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The Discrete Logarithm Problem

Let G be a cyclic group of order n, with generator g .

The discrete logarithm of a group element h ∈ G , denoted
DLOGg (h), is the residue class x ∈ Z/nZ satisfying

g x = h.

Many cryptographic protocols require a group for which computing
DLOGg (h) is hard.

What determines the difficulty of computing discrete logarithms?
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Things that do NOT matter for DLOG

Choice of h does not affect difficulty of computing DLOGg (h)
except for rare exceptions such as DLOGg (g), DLOGg (e), . . .

Proof: Suppose we have an algorithm A which computes DLOGg (h)
quickly on 1% of inputs h ∈ G .

1% of inputs   G
We want to find the discrete log of gk .

For random r , we expect A to work on g rgk 1% of the time.
The probability of not succeeding after N steps is (.99)N .

Eventually A(g rgk) will return (r + k). We can then find k since we
know r and (r + k).

Therefore, on average the discrete log problem is equivalent for all
h ∈ G .
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Things that do NOT matter for DLOG (cont’d)

What affects the difficulty of computing DLOGg (h)?

Is it the element h? No . . .

Is it the generator g? No . . .

DLOGg ′(h) =
DLOGg (h)

DLOGg (g ′)
.

Is it the size of G?
Note that by size you mean isomorphism class, since G is cyclic.
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Effect of |G | on DLOG

Size of G does have some effect on DLOG:

All else being equal, a larger group size makes DLOG harder

Certain group sizes are insecure no matter what the group

e.g. if |G | is smooth (that is, all prime divisors of |G | are small) then
DLOG on G is easy.

On the other hand, size is not the only factor.
Groups of equal size can (conjecturally) have inequivalent discrete log
problems.

DLOG in (Z/pZ)∗ is conjectured to be hard.

DLOG in Z/(p − 1)Z is easy.

Z/(p − 1)Z is an additive group.
Group multiplication is addition.
Group exponentiation is multiplication.
Logarithm is division.
Divison is easy by Euclid’s algorithm.
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What determines the difficulty of DLOG?

Choice of h does not matter on average.

Choice of g does not matter at all.

Choice of size of the group is necessary but not sufficient to ensure
DLOG is hard.

Group size must be relatively large
Group size must not be smooth

The choice of bit representation that one uses to represent elements
of G is important.

After correcting for the above issues, it is widely believed that DLOG
difficulty is a function of group size (within a single family of groups,
bit representations, smoothness constraints, etc.)
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Current status of DLOG in various groups

Any group of order n:

O(
√

p) where p is the largest prime divisor of n [Pollard]

Multiplicative group of a finite field Fq:

O(Lq(
1
3 , c)) where Lq(

1
3 , c)

def
= exp(c(log q)

1
3 (log log q)1−

1
3 )

Ideal class group of an imaginary quadratic field:

Ln(
1
2 , c) [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

O(
√

p) where p is the largest prime divisor of n.

Jacobians of hyperelliptic curves of genus g over a finite field Fq:

g = 2: O(n1/2)

g = 3: O(n4/9) [Gaudry, Thomé, Thériault, Diem]

g = 4: O(n3/8) [ ” ]

g ≥ log q: O(Ln(
1
2 , c)) [Adelman, DeMarrais, Huang; Enge, Gaudry]

In all cases, DLOG difficulty is a function of group size.

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 9 / 25



Current status of DLOG in various groups

Any group of order n:

O(
√

p) where p is the largest prime divisor of n [Pollard]

Multiplicative group of a finite field Fq:

O(Lq(
1
3 , c)) where Lq(

1
3 , c)

def
= exp(c(log q)

1
3 (log log q)1−

1
3 )

Ideal class group of an imaginary quadratic field:

Ln(
1
2 , c) [Hafner, McCurley; Düllmann]
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The concept of DLOG reduction

Goal: To establish relationships between discrete logarithms on group
A and group B.

The basic tool for this reduction is group homomorphisms.

Let φ : G → G ′ be a group homomorphism. To simplify, we assume
that G has prime order.

Let g , h ∈ G . To compute DLOGg (h) in G :
1 Compute φ(g) and φ(h)
2 Compute x = DLOGφ(g)(φ(h))
3 Then x = DLOGg (h), because g x = h if and only if φ(g)x = φ(h).

In other words, if you can easily compute DLOG in G ′ (Step 2), then
you can easily compute DLOG in G .

However, you also need to be able to easily compute the
homomorphism φ (Step 1).
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Elliptic curves

A group homomorphism between elliptic curves is called an isogeny.

An isogeny is a rational function — it is given by a quotient of
polynomials.

The degree of an isogeny is the degree of the polynomial.

Theorem (Tate, 1966): Two elliptic curves over a finite field have
the same size if and only if they are isogenous (i.e. there exists an
isogeny between them).

