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LUC (Smith, Skinner - 1995):
e represent an element a € Gy q via its trace

TrFqZ/Fq(a) =0a+ a9 e,
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LUC (Smith, Skinner - 1995):
e represent an element a € Gy q via its trace
Tl’qu/Fq((X) =0a+ a9 e,
XTR (Brouwer, Lenstra, Pellikaan, Verheul - 1999):
c * 2_ 1 ES
o works in Ggq={a € Fg, [ a® 4" =1} CF
o represents an element a € Gg g via its trace

Tre e, (0) =af +a% +a € Fe.
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LUC (Smith, Skinner - 1995):
e represent an element a € Gy q via its trace
Trqu/wq(ﬂ) =0a+ a9 e,
XTR (Brouwer, Lenstra, Pellikaan, Verheul - 1999):
c * 2_ 1 ES
o works in Ggq={a € Fg, [ a® 4" =1} CF
o represents an element a € Gg g via its trace

Tre e, (0) =af +a% +a € Fe.

Recurrence sequences to compute Tr (a®) from Tr (a?) and b.
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X
q21
Gegq C Faﬁ IS the same as the complexity of the DLP In the

whole field

e the complexity of the DLP in the subgroups Goq C I
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o the complexity of the DLP in the subgroups G q C Fe,,

G q C IF*6 IS the same as the complexity of the DLP in the
whole fleld

e an element of Gy q is represented via one Fy-coordinate
(instead of two)
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o the complexity of the DLP in the subgroups G q C Fe,,

G q C IF*6 IS the same as the complexity of the DLP in the
whole fleld

e an element of Gy q is represented via one Fy-coordinate
(instead of two)

e an element of Gg q is represented via two Fy-coordinates
(instead of six)
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o the complexity of the DLP in the subgroups G q C Fe,,

G q C IF*6 IS the same as the complexity of the DLP in the
whole fleld

e an element of Gy q is represented via one Fy-coordinate
(instead of two)

e an element of Gg q is represented via two Fy-coordinates
(instead of six)

e neither representation is 1-1
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o the complexity of the DLP in the subgroups G q C Fe,,

G q C IF*6 IS the same as the complexity of the DLP in the
whole fleld

e an element of Gy q is represented via one Fy-coordinate
(instead of two)

e an element of Gg q is represented via two Fy-coordinates
(instead of six)

e neither representation is 1-1

e arithmetic in both subgroups is efficient
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e work in the primitive subgroup Gn q € Fgn
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e work in the primitive subgroup Gn g € Fgn

o the complexity of the DLP in Gy q is the same as in [
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e work in the primitive subgroup Gn g € Fgn
o the complexity of the DLP in Gy q is the same as in [

e represent elements of G 4 via ¢ (n) coordinates in Fy
(instead of N)
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e work in the primitive subgroup Gn g € Fgn
o the complexity of the DLP in Gy q is the same as in [

e represent elements of G 4 via ¢ (n) coordinates in Fy
(instead of N)

e the means are arithmetic and geometric constructions
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Fep finite field, (Fgn, -) multiplicative group.
The primitive subgroup is
Gng={g€Fy | g*9 =1}

where @, (X) is the n-th cyclotomic polynomial.

Discrete Logarithm Problem (DLP): given a € G and
Be<a>,findme Zsuchthat B=a™.

Consider the DLP in G = Fg or G = Gpg,.
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o GngCFhn, [Grgl=(a) ~a®™, |Fi|=0"—1
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o GngCFhn, [Grgl=(a) ~a®™, |Fi|=0"—1

o Ghg< Iy for l|n, | # n (unless p|@,(q) prime = p|n)
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o GngCFhn, [Grgl=(a) ~a®™, |Fi|=0"—1

o Ghg< Iy for l|n, | # n (unless p|@,(q) prime = p|n)

*

o complexity of solving the DLP in G or K is the same
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o GngCFhn, [Grgl=(a) ~a®™, |Fi|=0"—1

o Ghg< Iy for l|n, | # n (unless p|@,(q) prime = p|n)

*

o complexity of solving the DLP in G or K is the same

Working in Gy, q is practical if we can represent its elements via

¢ (n) elements of Fy, as opposed to the n elements of Fy that
we need for representing elements of .

