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“Historical” introduction

LUC (Smith, Skinner - 1995):

• works in G2,q = {α ∈ F
∗
q2 | αq+1 = 1} ⊆ F

∗
q2

• represent an element α ∈ G2,q via its trace

TrFq2/Fq
(α) = α+αq ∈ Fq.
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• represent an element α ∈ G2,q via its trace

TrFq2/Fq
(α) = α+αq ∈ Fq.

XTR (Brouwer, Lenstra, Pellikaan, Verheul - 1999):

• works in G6,q = {α ∈ F
∗
q6 | αq2−q+1 = 1} ⊆ F

∗
q6

• represents an element α ∈ G6,q via its trace

TrFq6/Fq2(α) = αq4
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“Historical” introduction

LUC (Smith, Skinner - 1995):

• works in G2,q = {α ∈ F
∗
q2 | αq+1 = 1} ⊆ F

∗
q2

• represent an element α ∈ G2,q via its trace

TrFq2/Fq
(α) = α+αq ∈ Fq.

XTR (Brouwer, Lenstra, Pellikaan, Verheul - 1999):

• works in G6,q = {α ∈ F
∗
q6 | αq2−q+1 = 1} ⊆ F

∗
q6

• represents an element α ∈ G6,q via its trace

TrFq6/Fq2(α) = αq4
+αq2

+α ∈ Fq2.

Recurrence sequences to compute Tr(αab) from Tr(αa) and b.
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“Historical” introduction

• the complexity of the DLP in the subgroups G2,q ⊆ F
∗
q2,

G6,q ⊆ F
∗
q6 is the same as the complexity of the DLP in the

whole field
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“Historical” introduction

• the complexity of the DLP in the subgroups G2,q ⊆ F
∗
q2,

G6,q ⊆ F
∗
q6 is the same as the complexity of the DLP in the

whole field

• an element of G2,q is represented via one Fq-coordinate
(instead of two)

• an element of G6,q is represented via two Fq-coordinates
(instead of six)

• neither representation is 1-1

• arithmetic in both subgroups is efficient
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Main ideas behind torus-based cryptography:

• work in the primitive subgroup Gn,q ⊆ F
∗
qn
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Main ideas behind torus-based cryptography:

• work in the primitive subgroup Gn,q ⊆ F
∗
qn

• the complexity of the DLP in Gn,q is the same as in F
∗
qn

• represent elements of Gn,q via ϕ(n) coordinates in Fq

(instead of n)
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Main ideas behind torus-based cryptography:

• work in the primitive subgroup Gn,q ⊆ F
∗
qn

• the complexity of the DLP in Gn,q is the same as in F
∗
qn

• represent elements of Gn,q via ϕ(n) coordinates in Fq

(instead of n)

• the means are arithmetic and geometric constructions
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1. The primitive subgroup

Fqn finite field, (F∗qn, ·) multiplicative group.

The primitive subgroup is

Gn,q = {g ∈ F
∗
qn | gφn(q) = 1}

where φn(x) is the n-th cyclotomic polynomial.

Discrete Logarithm Problem (DLP): given α ∈ G and
β ∈< α >, find m ∈ Z such that β = αm.

Consider the DLP in G = F
∗
qn or G = Gn,q.
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The primitive subgroup

• Gn,q ⊆ F
∗
qn, |Gn,q|= φn(q)∼ qϕ(n), |F∗qn|= qn−1
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The primitive subgroup

• Gn,q ⊆ F
∗
qn, |Gn,q|= φn(q)∼ qϕ(n), |F∗qn|= qn−1

• Gn,q 6⊆ F
∗
ql for l|n, l 6= n (unless p|φn(q) prime⇒ p|n)

• complexity of solving the DLP in Gn,q or F∗qn is the same

Working in Gn,q is practical if we can represent its elements via
ϕ(n) elements of Fq, as opposed to the n elements of Fq that
we need for representing elements of F

∗
qn .
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Main cases of interest

For which values of n do we have the most compact
representation?

• Representing an element in the primitive subgroup would
require ϕ(n)/n times as many bits as a general element
of F

∗
qn .
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require ϕ(n)/n times as many bits as a general element
of F

∗
qn .

• ϕ(n)/n is the same for n = p1 · · · pt and n = pe1
1 · · · pet

t ,
therefore we prefer n squarefree

• ϕ(p)/p is an increasing function of p.
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Main cases of interest

For which values of n do we have the most compact
representation?

