The Discrete Logarithm Problem on Algebraic Curves

David Jao

University of Waterloo

Workshop on Computational challenges arising in algorithmic number theory and Cryptography Fields Institute, Toronto

November 2, 2006

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- Enown facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- 2 Known facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- 3 Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- Known facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

The Discrete Logarithm Problem

- Let G be a cyclic group of order n, with generator g.
- The discrete logarithm of a group element $h \in G$, denoted $\mathsf{DLOG}_g(h)$, is the residue class $x \in \mathbb{Z}/n\mathbb{Z}$ satisfying

$$g^{x} = h$$
.

The Discrete Logarithm Problem

- Let G be a cyclic group of order n, with generator g.
- The discrete logarithm of a group element $h \in G$, denoted $\mathsf{DLOG}_g(h)$, is the residue class $x \in \mathbb{Z}/n\mathbb{Z}$ satisfying

$$g^x = h$$
.

• Many cryptographic protocols require a group for which computing $\mathsf{DLOG}_g(h)$ is hard.

The Discrete Logarithm Problem

- Let G be a cyclic group of order n, with generator g.
- The discrete logarithm of a group element $h \in G$, denoted $\mathsf{DLOG}_g(h)$, is the residue class $x \in \mathbb{Z}/n\mathbb{Z}$ satisfying

$$g^x = h$$
.

- Many cryptographic protocols require a group for which computing $DLOG_g(h)$ is hard.
- What determines the difficulty of computing discrete logarithms?

- Choice of h does not affect difficulty of computing $DLOG_g(h)$
 - except for rare exceptions such as $DLOG_g(g)$, $DLOG_g(e)$, ...

- Choice of h does not affect difficulty of computing DLOG_g(h)
 except for rare exceptions such as DLOG_g(g), DLOG_g(e), ...
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- Choice of h does not affect difficulty of computing DLOG_g(h)
 except for rare exceptions such as DLOG_g(g), DLOG_g(e), ...
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- Choice of h does not affect difficulty of computing DLOG_g(h)
 except for rare exceptions such as DLOG_g(g), DLOG_g(e), ...
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

• We want to find the discrete log of g^k .

- Choice of h does not affect difficulty of computing DLOG_g(h)
 except for rare exceptions such as DLOG_g(g), DLOG_g(e), ...
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- We want to find the discrete log of g^k .
- For random r, we expect \mathcal{A} to work on $g^r g^k$ 1% of the time.

- Choice of h does not affect difficulty of computing $DLOG_g(h)$
 - ullet except for rare exceptions such as $\mathsf{DLOG}_g(g),\ \mathsf{DLOG}_g(e),\ \dots$
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- We want to find the discrete log of g^k .
- For random r, we expect \mathcal{A} to work on $g^r g^k$ 1% of the time.
 - The probability of **not** succeeding after N steps is $(.99)^N$.

- Choice of h does not affect difficulty of computing $\mathsf{DLOG}_g(h)$
 - ullet except for rare exceptions such as $\mathsf{DLOG}_g(g),\ \mathsf{DLOG}_g(e),\ \dots$
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- We want to find the discrete log of g^k .
- For random r, we expect \mathcal{A} to work on $g^r g^k$ 1% of the time.
 - The probability of **not** succeeding after N steps is $(.99)^N$.
- Eventually $\mathcal{A}(g^r g^k)$ will return (r+k). We can then find k since we know r and (r+k).

- Choice of h does not affect difficulty of computing $\mathsf{DLOG}_g(h)$
 - except for rare exceptions such as $DLOG_g(g)$, $DLOG_g(e)$, . . .
- **Proof:** Suppose we have an algorithm \mathcal{A} which computes $\mathsf{DLOG}_g(h)$ quickly on 1% of inputs $h \in \mathcal{G}$.

- We want to find the discrete log of g^k .
- For random r, we expect \mathcal{A} to work on g^rg^k 1% of the time.
 - The probability of **not** succeeding after N steps is $(.99)^N$.
- Eventually $\mathcal{A}(g^r g^k)$ will return (r+k). We can then find k since we know r and (r+k).
- Therefore, on average the discrete log problem is equivalent for all h∈ G.

What affects the difficulty of computing $DLOG_g(h)$?

What affects the difficulty of computing $DLOG_g(h)$?

• Is it the element *h*? No . . .

What affects the difficulty of computing $DLOG_g(h)$?

