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1 General Introduction

In June 2006, in Belgium, there was a very successful international
workshop on Post-quantum cryptography – public key
cryptosystems that potentially could resist the future quantum
computer attacks.

Currently there are 4 main families:

1) Code-based public key cryptography

2) Hash-based public key cryptography

3) Lattice-based public key cryptography

4) Multivariate Public Key Cryptography
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The view from the history of algebra (Diffie)

RSA – Number Theory – the 18th century mathematics

ECC – Theory of Elliptic Curves – the 19th century mathematics

Multivariate Public key cryptosystem – Algebraic Geometry – the
20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings
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1.1 Multivariate Public Key Cryptosystems

- Cryptosystems based on multivariate functions over a finite
field instead of single variable functions.
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• The cipher –the public key is given as:

G(x1, ..., xn) = (G1(x1, ..., xn), ..., Gm(x1, ..., xn)).

Here the Gi are multivariate polynomials over a small finite
field k . G can be viewed as a map:

G : Onkn −→ km
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Encryption

• Any plaintext M = (x′
1, ..., x

′
n) has the ciphertext:

G(M) = G(x′
1, ..., x

′
n) = (y′

1, ..., y
′
n).

Encryption: Evaluation of the values of the set of
polynomials at a point.
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Decryption

• To decrypt the ciphertext (y′
1, ..., y

′
n), we need to know the

hidden structure of G– the secret key, so that one can invert
the map G to find the plaintext (x′

1, ..., x
′
n).

Decryption relies on the hidden structure of the public
key
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Multivariate Signature schemes

• To verify, check indeed if the signature and the hash value of
the plaintext satisfies the equations given by the public key.

Document (y′
1, ..., y

′
m), signature (x′

1, ..., x
′
n), public key

G(x1, .., xn), m ≤ n. .

To verify, we need ro check:

G(x′
1, ..., x

′
n) ?= (y′

1, .., y
′
m).

• To sign, one need to find one solution of the equation above, or
to invert the map G.
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A Toy Example:

• We use the finite field k = GF [2]/(x2 + x + 1) with 22 elements.

• We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.

Here 0 represent the 0 in k, 1 for 1, 2 for x, and 3 for 1 + x.
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .
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• The public key:

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

• For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1, G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .

• This is a bijective map and we can invert it easily.

• This is an example based on the Matsumoto-Imai
cryptosystem.
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Direct attack is to solve the set of polynomial equations:

G(x1, ..., xn) = (y′
1, ..., y

′
m)

or
(G1(x1, ..., xn), ..., Gm(x1, ..., xn)) = (y′

1, ..., y
′
m),

because G and (y′
1, ..., y

′
m) are known.
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• Security Foundation.

- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-complete.
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• Quadratic Constructions.

1) Efficiency considerations of key size and computation
efficiency lead to mainly quadratic constructions.

Gl(x1, ..xn) =
∑

i,j

αlijxixj +
∑

i

βlixi + γl.
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2) Mathematical structure consideration: any set of high
degree polynomial equations can be reduced to a set of quadratic
equations.

x1x2x3 = 1,

is equivalent to

x1x2 − y = 0

yx3 = 1.
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• The Potentials.

I.) We have not yet seen how a quantum computer can be used
to attack MPKCs efficiently.

II.) We have seen the potential to build much more efficient
public key cryptosystems.

16



• MPKCs

- Early works.

- Matsumoto-Imai.

- HFE and HFEv.

- Oil & Vinegar.

- Sflash (Matsumoto-Imai-Minus) systems, accepted by
NESSIE as a security standard for low cost smart cards.

-Quartz, HFEv-Minus: NESSIE

-Rainbow; TTS, TRMC

-Internal Perturbation

- MFE

- TTM systems.

Some Names: Diffie, Fell, Stern, Coppersmith, Tsujii,
Shamir, Matsumoto, Imai, Patarin, Goubin, Courtois, Kipnis,
Moh, Faugere, Ding, Schmidt, Chen, Yang, Wang, Gilbert,
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Perret, Sugita, Wolf, ...

18



2 Multivariate public key cryptosystems

The initial works by Diffie, Fell, Tsujii, Shamir etc were not very
successful.

19



2.1 The Matsumoto-Imai Cryptosystems

2.1.1 Notation

• k is a small finite field of characteristic 2 with |k| = q.

• K̄ = k[x]/(g(x)), a degree n extension of k.

• The standard k-linear invertible map φ : K̄ −→ kn, and
φ−1 : kn −→ K̄.

The idea of ”Big Field”.