• Representing an element in the primitive subgroup would
require ϕ(n)/n times as many bits as a general element
of F

∗
qn .

• ϕ(n)/n is the same for n = p1 · · · pt and n = pe1
1 · · · pet

t ,
therefore we prefer n squarefree

• ϕ(p)/p is an increasing function of p.

So we are mainly interested in the cases n = 2,6,30,210.
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2. Representation of the elements

Roadmap:

1. Construct a variety Tn defined over Fq s.t. Tn(Fq) = Gn,q.

2. Exploit the arithmetic-geometric structure of Tn.
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Roadmap:

1. Construct a variety Tn defined over Fq s.t. Tn(Fq) = Gn,q.

2. Exploit the arithmetic-geometric structure of Tn.

The norm map relative to Fqn ⊇ Fql is

NFqn/Fql : F
∗
qn −→ F

∗
ql

α 7−→ α ·αql · · ·αqn−l
= α1+ql+...+qn−l

.
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2. Representation of the elements

Roadmap:

1. Construct a variety Tn defined over Fq s.t. Tn(Fq) = Gn,q.

2. Exploit the arithmetic-geometric structure of Tn.

The norm map relative to Fqn ⊇ Fql is

NFqn/Fql : F
∗
qn −→ F

∗
ql

α 7−→ α ·αql · · ·αqn−l
= α1+ql+...+qn−l

.

Lemma:(Rubin, Silverberg - 2003)

Gn,q = {α ∈ F
∗
qn | NFqn/Fql (α) = 1 for all l|n, l 6= n}.
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Representation of the elements

Example: G6,q = {α ∈ F
∗
q6 | αq2−q+1 = 1}

= ker

[

F
∗
q6 −→ F

∗
q⊕F

∗
q2⊕F

∗
q3

α 7−→ (α1+q+q2+q3+q4+q5
,α1+q2+q4

,α1+q3
)

]
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Representation of the elements

Example: G6,q = {α ∈ F
∗
q6 | αq2−q+1 = 1}

= ker

[

F
∗
q6 −→ F

∗
q⊕F

∗
q2⊕F

∗
q3

α 7−→ (α1+q+q2+q3+q4+q5
,α1+q2+q4

,α1+q3
)

]

Define

Tn = ker



ResFqn/Fq
Gm

⊕N Fpn /F
pl−→

M

l|n,l 6=n

ResFql /Fq
Gm





Gm(F)∼= F
∗, so ResFql /Fq

Gm(Fq) = Gm(Fql) = F
∗
ql .
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]

Define

Tn = ker



ResFqn/Fq
Gm

⊕N Fpn /F
pl−→

M

l|n,l 6=n

ResFql /Fq
Gm





Gm(F)∼= F
∗, so ResFql /Fq

Gm(Fq) = Gm(Fql) = F
∗
ql .

Tn(Fq) = {α ∈ F
∗
qn | NFqn/Fql (α) = 1 for all l|n, l 6= n}= Gn,q
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Representation of the elements

Goal: showing that Tn is rational, i.e. construct birational maps
(defined for almost all points)

Tn ⇆ A
ϕ(n)

so that taking Fq-rational points we have an almost-bijection

Gn,q = Tn(Fq) ⇆ F
ϕ(n)
q
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Representation of the elements

Goal: showing that Tn is rational, i.e. construct birational maps
(defined for almost all points)

Tn ⇆ A
ϕ(n)

so that taking Fq-rational points we have an almost-bijection

Gn,q = Tn(Fq) ⇆ F
ϕ(n)
q

We know that these maps exist for n = p or n = p1p2. We know
that they exist for all n if we add extra copies of Fq:

Tn×A
k ∼= A

ϕ(n)+k i.e. Gn,q×F
k
q ⇆ F

ϕ(n)+k
q
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Some natural questions:

• Can we write explicit maps for the cases n = 2,6,30,210?
Yes for n = 2,6 (Rubin, Silverberg - 2003).

• Can we write maps

Gn,q×F
k
q ⇆ F

ϕ(n)+k
q

for small values of k ? Yes for (n,k) = (30,2),(210,22)
(van Dijk, Granger, Page, Rubin, Silverberg, Stam,
Woodruff - 2005).

• Can we find similar maps for n = 30,210with a smaller k ?
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Representation for G6,q (Rubin, Silverberg)

G6,q ⊆ F
∗
q6. Choose x ∈ Fq2 \Fq, so that Fq2 = Fq(x);

choose an Fq-basis α1,α2,α3 of Fq3.

