Deciding the existence of rational points on curves

Nils Bruin (SFU)
joint with Michael Stoll (IU Bremen)

Computational Challenges Workshop Fields Institute, November 3, 2006

Motivation

Hilbert's 10th: Design an automatic procedure that, given a polynomial $f \in \mathbb{Z}[x_1, \dots, x_n]$, decides if

$$f(x_1,\ldots,x_n)=0$$
 has a solution $x_1,\ldots,x_n\in\mathbb{Z}$

Theorem (Davis, Matyasevitch, Putnam, Robinson): Hilbert's 10th can't be done.

Open questions:

- What if we restrict to a subclass of polynomials?
- What about rational solutions rather than integer solutions?

Today: (Smooth) Projective curves over \mathbb{Q} .

Dilbert's 10th: Small genus 2 curves:

$$C: y^2 = f_6 x^6 + \dots + f_0 \text{ with } f_i \in \{-3, \dots, 3\}$$

Method and heuristics

Strategy: Given $C: y^2 = f_6 x^6 + f_5 x^5 + \dots + f_0$,

- Search for points on C up to a height bound (say, 10000)
- **•** Look for local obstruction: $C(\mathbb{Q}_p) = \emptyset$ or $C(\mathbb{R}) = \emptyset$.
- **▶ Theorem** (Chevalley, Weil): Given an unramified Galois cover $\pi:D\to C$, there is a finite collection of twists $\{\pi_\delta:D_\delta\to C\}$ such that

$$\bigcup_{\delta} \pi_{\delta}(D_{\delta}(\mathbb{Q})) = C(\mathbb{Q})$$

Fact: For a given D/C, one can explicitly compute these δ . **Approach:** Try to prove that each D_{δ} has a local obstruction.

- ▶ Determine $Jac(C)(\mathbb{Q})$ and check if C has a rational degree 1 divisor class (possible in theory if $\coprod(Jac(C)/\mathbb{Q})$ is finite)
- Try Mordell-Weil Sieving. GENERALLY APPLICABLE!

Experimental data

Test curves: $C: y^2 = f_6 x^6 + \dots + f_0$ with $f_i \in \{-3, \dots, 3\}$.

All isomorphism classes	196 211	100.00%
Curves with rational points	137 530	70.09 %
Curves without(?) rational points	58 681	29.91 %
ELS curves total	166 808	85.01 %
ELS curves without(?) rational points	29 278	14.92 %

(ELS = Everywhere Locally Solvable)

- The high number of curves with rational points is definitely an artifact of small numbers
- Poonen and Stoll predict that about 85% of all genus 2 curves are ELS.

2-Covers of Hyperelliptic Curves

Curve: Let $f(x) \in \mathbb{Q}[x]$ be square-free and even degree. Consider

$$C: y^2 = f(x).$$

Algebra: For $K \supset \mathbb{Q}$ consider $A_K := K[\theta] = K[X]/f(x)$.

$$\mu_K: C(K) \rightarrow M_K = A_K^*/K^*A_K^{*2}$$
 $(x,y) \mapsto x - \theta$

$$C(\mathbb{Q}) \xrightarrow{\mu} M_{\mathbb{Q}}$$

$$\downarrow \qquad \qquad \downarrow r_p$$

$$C(\mathbb{Q}_p) \xrightarrow{\mu_p} M_{\mathbb{Q}_p}$$

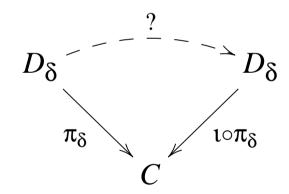
Definition: $S^{(2)}_{\mathrm{fake}}(C/\mathbb{Q}) = \{\delta \in M_{\mathbb{Q}} : r_p(\delta) \in \mu_p(C(\mathbb{Q}_p)) \text{ for all } p\}$

Geometric interpretation

Definition: $S_{\mathrm{fake}}^{(2)}(C/\mathbb{Q}) = \{\delta \in M_{\mathbb{Q}} : r_p(\delta) \in \mu_p(C(\mathbb{Q}_p)) \text{ for all } p\}$

Interpretation: $\delta \in S^{(2)}_{fake}(C/\mathbb{Q})$ corresponds to a cover $\pi_{\delta}: D_{\delta} \to C$ with $\operatorname{Aut}(D_{\delta}/C) = \operatorname{Jac}(C)[2]$.

