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Motivation
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ECC and HECC

Advantages of ECC vs finite fields in DL-based systems:

Better speed, bandwidth, key sizes, for similar security.

Slightly more complicated to generate parameters (point counting).

Better scalability for high security levels (AES-256).

HECC vs ECC:

Bandwidth and key sizes similar to elliptic curves.

Parameter generation (point counting) is difficult – especially in large

characteristic.

Speed? (See talk by T. Lange, last ECC conference)

November 2006, Toronto – p. 4/52



Soft- vs Hard-ware

Software

Prime field arithmetic faster than characteristic 2.

No real need to consider SCA (but still... there are some attacks

using the behaviour of the memory hierarchy)

Some parallelism might be used, but very limited.

Hardware

Characteristic 2 is cheaper than prime field arithmetic.

SCA is usually a crucial threat.

If area / power consumption is not the main issue, then one can put

several multiplication units on the same chip, thus allowing

parallelism.
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The Montgomery form for elliptic curves
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Curves with a particular equation

Def. An elliptic curve is in Montgomery form if it has an equation

E : By2 = x3 + Ax2 + x,

with B(A2 − 4) 6= 0.

Arithmetic considerations show that E and its twist have order divisible by 4.

If p ≡ 1 mod 4, then one is even divisible by 8.
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Abscissa-only formulae

Let P = (xP , yP ) be a point on E. Then the abscissa xn/zn of the n-th

multiple of P is obtained with the following recurrence formulae:

x1 = xP , z1 = 1,






x2n = (x2
n − z2

n)2,

z2n = 4xnzn(x2
n + Axnzn + z2

n),






xn+mxn−m = 4(xnxm − znzm)2,

zn+mzn−m = 4(xnzm − znxm)2.

Particular case: m = n + 1.
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Operation count

After some reorganization of the formulae, obtaining

(x2n, z2n, x2n+1, z2n+1) or (x2n+1, z2n+1, x2n+2, z2n+2) from

(xn, zn, xn+1, zn+1) can be done in

4 squares,

4 multiplications,

1 multiplication by (A − 2)/4 (usually a small integer),

1 multiplication by x1.

1 multiplication by z1 (usually equal to 1),

Total: 5 P + 4 S + 1 sP per bit for a scalar multiplication (binary ladder).
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Extensions

Montgomery form is used in:

Implementation of ECM for factoring;

Implementation of ECC, e.g. curve25519 by D. Bernstein.

Extensions to genus 2 ?

Chudnovsky and Chudnovsky suggested Kummer surface in 1986,

in the context of primality proving;

Siksek and Smart in 1999;

Duquesne, Lange in 2004;

Here: use Theta functions to get Montgomery-like formulae in various

contexts.
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Background on Theta
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Definition of ϑ

In the following few slides, we work over C.

Let Ω be a matrix in the g-dimensional Siegel upper-half-space H2, i.e. Ω is

a symmetric g × g matrix with Im(Ω) > 0.

Def. The Riemann Theta function is, for z ∈ Cg ,

ϑ(z, Ω) =
∑

n∈Zg

exp
(

πi tnΩn + 2πi tn · z
)

.

If z is set to 0, we obtain a Theta constant.

ϑ is “almost” periodic:

ϑ(z + Ωm + n, Ω) = exp(−iπtmΩm − 2iπtm · z) · ϑ(z, Ω).

=⇒ “almost defined” on the abelian variety Cg/(Zg + ΩZg).
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Theta functions with characteristics

For a and b, two vectors in {0, 1

2
}g , we define

ϑ[a; b](z, Ω) = exp
(

πi taΩa + 2πi ta · (z + b)
)

· ϑ(z + Ωa + b, Ω).

There are 22g of them, yielding 22g Theta functions with characteristic and

22g Theta constants.

Among them, 2g−1(2g + 1) are even and 2g−1(2g − 1) are odd.

Obviously, the odd Theta functions with characteristics give trivial Theta

constants.
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Theta functions with characteristics

even odd

g = 1 : 4 = 3 + 1

g = 2 : 16 = 10 + 6

g = 3 : 64 = 36 + 28
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A projective embedding

For a fixed Ω, let ϕ be the map from Cg to P2g−1(C) defined by

ϕ(z) =
(

ϑ[0; b](2z, Ω)
)

b∈{0, 1
2
}g

.