Then α1,α2,α3,xα1,xα2,xα3 is an Fq-basis of Fq6.
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Representation for G6,q (Rubin, Silverberg)

G6,q ⊆ F
∗
q6. Choose x ∈ Fq2 \Fq, so that Fq2 = Fq(x);

choose an Fq-basis α1,α2,α3 of Fq3.

Then α1,α2,α3,xα1,xα2,xα3 is an Fq-basis of Fq6.

Define ψ0 : F
3
q →֒ F

∗
q6

ψ0(u1,u2,u3) =
u1α1 +u2α2 +u3α3 + x

u1α1 +u2α2 +u3α3 + xq3 .
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Representation for G6,q (Rubin, Silverberg)

G6,q ⊆ F
∗
q6. Choose x ∈ Fq2 \Fq, so that Fq2 = Fq(x);

choose an Fq-basis α1,α2,α3 of Fq3.

Then α1,α2,α3,xα1,xα2,xα3 is an Fq-basis of Fq6.

Define ψ0 : F
3
q →֒ F

∗
q6

ψ0(u1,u2,u3) =
u1α1 +u2α2 +u3α3 + x

u1α1 +u2α2 +u3α3 + xq3 .

Then NFq6/Fq3(ψ0(u1,u2,u3)) = 1.

Let U = {(u1,u2,u3) ∈ F
3
q | NFq6/Fq2(ψ0(u1,u2,u3)) = 1}.
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Representation for G6,q

ψ0↾U : U →֒ G6,q.
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Representation for G6,q

ψ0↾U : U →֒ G6,q.

By Hilbert’s Theorem 90,

ψ0(U)⊇ G6,q \{1},

so ψ0 restricts to an isomorphism ψ0 : U
∼−→ G6,q \{1}.
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Representation for G6,q

ψ0↾U : U →֒ G6,q.

By Hilbert’s Theorem 90,

ψ0(U)⊇ G6,q \{1},

so ψ0 restricts to an isomorphism ψ0 : U
∼−→ G6,q \{1}. U is a

surface defined by a quadratic equation, so projecting U from a
generic point P gives an isomorphism

F
2
q \S

∼−→U \{P} ∼−→ G6\{1,ψ0(P)}

for S a smaller dimensional set (|S| ∼ q).
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Example:

q = 2,5 mod. 9, x = ζ3, y = ζ9 +ζ−1
9 ,

S = {(v1,v2) ∈ F
2
q | v2

1 + v2
2− v1v2−1 = 0}

F
2
q \S ←→ G6,q \{1,ζ2

3}

(v1,v2) 7−→ 1+v1y+v2(y2−2)+(1−v2
1−v2

2+v1v2)x
1+v1y+v2(y2−2)+(1−v2

1−v2
2+v1v2)x2

(

u2
u1

, u3
u1

)

←−[ β1 +β2x

where
(1+β1)/β2 = u1 +u2y+u3(y2−2).
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Arithmetic in the primitive subgroup for n = 6

Alternatives in G6,q: (Granger, Page, Stam - 2004)

1. use the bijection F
2
q \S↔ G6,q to transfer the group law

from G6,q to F
2
q \S

(Mult: 24M+43A+I, Square: 21M+38A+I)

2. arithmetic in Fq6 regarded as a degree six extension of Fq

(Mult: 18M+53A, Square: 6M+21A)

3. arithmetic in Fq6 regarded as a quadratic extension of a
cubic extension of Fq

(Mult: 18M+54A, Square: 12M+33A)

Question: can these figures be improved? What about the
other cases?
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Representation for G30,q

van Dijk, Woodruff - 2004: construct an almost-bijection

G30,q×F
∗
q×F

∗
q6×F

∗
q10×F

∗
q15 −→ F

∗
q2×F

∗
q3×F

∗
q5×F

∗
q30

which corresponds to a birational isomorphism

T30(Fq)×F
32
q −→ F

40
q .