Isogenous is an equivalence relation. We will call the equivalence
classes isogeny classes.
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Example of an isogeny

p = 7925599076663155737601

E1 : y2 = x3 + 12046162683058694734 ∗ x + 7901506751297038348133 in GF(p)

E2 : y2 = x3 + (3021319262486407622796 ∗ u + 4101162511412606196442) ∗ x + (7040333493178698383420 ∗ u +

1745772756766632103431) in GF(p2)

φ : E1 → E2 given by φ(x, y) = ((x7 + (2646061772402770501474 ∗ u + 287756053078893159265) ∗ x6 +

(132935307228615056538 ∗ u + 3530390499615039152484) ∗ x5 + (463749471837649230273 ∗ u +

1073811655050424931224) ∗ x4 + (2474785317056152334847 ∗ u + 1839199255709390890698) ∗ x3 +

(4285381276738035289332 ∗ u + 2268033696082534919907) ∗ x2 + (1160928171089162069604 ∗ u +

4478674184021543260793) ∗ x + (3220829138361157238167 ∗ u + 4664892256879213165649))/(x6 +

(2646061772402770501474 ∗ u + 287756053078893159265) ∗ x5 + (1945985508507744496834 ∗ u +

64809305521586899531) ∗ x4 + (4591727489633569666202 ∗ u + 1570102870983786495532) ∗ x3 +

(1500460390828721967700 ∗ u + 6921704443614513097635) ∗ x2 + (1297386801518789580736 ∗ u +

2850698740908333936400) ∗ x + (3945372319876153578002 ∗ u + 361974201101530900968)), (x9 ∗ y +

(3969092658604155752211 ∗ u + 4394433617949917607698) ∗ x8 ∗ y + (6535035589862015193348 ∗ u +

7790532914920049821109) ∗ x7 ∗ y + (1421987375027510985091 ∗ u + 47681237267235708636) ∗ x6 ∗ y +

(2303968995096096349661 ∗ u + 3345680927799022267788) ∗ x5 ∗ y + (2433277735802437441789 ∗ u +

3351794627925587500553) ∗ x4 ∗ y + (1516026795707698480046 ∗ u + 818260455738162732467) ∗ x3 ∗ y +

(1027058177737636125614 ∗ u + 3693613550368489401398) ∗ x2 ∗ y + (4508645841065025978909 ∗ u +

4918593070183032256585) ∗ x ∗ y + (8333818603777677580 ∗ u + 6166744817175250513803) ∗ y)/(x9 +

(3969092658604155752211 ∗ u + 4394433617949917607698) ∗ x8 + (4721985388582885753052 ∗ u +

3330515032350346336461) ∗ x7 + (3559772126678288264097 ∗ u + 6153422006988745781765) ∗ x6 +

(1902940951990305913452 ∗ u + 832145497772529583998) ∗ x5 + (2553891553651967378833 ∗ u +

549429624397957274232) ∗ x4 + (5821041363528144243281 ∗ u + 4895514527158720628918) ∗ x3 +

(7465572282966743894034 ∗ u + 123645603788466192332) ∗ x2 + (4752216567890970620978 ∗ u +
497829871306819801522) ∗ x + (6192295778031003334018 ∗ u + 4253951270570522230194)))
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Efficient computation of isogenies

Theorem (Tate, 1966): Two elliptic curves over a finite field have
the same size if and only if they are isogenous.

If this isogeny could be obtained and evaluated efficiently, then we
could state that elliptic curves of equal size have equivalent discrete
logarithms.

Unfortunately, the only known examples of isogenies that can be
efficiently evaluated are:

1 Isogenies of low degree
2 (sometimes) Endomorphisms (that is, isogenies from a curve to itself)
3 Short compositions of isogenies of the above type

Endomorphisms are not useful for reductions between different
curves, so for reduction we must use isogenies of low degree.
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Using isogenies to relate DLOG on elliptic curves

Form a graph whose vertices are elliptic curves E and whose edges are
low degree isogenies φ : E1 → E2.
Galbraith (1999) observed that random walks on this graph produce
efficiently computable isogenies which can be used for DLOG
reduction.

1 These efficiently computable isogenies exist only when E1 and E2 are
endomorphous or near-endomorphous.

Definition: Two elliptic curves over a finite field are endomorphous
(resp., near-endomorphous) if their endomorphism rings are equal
(resp., nearly equal).
Endomorphous is an equivalence relation. We will call the equivalence
classes endomorphism classes.
All endomorphous and near endomorphous curves are isogenous.
For most isogeny classes, the converse holds: isogenous curves are
near-endomorphous. However, there are exceptions.