By periodicity, one checks that up to a multiplicative constant,

ϕ(z + Ωm + n) = ϕ(z), for (m, n) ∈ Zg × Zg,

so that ϕ is well-defined from Cg/(Zg + ΩZg) to P2g−1(C).

Rem. Since all the ϑ[0; b] are even, ϕ is even: −z and z are sent to the

same point. [ and this is essentially the only injectivity defect ]
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The Kummer variety

Def. The image of ϕ is called the Kummer variety of the abelian variety

Cg/(Zg + ΩZg).

Rem. This is a complicated way to say that the Kummer variety of an

abelian variety A is A/{±1}.

Our main interest in using Theta functions is. . .
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The Kummer variety

Def. The image of ϕ is called the Kummer variety of the abelian variety

Cg/(Zg + ΩZg).

Rem. This is a complicated way to say that the Kummer variety of an

abelian variety A is A/{±1}.

Our main interest in using Theta functions is. . .

Formulae
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Formulae
Taken from Mumford’s Tata lectures on Theta (I), for genus 1:
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Formulae

Fact: For many of the usual curve-related algebraic objects one like to

manipulate explicitly, there exist corresponding formulae with Theta functions

(and often, already in the literature).

Algebraic parametrization of the abelian variety (Weierstraß ℘ function);

Modular equations (AGM as the most spectacular example);

Isogenies (well. . . )

Group law.

and for any genus!
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The case of genus 1
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Formulae in genus 1

In genus 1, for Im(τ) > 0, the map ϕ is

ϕ : z 7→ (ϑ[0; 0](2z, τ), ϑ[0;
1

2
](2z, τ)),

from C/(Z + τZ) to P1(C).

Give names to some Theta constants:

a = ϑ[0; 0](0, τ), b = ϑ[0;
1

2
](0, τ),

A = ϑ[0; 0](0, 2τ), B = ϑ[
1

2
; 0](0, 2τ).

The pseudo-group law on P1(C) is given by the following formulae.

Rem. 2A2 = a2 + b2 and 2B2 = a2 − b2.
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Doubling

aϑ[0; 0](z, τ) = ϑ[0; 0](z, 2τ)2 + ϑ[
1

2
; 0](z, 2τ)2

bϑ[0;
1

2
](z, τ) = ϑ[0; 0](z, 2τ)2 − ϑ[

1

2
; 0](z, 2τ)2

2Aϑ[0; 0](2z, 2τ) = ϑ[0; 0](z, τ)2 + ϑ[0;
1

2
](z, τ)2

2Bϑ[
1

2
; 0](2z, 2τ) = ϑ[0; 0](z, τ)2 − ϑ[0;

1

2
](z, τ)2
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Doubling (deciphered)

Input: A point P = (x : y) with P = ϕ(z);

Output: The double 2P = (X : Y ), i.e. 2P = ϕ(2z).

1. x′ = (x2 + y2)2;

2. y′ = B2

A2 (x2 − y2)2;

3. X = (x′ + y′);

4. Y = b
a
(x′ − y′);

5. Return (X : Y ).

Cost: 4S + 2sP.
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Pseudo-addition

Input: Two points P = (x : y) = ϕ(z) and Q = (x : y) = ϕ(z), and

R = (x̄ : ȳ) one of ϕ(z + z) and ϕ(z − z), with x̄ȳ 6= 0;

Output: The point (X : Y ) among ϕ(z + z) and ϕ(z − z) which is

different from R.

1. x′ = (x2 + y2)(x2 + y2);

2. y′ = B2

A2 (x2 − y2)(x2 − y2);

3. X = (x′ + y′)/x̄;

4. Y = (x′ − y′)/ȳ;

5. Return (X : Y ).

Cost: 4S + 3P + 1sP (2S + 3P + 1sP).
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Alternate representation

To simplify, we can manipulate squares of coordinates of points. This

makes it easier to count products.

We could also store (x2 + y2, x2 − y2) to make clear that we can

share some additions.

Rem. In some formulae below, I sometimes use this alternate

representation.
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Scalar multiplication

Thm. Multiplying a point by a scalar n on the Kummer line of E costs

6 log n squarings, 3 log n multiplications, and 3 log n multiplications by

constants.

Rem. Compared to Montgomery’s formulae, that’s 1 P replaced by 1 S,

but 2 more sP.