- Is it the element *h*? No . . .
- Is it the generator g?

What affects the difficulty of computing $DLOG_g(h)$?

- Is it the element *h*? No . . .
- Is it the generator g? No ...

$$DLOG_{g'}(h) = \frac{DLOG_g(h)}{DLOG_g(g')}.$$

What affects the difficulty of computing $DLOG_g(h)$?

- Is it the element *h*? No . . .
- Is it the generator g? No ...

$$\mathsf{DLOG}_{g'}(h) = \frac{\mathsf{DLOG}_g(h)}{\mathsf{DLOG}_g(g')}.$$

• Is it the size of *G*?

What affects the difficulty of computing $DLOG_g(h)$?

- Is it the element *h*? No . . .
- Is it the generator g? No ...

$$\mathsf{DLOG}_{g'}(h) = \frac{\mathsf{DLOG}_g(h)}{\mathsf{DLOG}_g(g')}.$$

• Is it the size of *G*?

Note that by size you mean isomorphism class, since *G* is cyclic.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

Groups of equal size can (conjecturally) have inequivalent discrete log problems.

• DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.
 - $\mathbb{Z}/(p-1)\mathbb{Z}$ is an additive group.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.
 - $\mathbb{Z}/(p-1)\mathbb{Z}$ is an additive group.
 - Group multiplication is addition.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.
 - $\mathbb{Z}/(p-1)\mathbb{Z}$ is an additive group.
 - Group multiplication is addition.
 - Group exponentiation is multiplication.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.
 - $\mathbb{Z}/(p-1)\mathbb{Z}$ is an additive group.
 - Group multiplication is addition.
 - Group exponentiation is multiplication.
 - Logarithm is division.

Size of *G* does have some effect on DLOG:

- All else being equal, a larger group size makes DLOG harder
- Certain group sizes are insecure no matter what the group
 - e.g. if |G| is smooth (that is, all prime divisors of |G| are small) then DLOG on G is easy.

On the other hand, size is not the only factor.

- DLOG in $(\mathbb{Z}/p\mathbb{Z})^*$ is conjectured to be hard.
- DLOG in $\mathbb{Z}/(p-1)\mathbb{Z}$ is easy.
 - $\mathbb{Z}/(p-1)\mathbb{Z}$ is an additive group.
 - Group multiplication is addition.
 - Group exponentiation is multiplication.
 - Logarithm is division.
 - Divison is easy by Euclid's algorithm.

• Choice of *h* does not matter on average.

- Choice of *h* does not matter on average.
- Choice of g does not matter at all.

- Choice of *h* does not matter on average.
- Choice of g does not matter at all.
- Choice of size of the group is necessary but not sufficient to ensure DLOG is hard.

- Choice of *h* does not matter on average.
- Choice of g does not matter at all.
- Choice of size of the group is necessary but not sufficient to ensure DLOG is hard.
 - Group size must be relatively large
 - Group size must not be smooth

What determines the difficulty of DLOG?

- Choice of *h* does not matter on average.
- Choice of g does not matter at all.
- Choice of size of the group is necessary but not sufficient to ensure DLOG is hard.
 - Group size must be relatively large
 - Group size must not be smooth
- The choice of bit representation that one uses to represent elements of G is important.

What determines the difficulty of DLOG?

- Choice of *h* does not matter on average.
- Choice of g does not matter at all.
- Choice of size of the group is *necessary* but not *sufficient* to ensure DLOG is hard.
 - Group size must be relatively large
 - Group size must not be smooth
- The choice of bit representation that one uses to represent elements of G is important.
- After correcting for the above issues, it is widely believed that DLOG difficulty is a function of group size (within a single family of groups, bit representations, smoothness constraints, etc.)

Any group of order *n*:

• $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard]

Any group of order *n*:

- $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard] Multiplicative group of a finite field \mathbb{F}_q :
 - $O(L_q(\frac{1}{3},c))$ where $L_q(\frac{1}{3},c)\stackrel{\mathsf{def}}{=} \exp(c(\log q)^{\frac{1}{3}}(\log\log q)^{1-\frac{1}{3}})$

Any group of order *n*:

- $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard] Multiplicative group of a finite field \mathbb{F}_q :
- $O(L_q(\frac{1}{3}, c))$ where $L_q(\frac{1}{3}, c) \stackrel{\text{def}}{=} \exp(c(\log q)^{\frac{1}{3}}(\log \log q)^{1-\frac{1}{3}})$ Ideal class group of an imaginary quadratic field:
 - $L_n(\frac{1}{2}, c)$ [Hafner, McCurley; Düllmann]