We build maps over K̄, then lift it to be a map over kn.
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2.1.2 The MI System

• Proposed in 1988.

• The map F over K̄:

F : K̄ 7−→ K̄,

F (X) = Xqθ+1.

• Let F̃ (x1, . . . , xn) = φ ◦ F ◦ φ−1(x1, . . . , xn) = (F̃1, . . . , F̃n).

The F̃i = F̃i(x1, . . . , xn) are quadratic polynomials in n

variables. Why quadratic?

Xqθ+1 = Xqθ

× X.
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• The cipher F̄ is a quadratic multivariate map over kn:

F̄ = L1 ◦ φ ◦ F ◦ φ−1 ◦ L2,

where the Li are randomly chosen invertible affine maps over
kn

Composition and decomposition of maps.

• The Li are used to “hide” F̄ .
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• The condition: gcd (qθ + 1, qn − 1) = 1, ensures the invertibility
of the map for purposes of decryption.

It requires that k must be of characteristic 2.

• F−1(X) = Xt such that:

t × (qθ + 1) ≡ 1 (mod qn − 1).
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• The public key includes the field structure of k, θ and
F̄ = (F̄1, .., F̄n).

• The secret keys are L1 and L2.

• To decrypt, we only have to invert the maps one by one.

• The toy example is produced by setting n = 3 and θ = 2.
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2.1.3 Attack on MI

• Linearization equation method by Patarin 1995.

• The basic idea is to use the linearization equations (LEs)
satisfied by the MI system:

∑
aijxiyj +

∑
bixi +

∑
ciyj + d = 0,

where (x1, ..., xn) is the plaintext and (y1, ..., yn) the ciphertext.

25



Y = Xqθ+1,

Y qθ−1 = Xq2θ−1,

Y qθ

X = Y Xq2θ

,

Y qθ

X = Y Xq2θ

,

Y qθ

X − Y Xq2θ

= 0.

This implies over the small field k, we have equations like
∑

a′
ijxiyj = 0,
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• There are enough LEs to produce a substantial number of
linearly independent linear equations satisfied by the plaintext
for any given ciphertext.

• The dimension of linear equations for any given ciphertext
(except one case) is n − GCD(n, θ).
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The MI cryptosystem is the catalyst for the recent fast
development of the field MKPCs.
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2.2 The generalization and extension of MI

Patarin’s group.

1.) Direct generalization – MI-Plus – Sflash.

• Minus

F̄ (x1, ..., xn) = (F̄1, ..., F̄n)

F̄−(x1, ..., xn) = (F̄1, ..., F̄n−r)

It is map kn− > kn−r.

• Minus is used to build signature schemes.
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• Sflash is a signature scheme, which was accepted as a security
standard for low cost smartcards by the Information Society
Technologies (IST) Programme of the European Commission
for the New European Schemes for Signatures, Integrity, and
Encryption project (NESSIE) in 2004.

• Sflash is Matsumoto-Imai-Minus, where one takes out a few
components from the public key of a MI system.

• The length of a signature is 249-bits and is much faster than
RSA.
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• To sign, we find one solution of the equations:

F̄−(x1, ..., xn) = (F̄1, ..., F̄n−r) = (y′
1, ..., y

′
n−r),

by putting back the “lost equations”:

F̄ (x1, ..., xn) = (F̄1, ..., F̄n) = (y′
1, ..., y

′
n−r, a1, ..., ar),

where ai are randomly chosen.
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• Plus

F̄ (x1, ..., xn) = (F̄1, ..., F̄n)

F̄+(x1, ..., xn) = L̄ ◦ (F̄1, ..., F̄n, P1, ..., Pa).

• Minu-Plus

This can be used for encryption and it is slower in decryption
due to the search.
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2.) Parallel generalization – HFE.

• The only difference from MI is that F is replaced by a new
map given by:

F (X) =
D∑

i,j=0

aijX
qi+qj

+
D∑

i=0

biX
qi

+ c.

• To invert this map, one needs to use the Berlakemp algorithm
to solve the polynomial equation:

F (X) = Y ′.
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• Due to the work of Kipnis, Shamir, Courtois, Faugere, Joux,
etc, D cannot be too small. Therefore, the system is much
slower.

• Work by Stern, Jous, Granboulan at Crypto 2006.
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3.) LE generalization – XL, which is closed related to the new
Gröbner basis methods F4 and F5 by Faugère.

The basic idea is very simple: to generate the ideal by
multiplying monomial.

Given f1 = 0, .., fn = 0, we look for single variable polynomials
in the span of {mfi}, where m is a monomial of degree less or
equal to a fix degree d.

d decides the efficiency of the algorithm.
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4.) LE inspiration – Oil & Vinegar, which is for signatures.