Combputational challenaes arisina in alaorithmic number theorv and crvptoaraphv — p. 6/



For which values of n do we have the most compact
representation?

e Representing an element in the primitive subgroup would
require ¢(n)/n times as many bits as a general element
of 7.
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For which values of n do we have the most compact
representation?

e Representing an element in the primitive subgroup would
require ¢(n)/n times as many bits as a general element
of 7.

e d(n)/nisthe same forn=p;---prand n=pg---pg,
therefore we prefer n squarefree
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For which values of n do we have the most compact
representation?

e Representing an element in the primitive subgroup would
require ¢(n)/n times as many bits as a general element
of 7.

e d(n)/nisthe same forn=p;---prand n=pg---pg,
therefore we prefer n squarefree

e §(p)/pis an increasing function of p.
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For which values of n do we have the most compact
representation?

e Representing an element in the primitive subgroup would
require ¢(n)/n times as many bits as a general element

of [F,.

e d(n)/nisthe same forn=p;---prand n=pg---pg,
therefore we prefer n squarefree

e ¢(p)/pis an increasing function of p.

So we are mainly interested in the cases h = 2,6,30,210
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Roadmap:
1. Construct a variety T, defined over Fq s.t. To(Fq) = Gng.

2. Exploit the arithmetic-geometric structure of T.

_ . . . . . . . . .
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Roadmap:
1. Construct a variety T, defined over Fq s.t. To(Fq) = Gng.

2. Exploit the arithmetic-geometric structure of T.

The norm map relative to Fgp 2 IFql IS

E S
ql

N]Fqn /Fql :]Fan — ¥
O —— Oo- aql e aqn_l — a1+ql+~-+qn_l .
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Roadmap:
1. Construct a variety T, defined over Fq s.t. To(Fq) = Gng.

2. Exploit the arithmetic-geometric structure of T.

The norm map relative to lfgp 2 Fy Is

E S
ql

N]Fqn /Fql :]Fan — ¥
O —— Oo- (qu e aqn_l — a1+ql+~-+qn_l .

L emma: (Rubin, Silverberg - 2003)

Gng={a € Fy | Npy/r, (@) =1 for alll|n,l 7 n}.

Combputational challenaes arisina in alaorithmic number theorv and crvptoaraphv — p. 8/



* 2_
Example: Geq= {00 € F | aT 97 =1}

26 — FE@FZZ @FZB
O (a1+q+q2+q3+q4+q5’O(1+q2+q47O(1+q3)

= ker

_ . . . . . . . . .
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* 2_
Example: Geq= {00 € F | aT 97 =1}

e —— ]Fa O, DF
=ker| | 1+q+q2+q3+q4+qgl 1+32+q4 1+q°
a — (a , O , A )

Define ] )
@Nﬁpn/ﬁ?d

To=ker |Resr,, 5,Gm — " D Resr, /F,Gm

i l|n,1£n |
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* 2_
Example: Geq= {00 € F | aT 97 =1}

e —— ]Fa O, DF
=ker| | 1+q+q2+q3+q4+qgl 1+32+q4 1+q°
a — (a , O , A )

Define

@MFpn/Fd
To=ker |Resr,, 5,Gm — " D Resr, /F,Gm
l|n,1£n

_ ES
p— ql_
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Goal: showing that T, is rational, i.e. construct birational maps
(defined for almost all points)

Ty = A%

so that taking IFg-rational points we have an almost-bijection

Gn)q — Tn(IFq) t) Fg(n)
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Goal: showing that T, is rational, i.e. construct birational maps
(defined for almost all points)

Ty = A%
so that taking IFg-rational points we have an almost-bijection
Gn’q — Tn(Fq) t) Fg(n)