Fake: If $\iota: C \to C$ is $(x,y) \mapsto (x,-y)$, then π_{δ} and $\iota \circ \pi_{\delta}$ give same δ :



Criterion:

$$C(\mathbb{Q}) = \bigcup_{\substack{\delta \in S^{(2)}_{\mathrm{fake}}(C/\mathbb{Q})}} \pi_{\delta}(D_{\delta}(\mathbb{Q})) \cup \iota \circ \pi_{\delta}(D_{\delta}(\mathbb{Q}))$$

Experimental data

Test curves: $C: y^2 = f_6 x^6 + \dots + f_0$ with $f_i \in \{-3, \dots, 3\}$.

All isomorphism classes	196 211	100.00%
Curves with rational points	137 530	70.09 %
Curves without(?) rational points	58 681	29.91 %
ELS curves total	166 808	85.01 %
ELS curves without(?) rational points	29 278	14.92 %
Curves with ELS 2-covers among these	1 492	0.76%

(ELS = Everywhere Locally Solvable)

Mordell-Weil Sieving

Embedding: Given $\mathfrak{d} \in \underline{\mathrm{Pic}}^1(C)(\mathbb{Q})$, we have

$$i: C \hookrightarrow \operatorname{Jac}(C)$$
 $P \mapsto [P] - \mathfrak{d}$

Kernel of reduction: $0 \to \Lambda_p \to \operatorname{Jac}(C)(\mathbb{Q}) \to \operatorname{Jac}(C)(\mathbb{F}_p)$

$$C(\mathbb{Q}) \longrightarrow \operatorname{Jac}(C)(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \rho_{p}$$

$$C(\mathbb{F}_{p}) \longrightarrow \operatorname{Jac}(C)(\mathbb{F}_{p})$$

Cosets: $V_p = (\operatorname{im}(i_p) \cap \operatorname{im}(\rho_p)) + \Lambda_p$.

Intersection: If $\Lambda_p + \Lambda_q \neq \operatorname{Jac}(C)(\mathbb{Q})$ then $V_p \cap V_q$ may be empty even if V_p and V_q are not.

Mordell-Weil Sieving – Heuristics

Idea (Scharaschkin, Flynn, B.,...): Pick a finite set S of (good) primes.

$$C(\mathbb{Q}) \longrightarrow \operatorname{Jac}(C)(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \rho_{S}$$

$$\prod_{p \in S} C(\mathbb{F}_{p}) \longrightarrow \prod_{p \in S} \operatorname{Jac}(C)(\mathbb{F}_{p})$$

Heuristic (Poonen): $\#(\operatorname{im}(\rho_S) \cap \operatorname{im}(i_S))$ is likely very small.

$$\lim_{\#S\to\infty} \frac{\#(\prod_{p\in S} C(\mathbb{F}_p)) \cdot \#\mathrm{im}(\rho_S)}{\#(\prod_{p\in S} \mathrm{Jac}(C)(\mathbb{F}_p))} = 0$$

Sensible choice: For some bound B,

$$S := \left\{ p \leq B^2 \text{ prime} \middle| \begin{array}{l} C \text{ has good reduction at } p \text{ and} \\ \# \mathrm{Jac}(C)(\mathbb{F}_p) \text{ is } B\text{-smooth} \end{array} \right\}$$

Heuristics: Weil bounds

Happy fact: Smooth numbers are plentiful: for u > 0,

$$\lim_{B\to\infty} \frac{\#\{n\in[1,\ldots,B]: n \text{ is } B^u\text{-smooth}\}}{B} > 0$$

Weil-Bounds: $\#\mathrm{Jac}(C)(\mathbb{F}_p)=p^{g+o(1)}$ and $\#C(\mathbb{F}_p)=p^{1+o(1)}$.