For ECC implementation on PC, DJB’s cycle count for curve25519

give similar results for both;

For different context, this might be different;

For ECM, when the modulus gets large, at some point this should

become better than Montgomery.
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Validity of the formulae over a finite field

The formulae are valid on C, but one wants to use them over a finite field.

Two lines of proof:

Make explicit the map with a Weierstraß equation;

Lift/reduce approach.

The first approach is useful to use point-counting, and guarantee that the

DLP is equivalent on Kummer and on the curve.

The second is useful to avoid heavy computations (for higher genus), and to

derive formulae in characteristic 2.
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Link with classical Weierstraß equation

Let λ = a4

a4−b4
and Eλ the curve of equation

Eλ : Y 2 = X(X − 1)(X − λ).

Then the map from the Kummer line to Eλ is given by

(x : y) 7→
(

a2x

a2x − b2y
, . . .

)

.

From these formulae, it is easy to check that the formulae are valid, using the

group law on Eλ.
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The case of genus 1, characteristic 2
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Problems with characteristic 2

The plain formulae lead quickly to the non-point (0 : 0).

The link with the Weierstraß equation implies a full rational 2-torsion

subgroup, which is impossible in characteristic 2.
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General strategy

Start with a curve E over F2n ;

Lift E to a curve E defined over a number field K ;

Since K ⊂ C, define the Kummer line associated to E ;

Use the explicit maps to do the following

Take a point P on E;

Lift it to a point Q of E (a 2-adic approximation is enough);

Map Q to the Kummer line (again using 2-adic approximation);

Apply appropriate transformations to make the coordinates of Q

reducible modulo 2;

Apply appropriate transformations to make the group law reducible

modulo 2.
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Let’s do it. . .
We start with an ordinary curve Ea6

defined over Fq of characteristic 2 by

Ea6
: y2 + xy = x3 + a6.

We consider now a curve Eλ with

λ ≡ 1 + 16
√

a6 mod 32,

such that Eλ is isomorphic to a lift of Ea6
to Qq .

The explicit transformations to the Kummer line give (modulo 8):

a2 ≡ 1, b2 ≡ 4 4
√

a6, A2 ≡ B2 ≡ 1.

One checks that a point P = (x, y) on Ea6
is mapped to a point on the

Kummer line where all the coordinates are integral and the information is

contained in the value modulo 2.
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Let’s do it. . .
Let P = (x : y) be a point on the Kummer line, with integral 2-adic

coordinates.

x′ = (x + y)2

y′ = A2

B2 (x − y)2

X = (x′ + y′)2

Y = a2

b2
(x′ − y′)2
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Let’s do it. . .
Let P = (x : y) be a point on the Kummer line, with integral 2-adic

coordinates.

x′ = (x + y)2≡ x2 + y2 + 2xy mod 8

y′ = A2

B2 (x − y)2≡ x2 + y2 − 2xy mod 8.

x′ + y′ = 2(x2 + y2) mod 8,

x′ − y′ = 4xy mod 8.

X = (x′ + y′)2≡ 4(x4 + y4) mod 8,

Y = a2

b2
(x′ − y′)2≡ 16x2y2/4 4

√
a6 mod 8.

Now, since we are in projective, we can divide both X and Y by 4. We get:

X ≡ (x2 + y2)2 and Y ≡ x2y2/ 4
√

a6 mod 2,

which are valid also over Fq .
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Same business with pseudo-addition

For the pseudo-addition, we get:

[. . . some more 2-adic abstract non-sense . . . ]

X = (xx + yy)2/x̄ and Y = ((x + y)(x + y) + xx + yy)2/ȳ.

Total Cost: 5S + 5P + 1sP per bit in scalar multiplication.
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Same business with pseudo-addition

For the pseudo-addition, we get:

[. . . some more 2-adic abstract non-sense . . . ]

X = (xx + yy)2/x̄ and Y = ((x + y)(x + y) + xx + yy)2/ȳ.

Total Cost: 5S + 5P + 1sP per bit in scalar multiplication.

Cool, but. . .

These formulae have already been discovered by Stam (PKC’03) as a

variant of Lopez-Dahab (SAC’98).
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The case of genus 2
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A projective embedding

For a fixed Ω, let ϕ be the map from Cg to P2g−1(C) defined by

ϕ(z) =
(

ϑ[0; b](2z, Ω)
)

b∈{0, 1
2
}g

.

