t] be a defining polynomial of L/k in

standard form.

• Note that Q 6= 0 since L/k has squarefree discriminant, and A 6= 0 since F is

irreducible over k. Then we have L = k(z) where

z3 − 3Qz + 2A = 0.

• If ∆ is the discriminant of F (Z), then ∆ = 108(Q3 −A2). Let I be the index of

z, so ∆ = I2D and set B = I/6. Then ∆ = (6B)2(−3D′) = −108B2D′ and hence

A2 −B2D′ = Q3.

The unordered pair {λ, λ} where λ = A + By′ ∈ O′ is called a pair of quadratic

generators of {L,L′, L′′}.

• Pairs of quadratic generators ⇐⇒ z3 − 3Qz + 2A = 0. (one-to-one correspon-

dence):

{λ, λ} = quadratic generators of {L,L′, L′′} ⇐⇒ Tr(λ) = 2A, N(λ) = Q3.
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The map Φ from L to I -continued

• Let λ ∈ O′.

{λ, λ} is a pair of quadratic generators of a triple {L,L′, L′′} ∈ L.

m
λ 6= λ, λ is not a cube in O′, and (λ) is the cube of a primitive ideal in O′.
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The map Φ from L to I -continued

• Let λ ∈ O′.

{λ, λ} is a pair of quadratic generators of a triple {L,L′, L′′} ∈ L.

m
λ 6= λ, λ is not a cube in O′, and (λ) is the cube of a primitive ideal in O′.

We now investigate under what circumstances different pairs of quadratic generators

correspond to the same triple of fields in L:

• For i = 1, 2, let {λi, λi} be a pair of quadratic generators of a triple {Li, L
′
i, L

′′
i } ∈

L. Then (L1, L
′
1, L

′′
1) = (L2, L

′
2, L

′′
2) if and only if there exists a non-zero element

β ∈ K ′ such that

λ1

λ1

(
β

β

)3

∈
{

λ2

λ2

,
λ2

λ2

}
.
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The map Φ from L to I -continued

• Cor. For i = 1, 2, let {λi, λi} be two pairs of quadratic generators of a triple

{L,L′, L′′} ∈ L, and let ai be the primitive ideal in O′ such that (λi) = a3
i .

Then a1 is equivalent to a2 or a2.
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The map Φ from L to I -continued

• Cor. For i = 1, 2, let {λi, λi} be two pairs of quadratic generators of a triple

{L,L′, L′′} ∈ L, and let ai be the primitive ideal in O′ such that (λi) = a3
i .

Then a1 is equivalent to a2 or a2.

• The map Φ : L → I :

{L,L,L′′} = each unordered triple of conjugate cubic fields of discriminant D

↓

s := {[a], [a]} = the unordered pair of ideal classes such that (λ) = a3 for some pair

{λ, λ} of quadratic generators of {L,L,L′′}.
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The map Φ from L to I -continued

• Cor. For i = 1, 2, let {λi, λi} be two pairs of quadratic generators of a triple

{L,L′, L′′} ∈ L, and let ai be the primitive ideal in O′ such that (λi) = a3
i .

Then a1 is equivalent to a2 or a2.

• The map Φ : L → I :

{L,L,L′′} = each unordered triple of conjugate cubic fields of discriminant D

↓

s := {[a], [a]} = the unordered pair of ideal classes such that (λ) = a3 for some pair

{λ, λ} of quadratic generators of {L,L,L′′}.

• The map Φ is well-defined and surjective.
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Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map Φ have cardinality 3,

and the pre-image of the pair {[O′], [Ō′]} under Φ contains one triple in L.
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Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map Φ have cardinality 3,

and the pre-image of the pair {[O′], [Ō′]} under Φ contains one triple in L.

• Let s ∈ I, s 6= {[O′], [Ō′]}, and let {L1, L
′
1, L

′′
1}, {L2, L

′
2, L

′′
2} ∈ Φ−1(s). For i =

1, 2, let {λi, λi} be a pair of quadratic generators of Li, L
′
i, L

′′
i . Then {L1, L

′
1, L

′′
1} =

{L2, L
′
2, L

′′
2} if and only if λ1 = α3λ2 or λ1 = α3λ2 for some non-zero α ∈ K ′.
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Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map Φ have cardinality 3,

and the pre-image of the pair {[O′], [Ō′]} under Φ contains one triple in L.