The isomorphism comes from the equation

φ30(x)(x−1)(x6−1)(x10−1)(x15−1) =

(x2−1)(x3−1)(x5−1)(x30−1).
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Representation for G30,q

van Dijk, Granger, Page, Rubin, Silverberg, Stam, Woodruff -
2005:

using the equations

φ30(x)φ6(x) = φ6(x
5), φ210(x)φ30(x)φ6(x) = φ6(x

35)

they construct explicit bijections (defined almost everywhere)

G30,q×F
2
q ∼ G30,q×G6,q −→ G6,q5 ∼ F

10
q

and

G210,q×F
22
q ∼ G210,q×G30,q×G6,q −→ G6,q35 ∼ F

70
q
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3. Discrete Logarithm Problem

Compare the DLP in F
∗
qn and Gn,q.

• Gn,q ⊆ F
∗
qn , so DLP in Gn,q is at most as hard as DLP in F

∗
qn .

To solve β = αm in F
∗
qn :

1. solve the DLP NFqn/Fql (α)m = NFqn/Fql (β) ∈ F
∗
ql for each

l|n, l 6= n

2. this determines the value of m mod.

lcm{φl(q) : l|n, l 6= n}
3. remaining information comes from solving a DLP in Gn,q

• So the DLP in Gn,q is as hard as the DLP in F
∗
qn .
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How often is the order of Gn,q prime?

Gower, 2006:

as a consequence of the Bateman-Horn conjecture

Pm,n(N) = |{p≤ N prime | φn(pm) prime}|= O
(

N

log2 N

)

N P1,6(N) P1,30(N) P2,6(N) P2,30(N)

10 000 127 103 186 63

50 000 401 379 616 228

100 000 695 669 1061

Question: study the decomposition pattern of φn(q).
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Gaudry’s method for abelian varieties

A abelian variety of dim. d represented via equations.

P ∈ A represented via coordinates
(x,y) = (x1, . . . ,xd,y1, . . . ,ye).

Choose equations f1(x,y1), f2(x,y1,y2), . . . , fe(x,y) for A
(compute Gröbner basis).
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Gaudry’s method for abelian varieties

A abelian variety of dim. d represented via equations.

P ∈ A represented via coordinates
(x,y) = (x1, . . . ,xd,y1, . . . ,ye).

Choose equations f1(x,y1), f2(x,y1,y2), . . . , fe(x,y) for A
(compute Gröbner basis).

F = {(x1,0, . . . ,0,y1, . . . ,ye) | x1,y ∈ Fq}

Fq-rational points of a union of curves, if irreducible

|F |= q+O (
√

q)

F not contained in an abelian subvariety of A.

Computational challenges arising in algorithmic number theory and cryptography – p. 20/25



Gaudry’s method for abelian varieties

Decomposition on the factor base:
P = P1 + . . .+Pn, Pi ∈ F

(x,y) = (ϕ1(P1, . . . ,Pn), . . . ,ϕd+e(P1, . . . ,Pn))

ϕi rational functions, need to solve a system of equations
(Gröbner basis computation).

Linear algebra: as usual.

Theorem: A abelian variety of dim. d over Fq, then there is a
probabilistic algorithm that solves the DLP in A with complexity
O (q2−2/d) up to logarithmic factors in q.

N.B.: constant grows fast with d.
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Index calculus on G6,qm

Granger-Vercauteren, 2005:

qm = 2,5 mod. 9, S = {(v1,v2) ∈ F
2
qm | v2

1 + v2
2− v1v2−1 = 0}

ψ : F
2
qm \S −→ G6,qm \{1,ζ2

3}
(v1,v2) 7−→ 1+v1y+v2(y2−2)+(1−v2

1−v2
2+v1v2)x

1+v1y+v2(y2−2)+(1−v2
1−v2

2+v1v2)x2

where x = ζ3,y = ζ9 +ζ−1
9 . Fqm = Fq[t]/( f (t))

F = ψ(tFq) =

{

1+(at)y+(1− (at)2)x
1+(at)y+(1− (at)2)x2

: a ∈ Fq

}
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Index calculus on G6,qm

Expected running time of the algorithm:

O ((2m!)q(212m +32m logq)+m3q2).

Result of Gaudry predicts O (q2−1/m) as q→ ∞.

At least as fast as Pollard-ρ in G6,qm if m≥ 3.

Gröbner basis computations to decompose elements over the
factor base.

G30,q ⊆ G6,q5 so the method applies and is more efficient than
Pollard-ρ.
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Closing remarks:

1. using algebraic tori we can achieve a compact
representation of the elements of the primitive subgroup

2. work to be done in representation of the elements and
efficiency of computation

3. study the decomposition pattern of the order of these
groups

4. study further the DLP
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Thank you for your attention!
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