Assumption: $\#Jac(C)(\mathbb{F}_p)$ behaves as a typical integer of its size:

$$\lim_{B\to\infty} \#S/B > 0$$

First bound:

$$\prod_{p \in S} \frac{\#C(\mathbb{F}_p)}{\#Jac(C)(\mathbb{F}_p)} \le \prod_{p \in S} p^{(1-g+o(1))} < \exp(c(1-g+o(1))B^2)$$

Heuristics: Bounding Mordell-Weil image

Recap:

$$\prod_{p \in S} \frac{\#C(\mathbb{F}_p)}{\#\mathrm{Jac}(C)(\mathbb{F}_p)} < \exp(c(1-g+o(1))B^2)$$

Group Exponent: $\prod_{p \in S} \operatorname{Jac}(C)(\mathbb{F}_p)$ is far from cyclic:

exponent
$$\left(\prod_{p \in S} \operatorname{Jac}(C)(\mathbb{F}_p)\right) \leq \prod_{\substack{\text{primes } p \leq B \\ \leq B^{\pi(B)(2g+o(1))} \\ \leq \exp((2g+o(1))B)}} B^{2g+o(1)}$$

Mordell-Weil rank: If $\operatorname{rkJac}(C)(\mathbb{Q}) = r$ then

$$\#\mathrm{im}(\rho_S) \le \exp((2g + o(1))B)^r$$

Expected size of $im(i_S) \cap im(\rho_S)$:

$$\# \operatorname{im}(\rho_S) \cdot \prod_{p \in S} \frac{\# C(\mathbb{F}_p)}{\# \operatorname{Jac}(C)(\mathbb{F}_p)} \le \exp(r(2g + o(1))B - c(g - 1 + o(1))B^2)$$

Mordell-Weil Sieving (cont.)

Idea (Scharaschkin, Flynn, B.,...): Pick a finite set S of (good) primes.

$$C(\mathbb{Q}) \xrightarrow{} \operatorname{Jac}(C)(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \rho_{S}$$

$$\prod_{p \in S} C(\mathbb{F}_{p}) \xrightarrow{i_{S}} \prod_{p \in S} \operatorname{Jac}(C)(\mathbb{F}_{p})$$

Heuristic (Poonen): If S is large enough, then one would expect

$$\operatorname{im}(i_S) \cap \operatorname{im}(\rho_S) = \emptyset.$$

Practice:

- Efficiency demands computing discrete logarithms in $Jac(C)(\mathbb{F}_p)$. (pick S such that the group orders are mainly smooth)
- Combinatorial explosion looms, because $\operatorname{im}(i_S)$ will be huge. (work in quotients G/B_iG for $B_1 \mid B_2 \mid B_3 \mid \ldots$)

Determining the Mordell-Weil groups

Mordell-Weil groups:

$conj. \ Ш(J)$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/4\mathbb{Z})^2$	Total
$\operatorname{rank} J(\mathbb{Q}) = 0$	3		36	39
$\operatorname{rank} J(\mathbb{Q}) = 1$	516	5	5	526
$\operatorname{rank} J(\mathbb{Q}) = 2$	772		$\mid \qquad 1 \mid$	773
$\operatorname{rank} J(\mathbb{Q}) = 3$	152			152
$\operatorname{rank} J(\mathbb{Q}) = 4$	2			2
all ranks	1445	5	42	1492

- For the second column the ranks are proved using a visualization argument
- For 4 entries in the third colums, we proved the rank using a visualization argument, subject to GRH.
- According to BSD, this whole table is correct.

Experimental data

Test curves: $C: y^2 = f_6 x^6 + \dots + f_0$ with $f_i \in \{-3, \dots, 3\}$.

All isomorphism classes	196 211	100.00%
Curves with rational points	137 530	70.09%
Curves without(?) rational points	58 681	29.91 %
ELS curves total	166 808	85.01 %
ELS curves without(?) rational points	29 278	14.92%
Curves with ELS 2-covers among these	1 492	0.76 %
Curves that need GRH or BSD conjecture	42	0.02 %

(ELS = Everywhere Locally Solvable)

Conclusion: For all but 42 curves, we were able to decide their solvability. Subject to standard conjectures, we were able to resolve all.