Any group of order *n*:

- $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard] Multiplicative group of a finite field \mathbb{F}_q :
- $O(L_q(\frac{1}{3}, c))$ where $L_q(\frac{1}{3}, c) \stackrel{\text{def}}{=} \exp(c(\log q)^{\frac{1}{3}}(\log \log q)^{1-\frac{1}{3}})$ Ideal class group of an imaginary quadratic field:
 - $L_n(\frac{1}{2},c)$ [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

• $O(\sqrt{p})$ where p is the largest prime divisor of n.

Any group of order *n*:

- $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard] Multiplicative group of a finite field \mathbb{F}_q :
- $O(L_q(\frac{1}{3}, c))$ where $L_q(\frac{1}{3}, c) \stackrel{\text{def}}{=} \exp(c(\log q)^{\frac{1}{3}} (\log \log q)^{1-\frac{1}{3}})$

Ideal class group of an imaginary quadratic field:

• $L_n(\frac{1}{2}, c)$ [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

• $O(\sqrt{p})$ where p is the largest prime divisor of n.

Jacobians of hyperelliptic curves of genus g over a finite field \mathbb{F}_q :

- g = 2: $O(n^{1/2})$
- g = 3: $O(n^{4/9})$ [Gaudry, Thomé, Thériault, Diem]
- g = 4: $O(n^{3/8})$ [
- $g \ge \log q$: $O(L_n(\frac{1}{2}, c))$ [Adelman, DeMarrais, Huang; Enge, Gaudry]

Any group of order *n*:

- $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard] Multiplicative group of a finite field \mathbb{F}_q :
- $O(L_q(\frac{1}{3}, c))$ where $L_q(\frac{1}{3}, c) \stackrel{\text{def}}{=} \exp(c(\log q)^{\frac{1}{3}} (\log \log q)^{1-\frac{1}{3}})$ Ideal class group of an imaginary quadratic field:
 - $L_n(\frac{1}{2}, c)$ [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

• $O(\sqrt{p})$ where p is the largest prime divisor of n.

Jacobians of hyperelliptic curves of genus g over a finite field \mathbb{F}_q :

- g = 2: $O(n^{1/2})$
- g = 3: $O(n^{4/9})$ [Gaudry, Thomé, Thériault, Diem]
- g = 4: $O(n^{3/8})$ ["
- $g \ge \log q$: $O(L_n(\frac{1}{2}, c))$ [Adelman, DeMarrais, Huang; Enge, Gaudry]

In all cases, DLOG difficulty is a function of group size

Outline

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- Known facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $\mathsf{DLOG}_g(h)$ in G:

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $DLOG_g(h)$ in G:
 - **①** Compute $\phi(g)$ and $\phi(h)$

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $\mathsf{DLOG}_g(h)$ in G:
 - **1** Compute $\phi(g)$ and $\phi(h)$
 - **2** Compute $x = \mathsf{DLOG}_{\phi(g)}(\phi(h))$

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $\mathsf{DLOG}_g(h)$ in G:
 - ① Compute $\phi(g)$ and $\phi(h)$
 - **2** Compute $x = \mathsf{DLOG}_{\phi(g)}(\phi(h))$
 - **3** Then $x = \mathsf{DLOG}_g(h)$, because $g^x = h$ if and only if $\phi(g)^x = \phi(h)$.

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $\mathsf{DLOG}_g(h)$ in G:
 - ① Compute $\phi(g)$ and $\phi(h)$
 - ② Compute $x = \mathsf{DLOG}_{\phi(g)}(\phi(h))$
 - **3** Then $x = \mathsf{DLOG}_g(h)$, because $g^x = h$ if and only if $\phi(g)^x = \phi(h)$.
- In other words, if you can easily compute DLOG in G' (Step 2), then you can easily compute DLOG in G.