• Let s ∈ I, s 6= {[O′], [Ō′]}, and let {L1, L
′
1, L

′′
1}, {L2, L

′
2, L

′′
2} ∈ Φ−1(s). For i =

1, 2, let {λi, λi} be a pair of quadratic generators of Li, L
′
i, L

′′
i . Then {L1, L

′
1, L

′′
1} =

{L2, L
′
2, L

′′
2} if and only if λ1 = α3λ2 or λ1 = α3λ2 for some non-zero α ∈ K ′.

• Lemma. Let s ∈ I, a any primitive ideal such that s = {[a], [a]}, and λ a gen-

erator of a3 such that λ 6= λ and λ not a cube in O′. Then any pair of quadratic

generators of any triple of fields in Φ−1(s) is of the form {µ, µ} where µ = ejα3β

with j ∈ {0, 1, 2}, α ∈ K ′ non-zero, and β ∈ {λ, λ}.
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Pre-Images under Φ

Goal: Prove that pre-images of pairs of non-principal conjugate ideal classes under

the map Φ have cardinality 3,

and the pre-image of the pair {[O′], [Ō′]} under Φ contains one triple in L.

• Let s ∈ I, s 6= {[O′], [Ō′]}, and let {L1, L
′
1, L

′′
1}, {L2, L

′
2, L

′′
2} ∈ Φ−1(s). For i =

1, 2, let {λi, λi} be a pair of quadratic generators of Li, L
′
i, L

′′
i . Then {L1, L

′
1, L

′′
1} =

{L2, L
′
2, L

′′
2} if and only if λ1 = α3λ2 or λ1 = α3λ2 for some non-zero α ∈ K ′.

• Lemma. Let s ∈ I, a any primitive ideal such that s = {[a], [a]}, and λ a gen-

erator of a3 such that λ 6= λ and λ not a cube in O′. Then any pair of quadratic

generators of any triple of fields in Φ−1(s) is of the form {µ, µ} where µ = ejα3β

with j ∈ {0, 1, 2}, α ∈ K ′ non-zero, and β ∈ {λ, λ}.

• Let s ∈ I. If s = {[O′], [Ō′]}, then Φ−1(s) contains exactly one triple of fields

in L. If s is a pair of ideal classes of order 3, then Φ−1(s) contains exactly three

distinct triples of fields in L.
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The Count

• If r′ := the 3-rank of the ideal class group of K ′/k,

then since [a] and [a] are distinct ideal classes of order 3,

the number of unordered pairs s = {[a], [a]} of conjugate ideal classes of order 3 is

(3r′ − 1)/2.
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The Count

• If r′ := the 3-rank of the ideal class group of K ′/k,

then since [a] and [a] are distinct ideal classes of order 3,

the number of unordered pairs s = {[a], [a]} of conjugate ideal classes of order 3 is

(3r′ − 1)/2.

• These pairs correspond to 3(3r′ − 1)/2 pre-images under Φ in L,

and the pair s = ([O′], [O′]) yields one more pre-image under Φ,

for a total of 3(3r′ − 1)/2 + 1 = (3r′+1 − 1)/2 distinct triples of fields in L.
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The Count - cont’d

• If K is an escalatory field, i.e. r = r′ + 1,

then the (3r′+1 − 1)/2 distinct triples of fields in the pre-image Φ−1(I) are exactly

the (3r − 1)/2 fields in L.
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The Count - cont’d

• If K is an escalatory field, i.e. r = r′ + 1,

then the (3r′+1 − 1)/2 distinct triples of fields in the pre-image Φ−1(I) are exactly

the (3r − 1)/2 fields in L.

• If K is non-escalatory, i.e. r = r′,

then 3r fields in L are covered multiple times by the pre-images of Φ

(since (3r+1−1)/2− (3r−1)/2 = 3r), and one would need a way to eliminate these

duplicates.
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The Count - cont’d

• If K is an escalatory field, i.e. r = r′ + 1,

then the (3r′+1 − 1)/2 distinct triples of fields in the pre-image Φ−1(I) are exactly

the (3r − 1)/2 fields in L.