Oil-Vinegar polynomials.

x1, .., x0 Oil-variables.

x′
1, ..., x

′
v Vinegar variables.

∑
aijxix

′
j +

∑
bijx

′
ix

′
j +

∑
cixi +

∑
dix

′
j + e

OV map is from ko+v to ko.

This map is easy to ”invert”.
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1. Balanced case: o = v

It is broken by Kipnis – Shamir

The basic method is to search for a common invariant subspace
of a set of matrices.

2. Unbalanced case: v > o.

37



5.) Combination of HFE and Oil & Vinegar – HFEv.

6.) HFE− – Quartz, a very short signature scheme.

Encryption scheme is harder to build than the signature
schemes.
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2.3 Internal Perturbation

2.3.1 General Idea

• (Internal) Perturbation was introduced at PKC 2004 as a
general method to improve the security of multivariate public
key cryptosystems.

• Construction – small-scale “noise” is added to the system in a
controlled way so as to not fundamentally alter the main
structure, but yet substantially increase the “entropy.”

• q = 2.

39



2.4 Perturbation Agents

• Let r be a small integer and

z1(x1, . . . , xn) =
n∑

j=1

αj1xj + β1

...

zr(x1, . . . , xn) =
n∑

j=1

αjrxj + βr

be a set of randomly chosen affine linear functions in the xi

over kn such that the zj − βj are linearly independent.

• Let

Z(x1, . . . , xn) = (z1, . . . , zr) = (
n∑

j=1

αj1xj+β1, . . . ,
n∑

j=1

αjrxj+βr),

a map from kn to kr.
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2.5 Perturbation of MI

x1, . . . , xn

?

?

L1

F̃1, . . . , F̃n

-

?

z1, . . . , zr

f1, . . . , fn

�+

?
L2

y1, . . . , yn

Figure 1: Structure of Perturbation of the Matsumoto-Imai System.
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• The Construction:

=

F (x1, . . . , xn) = (
=

F 1 (x1, . . . , xn), . . . ,
=

F n (x1, . . . , xn))

= (F̃1(x1, . . . , xn) + f1(z1, .., zr), . . . ,

F̃n(x1, . . . , xn) + fn(z1, . . . , zr)),

where the fi are randomly chosen quadratic polynomials in r

variables.
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• f(z1, .., zr) = (f1(z1, . . . , zr), . . . , fr(z1, . . . , zr)) can be viewed
as a map from kr to kn – “the noise.”

• Let P be the set consisting of the pairs (λ, µ), where λ is a
point that belongs to the image of f , and µ is the pre-image of
λ by f .

• We call P the perturbation set. P has qr elements
probabilistically, and it does not include any pair whose first
component is the zero vector.
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•
=

F is called the perturbation of F̃ by Z.

• r is the perturbation dimension.
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2.5.1 The Public Key

The public key includes:

1.) The field k including its additive and multiplicative
structure;

2.) The n quadratic polynomials:

y1(x1, . . . , xn), . . . , yn(x1, . . . , xn).
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2.5.2 Encryption

Given a plaintext message vector M = (x′
1, . . . , x

′
n), the

ciphertext is the vector

(y′
1, . . . , y

′
n) = (y1(x′

1, . . . , x
′
n), . . . , yn(x′

1, . . . , x
′
n)).
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2.5.3 The Private Key

The private key includes:

1.) The map F .

2.) The set of affine linear functions z1, . . . , zr.

3.) The set of points in P (or equivalently, the set of the
polynomials fi(z1, .., zr)).

4.) The two affine linear maps L1, L2.
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2.5.4 Decryption

For any ciphertext (y′
1, . . . , y

′
n), the decryption includes the

following steps:

I.) Compute (ȳ1, . . . , ȳi) = L−1
1 (y′

1, . . . , y
′
n).

II.) One by one, take all the elements (λ, µ) in P , and compute
(yλ1, . . . , yλn) = φ−1 ◦ F−1((ȳ1, . . . , ȳi) + λ). Check if
Z(yλ1, . . . , yλn) is the same as the corresponding µ: if no,
discard it; if yes, go to next step.

III.) Compute (xλ1, . . . , xλn) = L−1
2 ◦ φ(yλ1, . . . , yλn).