By periodicity, one checks that up to a multiplicative constant,

ϕ(z + Ωm + n) = ϕ(z), for (m, n) ∈ Zg × Zg,

so that ϕ is well-defined from Cg/(Zg + ΩZg) to P2g−1(C).

Rem. Since all the ϑ[0; b] are even, ϕ is even: −z and z are sent to the

same point. [ and this is essentially the only injectivity defect ]
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Eight particular Theta functions
The functions used to map A to P3(C):

ϑ1(z) = ϑ[(0, 0); (0, 0)](z, Ω)

ϑ2(z) = ϑ[(0, 0); (1

2
, 1

2
)](z, Ω)

ϑ3(z) = ϑ[(0, 0); (1

2
, 0)](z, Ω)

ϑ4(z) = ϑ[(0, 0); (0, 1

2
)](z, Ω) .

Dual functions on the isogenous abelian variety:

Θ1(z) = ϑ[(0, 0); (0, 0)](z, 2Ω)

Θ2(z) = ϑ[(1

2
, 1

2
); (0, 0)](z, 2Ω)

Θ3(z) = ϑ[(0, 1

2
); (0, 0)](z, 2Ω)

Θ4(z) = ϑ[(1

2
, 0); (0, 0)](z, 2Ω) .
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Some constants

Let us give names to a few Theta constants:

a = ϑ1(0), b = ϑ2(0), c = ϑ3(0), d = ϑ4(0),

and

A = Θ1(0), B = Θ2(0), C = Θ3(0), D = Θ4(0).

Put also

y0 = a/b, z0 = a/c, t0 = a/d,

and

y′0 = (A/B)2, z′0 = (A/C)2, t′0 = (A/D)2,
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Some more equations
It can be shown that

4A2 = a2 + b2 + c2 + d2,

4B2 = a2 + b2 − c2 − d2,

4C2 = a2 − b2 + c2 − d2,

4D2 = a2 − b2 − c2 + d2.

Then, we define furthermore E, F , G, H by

E = abcdA2B2C2D2/(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)

F = (a4 − b4 − c4 + d4)/(a2d2 − b2c2)

G = (a4 − b4 + c4 − d4)/(a2c2 − b2d2)

H = (a4 + b4 − c4 − d4)/(a2b2 − c2d2) .
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Equation for the Kummer surface

The abelian variety has dimension 2, so has its image by ϕ.

4 projective coordinates + dimension 2 =⇒ one equation.

It can be shown that this equation is (for a point (x, y, z, t) in the image K
of ϕ):

K : (x4 + y4 + z4 + t4) + 2Exyzt − F (x2t2 + y2z2)

− G(x2z2 + y2t2) − H(x2y2 + z2t2) = 0.
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Doubling formula
Input: A point P = (x, y, z, t) on K;

1. x′ = (x2 + y2 + z2 + t2)2;

2. y′ = y′0(x
2 + y2 − z2 − t2)2;

3. z′ = z′0(x
2 − y2 + z2 − t2)2;

4. t′ = t′0(x
2 − y2 − z2 + t2)2;

5. X = (x′ + y′ + z′ + t′);

6. Y = y0(x
′ + y′ − z′ − t′);

7. Z = z0(x
′ − y′ + z′ − t′);

8. T = t0(x
′ − y′ − z′ + t′);

9. Return 2P = (X, Y, Z, T ).
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Pseudo-add formula

Input: P = (x, y, z, t) and Q = (x, y, z, t) on K and R = (x̄, ȳ, z̄, t̄) one of

P + Q and P − Q.

1. x′ = (x2 + y2 + z2 + t2)(x2 + y2 + z2 + t2);

2. y′ = y′

0(x
2 + y2 − z2 − t2)(x2 + y2 − z2 − t2);

3. z′ = z′

0(x
2 − y2 + z2 − t2)(x2 − y2 + z2 − t2);

4. t′ = t′0(x
2 − y2 − z2 + t2)(x2 − y2 − z2 + t2);

5. X = (x′ + y′ + z′ + t′)/x̄;

6. Y = (x′ + y′ − z′ − t′)/ȳ;

7. Z = (x′ − y′ + z′ − t′)/z̄;

8. T = (x′ − y′ − z′ + t′)/t̄;

9. Return (X, Y, Z, T ) = P + Q or P − Q.
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Operation count

Thm. Multiplying a point by a scalar n on the Kummer surface costs

9 log n squarings, 10 log n multiplications, and 6 log n multiplications by

constants. 9S + 10P + 6 sP.