• If K is non-escalatory, i.e. r = r′,

then 3r fields in L are covered multiple times by the pre-images of Φ

(since (3r+1−1)/2− (3r−1)/2 = 3r), and one would need a way to eliminate these

duplicates.

• We can determine the signatures of triples of fields in L constructed as above:

Every triple of fields in L has signature, i.e. (1, 1, 1, 2) or i.e. (3, 1).

We can eliminate the latter case by adding 3 - deg(A) (and sgn(A) is a cube in Fq).
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The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each s ∈ I defining polynomials

for all triples of fields in the pre-image Φ−1(s).
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The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each s ∈ I defining polynomials

for all triples of fields in the pre-image Φ−1(s).

• We define a small generator of a principal ideal in O′

to be a generator λ such that deg(λ) ≤ 3g + 1 and deg(λ) ≤ 3g + 1.
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The CUFFQI Algorithm

Goal: Giving efficient algorithms for constructing for each s ∈ I defining polynomials

for all triples of fields in the pre-image Φ−1(s).

• We define a small generator of a principal ideal in O′

to be a generator λ such that deg(λ) ≤ 3g + 1 and deg(λ) ≤ 3g + 1.

If λ = A + By′ is a small generator,

then deg(A) ≤ 3g + 1 and deg(B) ≤ 3g + 1− deg(y′) = 2g,

so λ can be represented by at most (3g + 2) + (2g + 1) = 5g + 3 elements in Fq.
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The CUFFQI Algorithm

Idea:

For each pair s = {[a], [a]},

our goal is to compute generators of ideals equivalent to a or a

that produce the three triples of fields if a is non-principal,

or the one triple of fields if a is principal, in Φ−1(s),

and we wish to do this computationally efficiently.
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The CUFFQI Algorithm

Idea:

For each pair s = {[a], [a]},

our goal is to compute generators of ideals equivalent to a or a

that produce the three triples of fields if a is non-principal,

or the one triple of fields if a is principal, in Φ−1(s),

and we wish to do this computationally efficiently.

• If [a] is non-principal, we will generate three distinct reduced ideals equivalent to a

such that each of these ideals has a small generator, and each such generator produces

a different triple of fields in L.

• If a is principal, we find a reduced ideal equivalent to a with a small generator

and use this to produce the unique triple of fields in Φ−1(s).
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Infrastructure - Giant step and Baby step

• An ideal in O is primitive if it is not contained in any principal ideal of the form

(S) with S ∈ Fq[t].

• An reduced ideal in O is a primitive ideal a in O with deg(N(a)) ≤ g.
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Infrastructure - Giant step and Baby step

• An ideal in O is primitive if it is not contained in any principal ideal of the form

(S) with S ∈ Fq[t].

• An reduced ideal in O is a primitive ideal a in O with deg(N(a)) ≤ g.

• The number r of reduced ideals in each ideal class is finite; for fields of signature

(2, 1), we have r = 1, for signature (1, 2), r ≤ 1, and for real hyperelliptic fields,

r ≈ R and r varies with each ideal class.
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Infrastructure - Giant step and Baby step

• An ideal in O is primitive if it is not contained in any principal ideal of the form

(S) with S ∈ Fq[t].

• An reduced ideal in O is a primitive ideal a in O with deg(N(a)) ≤ g.

• The number r of reduced ideals in each ideal class is finite; for fields of signature

(2, 1), we have r = 1, for signature (1, 2), r ≤ 1, and for real hyperelliptic fields,

r ≈ R and r varies with each ideal class.

• Stein showed Shanks’ infrastructure idea for a real number field also applies to the

set of reduced principal ideals in a real quadratic function field.

The set of reduced ideals can be found by the Baby Step - Giant step.
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Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.
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Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

• There are several explicit constructions of hyperelliptic function fields whose Ja-

cobian or ideal class group has large l-rank, with particular emphasis on the case

l = 3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.
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Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

• There are several explicit constructions of hyperelliptic function fields whose Ja-

cobian or ideal class group has large l-rank, with particular emphasis on the case

l = 3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

• Implementation is being done.
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Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

• There are several explicit constructions of hyperelliptic function fields whose Ja-

cobian or ideal class group has large l-rank, with particular emphasis on the case

l = 3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

• Implementation is being done.