We know that these maps exist for n = p or n = pP1P2. We know
that they exist for all n'if we add extra copies of [Fq:

T x AK 2 AT o G x FE S BT
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e Can we write explicit maps for the cases n= 2,6, 30,2107
Yes for n = 2,6 (Rubin, Silverberg - 2003).

e Can we write maps
Gnq X F§ &5 Fa WK
for small values of k? Yes for (n,k) = (30,2), (210, 22)
(van Dijk, Granger, Page, Rubin, Silverberg, Stam,
Woodruff - 2005).

e Can we find similar maps for n = 30,210with a smaller k ?
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Ge,q C Fee. Choose x € Fez \ g, so that Fe = IFg(X);
choose an [Fg-basis a1, 02, O3 Of [Fga.

Then a7y, 02,03, X01,X02,X03 is an [Fg-basis of IF .

_ . . . . . . . . .
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Ge,q C Fee. Choose x € Fez \ g, so that Fe = IFg(X);
choose an [Fg-basis a1, 02, O3 Of [Fga.

Then a7y, 02,03, X01,X02,X03 is an [Fg-basis of IF .
Define Wo : Fg — T

U101 + Up0 2 + U303+ X
U101 + UpO» + U303 + X&°

Wo(U1, Uz, U3) =
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Ge,q C Fee. Choose x € Fez \ g, so that Fe = IFg(X);
choose an [Fg-basis a1, 02, O3 Of [Fga.

Then a7y, 02,03, X01,X02,X03 is an [Fg-basis of IF .

Define Yo : Fy — Fee

U101 + Up0 2 + U303+ X
U101 + UpO» + U303 + X&°

Wo(U1, Uz, U3) =

Then N]Fqs/Fqs(LIJO(ula U2, U3)) =1.

LetU = {(Ul,UZ, U3) € Fg | Nan/qu(LlJO(ula U2,U3)) — 1}.
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L|J0[U U — Ge,q.

_ . . . . . . . . .
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Wopu :U — Ggg.
By Hilbert’s Theorem 90,

L|JO(U) D) G6,q \ {1}7

so Yo restricts to an isomorphism Yo : U — Ggq\ {1}.

_ . . . . . . . . .
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Wopu :U — Ggg.
By Hilbert’'s Theorem 90,

L|J0(U) D) G6,q \ {1}7

so Yo restricts to an isomorphism Yo : U — Ggq\ {1}. Uisa
surface defined by a quadratic equation, so projecting U from a
generic point P gives an isomorphism

FZ\S— U\ {P} — Ge\ {1,00(P)}

for Sa smaller dimensional set (|| ~ Q).
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g=2,5mod. 9, x=103, y=0{o+{5",
S= {(v1,V2) € Fg | Vi +V5 —vivo — 1 =0}

2 2

Fg\S +«— Geq\ {1, (3}

(Vi,Vp)  — 1+V1y+Vo (Y2 —2) 4+ (1 V2 —V3+V1 Vo)X
LE2) T Ty ha(P—2) (1B +vivy) R

(2.) — By + Bax

where
(14 B1)/B2 = Up + Upy+ Ug(y? — 2).
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Alternatives in Gg q: (Granger, Page, Stam - 2004)

1. use the bijection Fé \ S Gg 4 to transfer the group law

from Geg g to Fg\ S
(Mult: 24M+43A+I, Square: 21M+38A+I)

2. arithmetic in F regarded as a degree six extension of I
(Mult: 18M+53A, Square: 6M+21A)

3. arithmetic in ¥ regarded as a quadratic extension of a

cubic extension of IFq
(Mult: 18M+54A, Square: 12M+33A)

Question: can these figures be improved? What about the
other cases?
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van Dijk, Woodruff - 2004: construct an almost-bijection
G309 X IF;; X IF;;(; X ]lelo X IF;E, — IFZZ X Fag X IE“;’;E, X IFZ?,O
which corresponds to a birational isomorphism
32 40
Tgo(Fq) X Fq — Fq .
The isomorphism comes from the equation
Pao(X) (x— 1) (€ — 1) (X1~ 1) (x*° - 1) =