Alternate choice of organizing the computation: 12S + 7P + 9sP.

Problem: having small constants (and cheap sP), require point counting

in genus 2, for which the current record is 162 bits.

Still: Can already beat ECC on a PC implementation (DJB’s ECC-06 talk).
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Rosenhain invariants

Given a = ϑ1(0), b = ϑ2(0), c = ϑ3(0), d = ϑ4(0), four theta

constants corresponding to a matrix Ω, then define:

λ =
a2c2

b2d2
; µ =

c2e2

d2f2
; ν =

a2e2

b2f2
,

where

e2

f2
=

1 + CD
AB

1 − CD
AB

.

Then the curve C of equation

y2 = x(x − 1)(x − λ)(x − µ)(x − ν)

has a Jacobian isomorphic to C2/(Z2 + ΩZ2). [Thomae]
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Mapping points from K to Jac(C)

(x, y, z, t) 7→ 〈u(x), v2(x)〉

The formula is a consequence of some formulae in Mumford’s book. More

details in van Wamelen’s work.

I won’t give the formulae here...

Some precomputation that depends only on K (a few hundreds of

multiplications and a few dozens of inversions);

Then, mapping a point of K to Jac(C) involves about 50 multiplications

and a few inversions.

Of course, the v-polynomial is computed up to sign.
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Genus 2 / characteristic 2
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Genus 2 – characteristic 2

The lifting/reduce technique also works in genus 2. In the following, some of

the formulae have been guessed (not yet proven), but they should be correct

(works on practical examples).

Let α, β, γ, δ be 4 elements of F∗
q of characteristic 2.

The equation of the Kummer surface is

√

αβγδ xyzt =

βγ(xt + yz)2 + αγ(xz + yt)2 + αβ(xy + zt)2.
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Doubling

Input: A point P = (x, y, z, t) on K;

1. X = (xt + yz)2;

2. Y = α
γ
(xz + yt)2;

3. Z = α
β
(xy + zt)2;

4. T = α
δ
(x + y + z + t)4;

5. Return 2P = (X, Y, Z, T ).

Cost: 4P+5S+3sP.
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Pseudo-addition

Input: P = (x, y, z, t) and Q = (x, y, z, t) on K and

R = (x̄, ȳ, z̄, t̄) one of P + Q and P − Q.

1. X = (xt + tx + yz + zy)2/x̄;

2. Y = (xz + zx + yt + ty)2/ȳ;

3. Z = (xy + yx + zt + tz)2/z̄;

4. T = (xx + yy + zz + tt)2/t̄;

5. Return (X, Y, Z, T ) = P + Q or P − Q.

Cost: 12P + 4S (have to rearrange things quite a bit!).

Total cost for scalar mult: 16P + 9S + 3sP per bit.
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Link with the underlying genus 2 curve

Let

f0 =
αγ

βδ
, f1 =

α

δ

(β + γ)2

βγ
, f2 = f3 =

βγ

αδ
.

Then the curve C of equation

y2 + x(x + 1)y = x(x + 1)(f3x
3 + f2x

2 + f1x + f0).

corresponds to K.

Rem. All the ordinary genus 2 curves with rational 2-torsion can be put in

this form.
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Additional remarks

Beside the operation count, Montgomery-ladder formulae are nice for

SCA resistance;

Theta-based formulae can be easily parallelized:

Char 6= 2: depth of 2P + 1S + 1sP (with 4 squaring units, 8

small-multipliers and 4 multipliers);

Char 2: depth of 2P + 1S (with 8 squaring units, 22 multipliers);
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Conclusion

The same formulae (addition and duplication of theta functions) have given

nice Montgomery-like applications in many context, that compare well to

state-of-the-art:

genus 1 genus 2

char 6= 2 different but as good improvement

char = 2 recover the best improvement
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Further questions

We have asked for full rational 2-torsion.

Is it really necessary?

We have asked for ordinary curves.

Is it really necessary?

Genus 3 and genus 4.

Group law can be easily guessed. Need to work out formulae for

the Kummer variety and correspondence with curves.

November 2006, Toronto – p. 52/52