- Goal: To establish relationships between discrete logarithms on group A and group B.
- The basic tool for this reduction is group homomorphisms.
- Let $\phi \colon G \to G'$ be a group homomorphism. To simplify, we assume that G has prime order.
- Let $g, h \in G$. To compute $\mathsf{DLOG}_g(h)$ in G:
 - ① Compute $\phi(g)$ and $\phi(h)$
 - **2** Compute $x = \mathsf{DLOG}_{\phi(g)}(\phi(h))$
 - **3** Then $x = \mathsf{DLOG}_g(h)$, because $g^x = h$ if and only if $\phi(g)^x = \phi(h)$.
- In other words, if you can easily compute DLOG in G' (Step 2), then you can easily compute DLOG in G.
- However, you also need to be able to easily compute the homomorphism ϕ (Step 1).

Elliptic curves

- A group homomorphism between elliptic curves is called an isogeny.
- An isogeny is a rational function it is given by a quotient of polynomials.
- The degree of an isogeny is the degree of the polynomial.
- **Theorem (Tate, 1966):** Two elliptic curves over a finite field have the same size if and only if they are *isogenous* (i.e. there exists an isogeny between them).
- Isogenous is an equivalence relation. We will call the equivalence classes isogeny classes.

Example of an isogeny

- p = 7925599076663155737601
- $E_1: y^2 = x^3 + 12046162683058694734 * x + 7901506751297038348133 in GF(p)$
- E_2 : $y^2 = x^3 + (3021319262486407622796 * u + 4101162511412606196442) * x + (7040333493178698383420 * u + 1745772756766632103431) in <math>GF(\rho^2)$
- $(132935307228615056538 * u + 3530390499615039152484) * x^5 + (463749471837649230273 * u +$ $(4285381276738035289332 * u + 2268033696082534919907) * x^2 + (1160928171089162069604 * u +$ 4478674184021543260793) * x + (3220829138361157238167 * u + 4664892256879213165649))/(x⁶ + $(2646061772402770501474 * u + 287756053078893159265) * x^5 + (1945985508507744496834 * u +$ 64809305521586899531) * x^4 + (4591727489633569666202 * u + 1570102870983786495532) * x^3 + $(1500460390828721967700 * u + 6921704443614513097635) * x^2 + (1297386801518789580736 * u +$ $2850698740908333936400) * x + (3945372319876153578002 * u + 361974201101530900968)), (x^9 * y + 361974201101530900968))$ $(3969092658604155752211 * u + 4394433617949917607698) * x^8 * v + (6535035589862015193348 * u +$ $(2303968995096096349661 * u + 3345680927799022267788) * x^5 * y + (2433277735802437441789 * u +$ 4918593070183032256585) * $x * y + (8333818603777677580 * u + 6166744817175250513803) * y)/(x^9 + x^9 + y^9 + y$ $(3969092658604155752211 * u + 4394433617949917607698) * x^8 + (4721985388582885753052 * u +$ 3330515032350346336461) * x^7 + (3559772126678288264097 * u + <math>6153422006988745781765) * x^6 + $(1902940951990305913452 * u + 832145497772529583998) * x^5 + (2553891553651967378833 * u +$ 549429624397957274232) * x^4 + (5821041363528144243281 * u + 4895514527158720628918) * x^3 + $(7465572282966743894034 * u + 123645603788466192332) * x^2 + (4752216567890970620978 * u +$ 497829871306819801522) * x + (6192295778031003334018 * u + 4253951270570522230194)))

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be obtained and evaluated efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be **obtained** and **evaluated** efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.
- Unfortunately, the only known examples of isogenies that can be efficiently evaluated are:

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be **obtained** and **evaluated** efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.
- Unfortunately, the only known examples of isogenies that can be efficiently evaluated are:
 - Isogenies of low degree

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be **obtained** and **evaluated** efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.
- Unfortunately, the only known examples of isogenies that can be efficiently evaluated are:
 - Isogenies of low degree
 - (sometimes) Endomorphisms (that is, isogenies from a curve to itself)

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be obtained and evaluated efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.
- Unfortunately, the only known examples of isogenies that can be efficiently evaluated are:
 - Isogenies of low degree
 - (sometimes) Endomorphisms (that is, isogenies from a curve to itself)
 - Short compositions of isogenies of the above type

- Theorem (Tate, 1966): Two elliptic curves over a finite field have the same size if and only if they are isogenous.
- If this isogeny could be obtained and evaluated efficiently, then we could state that elliptic curves of equal size have equivalent discrete logarithms.
- Unfortunately, the only known examples of isogenies that can be efficiently evaluated are:
 - Isogenies of low degree
 - (sometimes) Endomorphisms (that is, isogenies from a curve to itself)
 - Short compositions of isogenies of the above type
- Endomorphisms are not useful for reductions between different curves, so for reduction we must use isogenies of low degree.