2 Requires the heuristic assumption that short random walks have
roughly uniform probability of reaching every vertex.
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Using isogenies to relate DLOG on elliptic curves (cont’d)

Theorem: (Jao, Miller, Venkatesan) Assuming the generalized
Riemann hypothesis, there exists an absolute constant c such that
random walks of length (log n)c deviate from uniform probability by
no more than a factor of 2, for isogenies of degree less than c(log n)2.

Proof relies on the correspondence between curves in an
endomorphism class and ideal classes in an imaginary quadratic order
(or in a quaternion algebra).

Curves are still required to be endomorphous or near-endomorphous.

Corollary: All near-endomorphous elliptic curves over the same field
have equivalent discrete logarithm problems on average.
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Weil Descent

Discovered by [Gaudry, Hess, Smart]

Let E be an elliptic curve over Fqk . There exists a computable group
homomorphism from E to a hyperelliptic Jacobian over Fq.

For some values of E and qk , the genus of the hyperelliptic curve is
large enough to make this attack practical.

If E ′ is isogenous to a curve E which is vulnerable to Weil descent,
then E ′ can be attacked too [Galbraith, Hess, Smart]

Construction relies on random walks of isogenies
Requires uniform mixing of random walks

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 19 / 25



Weil Descent

Discovered by [Gaudry, Hess, Smart]

Let E be an elliptic curve over Fqk . There exists a computable group
homomorphism from E to a hyperelliptic Jacobian over Fq.

For some values of E and qk , the genus of the hyperelliptic curve is
large enough to make this attack practical.

If E ′ is isogenous to a curve E which is vulnerable to Weil descent,
then E ′ can be attacked too [Galbraith, Hess, Smart]

Construction relies on random walks of isogenies
Requires uniform mixing of random walks

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 19 / 25



Weil Descent

Discovered by [Gaudry, Hess, Smart]

Let E be an elliptic curve over Fqk . There exists a computable group
homomorphism from E to a hyperelliptic Jacobian over Fq.

For some values of E and qk , the genus of the hyperelliptic curve is
large enough to make this attack practical.

If E ′ is isogenous to a curve E which is vulnerable to Weil descent,
then E ′ can be attacked too [Galbraith, Hess, Smart]

Construction relies on random walks of isogenies
Requires uniform mixing of random walks

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 19 / 25



Reductions from elliptic curves to hyperelliptic Jacobians

Informally: If you can improve the current state of the art for
subexponential hyperelliptic curve discrete logarithms, then elliptic
curve discrete logarithms are also affected [Bauer, Hamdy]

Current DLOG algorithms for hyperelliptic curves are O(Ln(
1
2 , c)) for

genus g ≥ log q.

O(Ln(α, c)) for α < 1
2 implies elliptic curve DLOG is subexponential.

O(Ln(
1
2 , c)) for g � log q implies elliptic curve DLOG is

subexponential.

Subexponential for g = 2[, 4, 5, 7, 8, 10, . . . ] implies elliptic curve
DLOG is subexponential.
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Elliptic curves which are not near-endomorphous

There exist elliptic curves E1,E2 over the same finite field which are
isogenous but neither endomorphous nor near-endomorphous.

There is no known algorithm for efficiently constructing such pairs of
elliptic curves.

There is no known example of such a pair of elliptic curves.
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Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Removing the “on average” clause

Given arbitrary (not random) curves E1 and E2, can we show that
their DLOG problems are equivalent?

Let a1 and a2 be ideal classes corresponding to E1 and E2.

Finding an efficiently computable isogeny φ : E1 → E2 is equivalent to
factoring the ideal class a1a

−1
2 into a product of small primes.

If you can do that efficiently, then you can solve DLOG on the ideal
class group efficiently, using index calculus.

This scenario seems unlikely, because an O(Ln(
1
3 , c)) algorithm for

solving DLOG on ideal class groups leads to a subexponential solution
of DLOG on elliptic curves [Bauer, Hamdy].

However, note that representing ideal classes using elliptic curves is
not the same as representing ideal classes using quadratic forms.

Remember, bit representation matters for DLOG!

David Jao (University of Waterloo) Discrete Logarithms on Algebraic Curves November 2, 2006 23 / 25



Elliptic curves over different fields

So far, all elliptic curves have been defined over a common finite field.

What can we say about curves over different fields?

It is known that elliptic curves over F2210 have weaker DLOG than
curves of the same size over other fields [Menezes, Teske, Weng]

Proof of this fact also uses random walks on isogenies

Can we prove equivalence results for other fields?
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Other reductions

1 Reductions between hyperelliptic Jacobians

What is the structure of isogenies between hyperelliptic Jacobians?
What does the graph of isogenies look like?

2 Reductions from elliptic curves to non-hyperelliptic Jacobians

O(Ln(
1
3 , c)) solutions to DLOG have been found on Jacobians of

certain non-hyperelliptic curves [Enge, Gaudry; Diem]
What are the implications for elliptic curve DLOG?
Stay tuned . . .
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