• Construction of cubic function fields of unit rank 2 with a given discriminant.
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Conclusion and Future Work

Conclusion

• We have an efficient method for generating non-conjugate cubic function fields of

a given squarefree discriminant with unit rank 1, using the infrastructure of the dual

real function field associated with the hyperelliptic field of the same discriminant.

• There are several explicit constructions of hyperelliptic function fields whose Ja-

cobian or ideal class group has large l-rank, with particular emphasis on the case

l = 3.

So, we certainly have lots of examples of hyperelliptic function fields of high 3-ranks.

Future Work

• Implementation is being done.

• Construction of cubic function fields of unit rank 2 with a given discriminant.

• Construction of cubic function fields of unit rank 0 with a given discriminant.
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The CUFFQI Algorithm

We define a small generator of a principal ideal in O′ to be a generator λ such that

deg(λ) ≤ 3g + 1 and deg(λ) ≤ 3g + 1. If λ = A + By′ is a small generator, then

deg(A) ≤ 3g + 1 and deg(B) ≤ 3g + 1− deg(y′) = 2g, so λ can be represented by

at most (3g + 2) + (2g + 1) = 5g + 3 elements in Fq.

The following algorithm is for computing for each pair s = {[a], [a]} three reduced

ideals equivalent to a (one such ideal if a is principal) that possess small generators.

In the non-principal case, these generators and their conjugates form pairs of quadratic

generators for the three distinct triples of fields in Φ−1(s), while for the principal

class, the small generator and its conjugate forms a pair of quadratic generators of

the unique triple of fields in Φ−1(s).
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The CUFFQI Algorithm

Theorem 1. Let a be the reduced principal ideal closest to N = dR/3 + g/2c
with respect to O′. Then a3 has a small generator λ = α3ε−1 where α is the
minimal non-negative generator of a. Furthermore, if R ≥ 3g + 2, then a 6= O′.

Theorem 2. Let r be any reduced ideal whose class has order 3. Let c be a
reduced principal ideal equivalent to r3, θ a relative generator of c with respect
to r3, and write deg(θ)−δ(c,O′) = nR+r with −3(g+1)/2 ≤ r < R−3(g+1)/2.
For i = 0, 1, 2, set Ni = d(r + iR)/3 + g/2c, and define ai to be the reduced ideal
closest to Ni with respect to r.

Then a3
i has a small generator λi = α3

i ε
n−iγ/θ, where αi is the minimal non-

negative relative generator of ai with respect to r, and γ is the minimal non-
negative generator of c.
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The CUFFQI Algorithm

Input:

• an odd prime power q with q ≡ −1 (mod 3);
• a polynomial D ∈ Fq[t] of even degree whose leading coefficient is a non-

square in Fq;
• the regulator R of the hyperelliptic function field K ′ of discriminant D′ =

D/(−3);
• the fundamental unit ε of K ′/k (in the case where R ≤ 3g only);
• the 3-rank r′ of the ideal class group of K ′/k;
• a set of pairwise non-equivalent reduced ideals {r1, r2, . . . , rl} with l = (3r′ −

1)/2 such that each ri is a representative of some ideal class of order 3 or its
conjugate class.

Output: Defining polynomials for (3r′+1 − 1)/2 distinct triples of conjugate
cubic fields of discriminant D.
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The CUFFQI Algorithm

Algorithm:

1. Compute the ideal a of Theorem 1 and for each r = ri, compute the three
ideals ai0, ai1, ai2 of Theorem 2.

2. If R ≤ 3g + 1, then

a) if a = O′, set λ = ε, else compute a small generator λ of a3 as described
in Theorem 1;

b) for each i, compute small generators λi0, λi1, λi2 of ai0, ai1, ai2, respec-
tively, as described in Theorem 2;

else compute a small generator λ of a3, and for each i small generators
λi0, λi1, λi2 of ai0, ai1, ai2, respectively, as described in Algorithm ??.

3. Set F (Z) = Z3 − 3N(λ)1/3Z + Tr(λ), and for 1 ≤ i ≤ l and 0 ≤ j ≤ 2, set
Fij(Z) = Z3 − 3N(λij)1/3 + Tr(λij).

4. Output F and {Fi0, Fi1, Fi2} for 1 ≤ i ≤ l.
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