(X -1 (-1 (x-1)(x*°-1).
R
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van Dijk, Granger, Page, Rubin, Silverberg, Stam, Woodruff -
2005:

using the equations
Pao(X)Ps(X) = @s(X°),  P10(X)P20(X)Ps(X) = P (x°°)
they construct explicit bijections (defined almost everywhere)
Ggzo,q X IB‘% ~ Gzoq X Ge g — Gg g ~ IF%O
and

22 70
G21o,q X Fq ~ G21Qq X G307q X Ga’q — GG,q35 ~ Fq
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Compare the DLP in Fg and G q.

® Gngq C Fgn, S0 DLP in Gp g is at most as hard as DLP in Fg..

To solve B =a™in [F}x:
1. solve the DLP Ng./r, (o)M= Nr g/, (B) € Fy, for each
lIn,] #n

2. this determines the value of m mod.
lem{@(q) :1[n,l #n;

3. remaining information comes from solving a DLP in Gp 4
e So the DLP in Gy 4 is as hard as the DLP in Fg,.
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Gower, 2006:

as a consequence of the Bateman-Horn conjecture

Pr(N) = {p < N prime | (@) prime}| = 0 (-5

N Pus(N) Przo(N) Pog(N) Pogo(N)

10 000 127 103 186 63
50 000 401 379 616 228
100 000 695 669 1061

Question: study the decomposition pattern of @,(q).
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A abelian variety of dim. d represented via equations.

P € A represented via coordinates
(Xay) — (X17 oo Xdy Y1, 7ye)'

Choose equations f1(X, Y1), fa(X,¥1,¥2), ..., fe(X,y) for A
(compute Grobner basis).
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A abelian variety of dim. d represented via equations.

P € A represented via coordinates
(Xay) — (X17 oo Xdy Y1, 7ye)'

Choose equations f1(X, Y1), fa(X,¥1,¥2), ..., fe(X,y) for A
(compute Grobner basis).

F = {(Xlaoaﬂ'aovyla"‘?ye) ‘ X1,y € Fq}

Fg-rational points of a union of curves, if irreducible

17| =9+ 0(/q)

F not contained in an abelian subvariety of A.
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Decomposition on the factor base:
P=P,+..+P, Reg7
(X,y) — ((I)j_(ID]_7 ceey Pn), 6o G ,q)d_|_e(P]_, ceey Pn))

®; rational functions, need to solve a system of equations
(Grébner basis computation).

Linear algebra: as usual.

Theorem: A abelian variety of dim. d over I, then there is a
probabilistic algorithm that solves the DLP in A with complexity

0 (97?9 up to logarithmic factors in q.

N.B.: constant irows fast with d.
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Granger-Vercauteren, 2005:

(V y ) 1y (YA —2) (1 V- VBV Vo )X
1, V2 S Ly (Y2—2) (- VE—Va v Vo ) X2

where X = {3,y = Lo+ {g". Fgqn=TFg[t]/(f(t))

1+ (at)y+ (1— (at)2)x
1+ (a)y+ (1— (a1)2)x2 'aewq}

7 = witFy) — {
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Expected running time of the algorithm:

o((2m!)q(2""+ 3*"logq) + m’q).

2—1/m)

Result of Gaudry predicts 0(q as g — oo,

At least as fast as Pollard-p in Gg gm if m> 3.

Grobner basis computations to decompose elements over the
factor base.

G30q € Gg s SO the method applies and is more efficient than
Pollard-p.
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1. using algebraic tori we can achieve a compact
representation of the elements of the primitive subgroup

2. work to be done in representation of the elements and
efficiency of computation

3. study the decomposition pattern of the order of these
groups

4. study further the DLP
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Thank you for your attention!
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