Outline

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- Mnown facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

- Form a graph whose vertices are elliptic curves E and whose edges are low degree isogenies $\phi \colon E_1 \to E_2$.
- Galbraith (1999) observed that random walks on this graph produce efficiently computable isogenies which can be used for DLOG reduction.

- Form a graph whose vertices are elliptic curves E and whose edges are low degree isogenies $\phi \colon E_1 \to E_2$.
- Galbraith (1999) observed that random walks on this graph produce efficiently computable isogenies which can be used for DLOG reduction.
- **1** These efficiently computable isogenies exist only when E_1 and E_2 are **endomorphous** or **near-endomorphous**.
 - Definition: Two elliptic curves over a finite field are endomorphous (resp., near-endomorphous) if their endomorphism rings are equal (resp., nearly equal).
 - Endomorphous is an equivalence relation. We will call the equivalence classes endomorphism classes.
 - All endomorphous and near endomorphous curves are isogenous.
 - For most isogeny classes, the converse holds: isogenous curves are near-endomorphous. However, there are exceptions.

- Form a graph whose vertices are elliptic curves E and whose edges are low degree isogenies $\phi \colon E_1 \to E_2$.
- Galbraith (1999) observed that random walks on this graph produce efficiently computable isogenies which can be used for DLOG reduction.
- **1** These efficiently computable isogenies exist only when E_1 and E_2 are **endomorphous** or **near-endomorphous**.
 - Definition: Two elliptic curves over a finite field are endomorphous (resp., near-endomorphous) if their endomorphism rings are equal (resp., nearly equal).
 - Endomorphous is an equivalence relation. We will call the equivalence classes *endomorphism classes*.
 - All endomorphous and near endomorphous curves are isogenous.
 - For most isogeny classes, the converse holds: isogenous curves are near-endomorphous. However, there are exceptions.
- Requires the heuristic assumption that short random walks have roughly uniform probability of reaching every vertex.

• **Theorem:** (Jao, Miller, Venkatesan) Assuming the generalized Riemann hypothesis, there exists an absolute constant c such that random walks of length $(\log n)^c$ deviate from uniform probability by no more than a factor of 2, for isogenies of degree less than $c(\log n)^2$.

- **Theorem:** (Jao, Miller, Venkatesan) Assuming the generalized Riemann hypothesis, there exists an absolute constant c such that random walks of length $(\log n)^c$ deviate from uniform probability by no more than a factor of 2, for isogenies of degree less than $c(\log n)^2$.
- Proof relies on the correspondence between curves in an endomorphism class and ideal classes in an imaginary quadratic order (or in a quaternion algebra).

- **Theorem:** (Jao, Miller, Venkatesan) Assuming the generalized Riemann hypothesis, there exists an absolute constant c such that random walks of length $(\log n)^c$ deviate from uniform probability by no more than a factor of 2, for isogenies of degree less than $c(\log n)^2$.
- Proof relies on the correspondence between curves in an endomorphism class and ideal classes in an imaginary quadratic order (or in a quaternion algebra).
- Curves are still required to be endomorphous or near-endomorphous.

- **Theorem:** (Jao, Miller, Venkatesan) Assuming the generalized Riemann hypothesis, there exists an absolute constant c such that random walks of length $(\log n)^c$ deviate from uniform probability by no more than a factor of 2, for isogenies of degree less than $c(\log n)^2$.
- Proof relies on the correspondence between curves in an endomorphism class and ideal classes in an imaginary quadratic order (or in a quaternion algebra).
- Curves are still required to be endomorphous or near-endomorphous.
- **Corollary:** All near-endomorphous elliptic curves over the same field have equivalent discrete logarithm problems **on average**.

Outline

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- 2 Known facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

Weil Descent

- Discovered by [Gaudry, Hess, Smart]
- Let E be an elliptic curve over \mathbb{F}_{q^k} . There exists a computable group homomorphism from E to a hyperelliptic Jacobian over \mathbb{F}_q .

Weil Descent

- Discovered by [Gaudry, Hess, Smart]
- Let E be an elliptic curve over \mathbb{F}_{q^k} . There exists a computable group homomorphism from E to a hyperelliptic Jacobian over \mathbb{F}_q .
- For some values of E and q^k , the genus of the hyperelliptic curve is large enough to make this attack practical.