If there is only one solution, it is the plaintext. However, it is
possible that there is more than one solution: we can use the
same technique suggested for HFE, namely we can use hash
functions to differentiate which is the correct one. This system
is called the perturbed Matsumoto-Imai cryptosystem (PMI).
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2.6 Previous attack

• Existing structural methods can not work effectively against
PMI including the Gröbner bases-type attacks – F4, F5 and XL.
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2.6.1 New Attack – Differential Attack

The new method that can effectively attack perturbation is the
differential analysis method developed recently by Pierre-Alain
Fouque, Jacques Stern and Louis Granboulan, which appeared
in Eurocrypt 2005.
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Lv(x) = F̄ (x + v) + F̄ (x) + F̄ (v) + F̄ (0),

For a given instance of PMI. It is straightforward to show that
Lv is linear in x.
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Let K be the “noise kernel,” the kernel of the linear part of the
affine transformation Z ◦ L2.

Then it can also be shown that

v ∈ K → dim (ker (Lv)) = gcd (θ, n).

If v /∈ K, then the dimension of the kernal of Lv has different
statistical behavior.
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• The differential attack amounts to finding a basis for K using
this difference in statistical behavior, followed by qr MI-type
attacks, each attack being against PMI restricted to one of the
qr affine planes parallel to K.

• The basic idea is actually to denoise ”the perturbation” , and
then break the system
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2.7 How to resist the differential attack

• Differential analysis uses the fact that the difference of MI is
too “pure” and can be used to differentiate what is the “noise.”

• Add some different kind of ”noise” – randomly chosen
quadratics to MI, then add internal perturbation.

These two processes are commutative
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F̄ = L̄1 ◦ (
=

F ,P1, (x1, .., xn)...PA(x1, .., xn)) ◦ L2,

where L̄1 is now a invertible affine map over kn+a.

• The plus polynomials are ”mixed” into the system.
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• Adding random polynomial – the plus method — external
perturbation

• If we add enough plus polynomials, then we can not see
anymore the statistical difference of the behavior of the kernel.

• Adding too many makes the system susceptible to the Gröbner
basis attack.
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• For the practical example, we show that in general, the plus
should be

A = g.c.d(n, θ) + 10

to ensure the security level at 280.

• The plus polynomials are also used to solve the problem of
multiple candidates for the plaintext.

• The new system is called PMI+
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• For practical use, we suggest that

n > 95 , r = 6.

• Implementation test shows that it in general 10 times faster
than RSA (1024 bits) and in decryption process, it can be more
than 10 times faster.

Research group in Taiwan
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2.8 Other related Work

• Internal Perturbation of HFE.

( HFEv – External Perturbation.)

PMI and IPHFE are very different in terms of the role of linear
terms.

IPHFE is much faster than HFE.

Good resistance to differential attack.

• This IP method is recently used by CHABANNE, DOTTAX ,
BRINGER to improve a multivariate traitor tracing schemes
by Gilbert.
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2.9 TTM

1) Tame transformation Method by T.T. Moh.

The basic idea is to use tame transformation or triangular map:

G(x1, ..., xn) = (x1, x2 + g1(x1), x3 + g2(x1, x2),

..., xn + gn−1(x1, ..., xn−1).

Jacobian conjecture, Nagata problem.
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The main ides:

G(x1, ..., xn) = L1 ◦ T1 ◦ T2 ◦ L2,

where one of the T1, T2 is upper-triangular and the other lower
triangular.

The subtlety is the degree 2 requirement, which is a subtle
combinatorical problem.

TTMs are all broken by now.
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2.10 Rainbow-TTS-STS

Multi-layer Oil-Vinger – TTM−.

Rainbow, TTS, TRMC

TTS uses sparse Oil-viegar polynomials, and signing can be 100
times faster than RSA.

2.11 MFE

Middle field equation (MFE)- Wang, Yang, Hu etc – RSA 2006.

It is broken. Ding, Hu, etc.

One big field — Several field of middle size.
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2.12 Zhuang-zi algorithm

The idea is to lift a set of multivariate equations into a single
variable equation, and try to solve it.
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3 Challenges

• New Structures

MI – Big Field

Middle Field Equation – MFE – Middle Field

TTM –Triangular Maps. ( Jacobian Conjecture )

Can we make TTM work?

New algebraic structures we could explore?

64



• Geneneral attack

Groebner basis

F4, F5

XL

Zhuang-zi

Complexity?

Why can HFE be defeated by F4?
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• Applications

Small devices – passive RFID.

Short-coming: large public key

How to overcome this problem?

• Provable security

Different attack methods.

1) Polynomial equation solving.

2) Rank.

Minrank problem.
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My Commercial:
A book:

Multivariate public key cryptosystems.

was just published in Springer’s Information Security series.

Authors:

Jintai Ding, Dieter Schmidt, Jason Gower
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Thanks and Questions?
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