Weil Descent

- Discovered by [Gaudry, Hess, Smart]
- Let E be an elliptic curve over \mathbb{F}_{q^k} . There exists a computable group homomorphism from E to a hyperelliptic Jacobian over \mathbb{F}_q .
- For some values of E and q^k , the genus of the hyperelliptic curve is large enough to make this attack practical.
- If E' is isogenous to a curve E which is vulnerable to Weil descent, then E' can be attacked too [Galbraith, Hess, Smart]
 - Construction relies on random walks of isogenies
 - Requires uniform mixing of random walks

 Informally: If you can improve the current state of the art for subexponential hyperelliptic curve discrete logarithms, then elliptic curve discrete logarithms are also affected [Bauer, Hamdy]

- Informally: If you can improve the current state of the art for subexponential hyperelliptic curve discrete logarithms, then elliptic curve discrete logarithms are also affected [Bauer, Hamdy]
- Current DLOG algorithms for hyperelliptic curves are $O(L_n(\frac{1}{2}, c))$ for genus $g \ge \log q$.

- Informally: If you can improve the current state of the art for subexponential hyperelliptic curve discrete logarithms, then elliptic curve discrete logarithms are also affected [Bauer, Hamdy]
- Current DLOG algorithms for hyperelliptic curves are $O(L_n(\frac{1}{2}, c))$ for genus $g \ge \log q$.
- $O(L_n(\alpha, c))$ for $\alpha < \frac{1}{2}$ implies elliptic curve DLOG is subexponential.

- Informally: If you can improve the current state of the art for subexponential hyperelliptic curve discrete logarithms, then elliptic curve discrete logarithms are also affected [Bauer, Hamdy]
- Current DLOG algorithms for hyperelliptic curves are $O(L_n(\frac{1}{2}, c))$ for genus $g \ge \log q$.
- $O(L_n(\alpha, c))$ for $\alpha < \frac{1}{2}$ implies elliptic curve DLOG is subexponential.
- $O(L_n(\frac{1}{2}, c))$ for $g \ll \log q$ implies elliptic curve DLOG is subexponential.

- Informally: If you can improve the current state of the art for subexponential hyperelliptic curve discrete logarithms, then elliptic curve discrete logarithms are also affected [Bauer, Hamdy]
- Current DLOG algorithms for hyperelliptic curves are $O(L_n(\frac{1}{2}, c))$ for genus $g \ge \log q$.
- $O(L_n(\alpha, c))$ for $\alpha < \frac{1}{2}$ implies elliptic curve DLOG is subexponential.
- $O(L_n(\frac{1}{2}, c))$ for $g \ll \log q$ implies elliptic curve DLOG is subexponential.
- Subexponential for $g=2[,4,5,7,8,10,\dots]$ implies elliptic curve DLOG is subexponential.

Outline

- Discrete Logarithms
 - Definitions and notation
 - Relationship between different groups; DLOG reduction
- 2 Known facts about DLOG reduction
 - Reductions between elliptic curves
 - Reductions from elliptic curves to hyperelliptic Jacobians
- 3 Open problems in DLOG reduction
 - Elliptic curves not admitting reductions
 - Reductions between hyperelliptic Jacobians
 - Reductions from elliptic curves to non-hyperelliptic Jacobians

Elliptic curves which are not near-endomorphous

• There exist elliptic curves E_1 , E_2 over the same finite field which are isogenous but neither endomorphous nor near-endomorphous.

Elliptic curves which are not near-endomorphous

- There exist elliptic curves E_1 , E_2 over the same finite field which are isogenous but neither endomorphous nor near-endomorphous.
- There is no known algorithm for efficiently constructing such pairs of elliptic curves.

Elliptic curves which are not near-endomorphous

- There exist elliptic curves E_1 , E_2 over the same finite field which are isogenous but neither endomorphous nor near-endomorphous.
- There is no known algorithm for efficiently constructing such pairs of elliptic curves.
- There is no known example of such a pair of elliptic curves.

• Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .
- Finding an efficiently computable isogeny $\phi \colon E_1 \to E_2$ is equivalent to factoring the ideal class $\mathfrak{a}_1\mathfrak{a}_2^{-1}$ into a product of small primes.

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .
- Finding an efficiently computable isogeny $\phi \colon E_1 \to E_2$ is equivalent to factoring the ideal class $\mathfrak{a}_1\mathfrak{a}_2^{-1}$ into a product of small primes.
- If you can do that efficiently, then you can solve DLOG on the ideal class group efficiently, using index calculus.

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .
- Finding an efficiently computable isogeny $\phi \colon E_1 \to E_2$ is equivalent to factoring the ideal class $\mathfrak{a}_1\mathfrak{a}_2^{-1}$ into a product of small primes.
- If you can do that efficiently, then you can solve DLOG on the ideal class group efficiently, using index calculus.
 - This scenario seems unlikely, because an $O(L_n(\frac{1}{3},c))$ algorithm for solving DLOG on ideal class groups leads to a subexponential solution of DLOG on elliptic curves [Bauer, Hamdy].

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .
- Finding an efficiently computable isogeny $\phi \colon E_1 \to E_2$ is equivalent to factoring the ideal class $\mathfrak{a}_1\mathfrak{a}_2^{-1}$ into a product of small primes.
- If you can do that efficiently, then you can solve DLOG on the ideal class group efficiently, using index calculus.
 - This scenario seems unlikely, because an $O(L_n(\frac{1}{3},c))$ algorithm for solving DLOG on ideal class groups leads to a subexponential solution of DLOG on elliptic curves [Bauer, Hamdy].
- However, note that representing ideal classes using elliptic curves is not the same as representing ideal classes using quadratic forms.

- Given arbitrary (not random) curves E_1 and E_2 , can we show that their DLOG problems are equivalent?
- Let a_1 and a_2 be ideal classes corresponding to E_1 and E_2 .
- Finding an efficiently computable isogeny $\phi \colon E_1 \to E_2$ is equivalent to factoring the ideal class $\mathfrak{a}_1\mathfrak{a}_2^{-1}$ into a product of small primes.
- If you can do that efficiently, then you can solve DLOG on the ideal class group efficiently, using index calculus.
 - This scenario seems unlikely, because an $O(L_n(\frac{1}{3},c))$ algorithm for solving DLOG on ideal class groups leads to a subexponential solution of DLOG on elliptic curves [Bauer, Hamdy].
- However, note that representing ideal classes using elliptic curves is not the same as representing ideal classes using quadratic forms.
 - Remember, bit representation matters for DLOG!

- So far, all elliptic curves have been defined over a common finite field.
- What can we say about curves over different fields?

- So far, all elliptic curves have been defined over a common finite field.
- What can we say about curves over different fields?
- It is known that elliptic curves over $\mathbb{F}_{2^{210}}$ have weaker DLOG than curves of the same size over other fields [Menezes, Teske, Weng]

- So far, all elliptic curves have been defined over a common finite field.
- What can we say about curves over different fields?
- It is known that elliptic curves over $\mathbb{F}_{2^{210}}$ have weaker DLOG than curves of the same size over other fields [Menezes, Teske, Weng]
 - Proof of this fact also uses random walks on isogenies

- So far, all elliptic curves have been defined over a common finite field.
- What can we say about curves over different fields?
- It is known that elliptic curves over $\mathbb{F}_{2^{210}}$ have weaker DLOG than curves of the same size over other fields [Menezes, Teske, Weng]
 - Proof of this fact also uses random walks on isogenies
- Can we prove equivalence results for other fields?

Other reductions

- Reductions between hyperelliptic Jacobians
 - What is the structure of isogenies between hyperelliptic Jacobians?
 - What does the graph of isogenies look like?

Other reductions

- Reductions between hyperelliptic Jacobians
 - What is the structure of isogenies between hyperelliptic Jacobians?
 - What does the graph of isogenies look like?
- Reductions from elliptic curves to non-hyperelliptic Jacobians
 - $O(L_n(\frac{1}{3},c))$ solutions to DLOG have been found on Jacobians of certain non-hyperelliptic curves [Enge, Gaudry; Diem]
 - What are the implications for elliptic curve DLOG?

Other reductions

- Reductions between hyperelliptic Jacobians
 - What is the structure of isogenies between hyperelliptic Jacobians?
 - What does the graph of isogenies look like?
- Reductions from elliptic curves to non-hyperelliptic Jacobians
 - $O(L_n(\frac{1}{3},c))$ solutions to DLOG have been found on Jacobians of certain non-hyperelliptic curves [Enge, Gaudry; Diem]
 - What are the implications for elliptic curve DLOG?
 - Stay tuned . . .