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Motivation

Two Fundamental Approaches for solving DLP’s:

1 Solve it in the given group.

2 Find an homomorphism to some other group where you can
easily solve the DLP.

This talk focusses on the latter.

Pure Algebraist

Problem solved - Fundamental Theorem on Decomposition of
Finitely Generated Abelian Groups

Cryptographer

Okay, give me the isomorphism.
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Hyperelliptic Curves

H : y2 + hy = f

1 h, f ∈ Fq[x ] .

2 deg h ≤ g , deg f = 2g + 1 (or 2g + 2).

3 Nonsingular over Fq.
i.e. no point satisfying the curve equation and the two partials

2y + h = 0 and h′y − f ′ = 0

g = 1: Elliptic Curve - group law for points on the curve.

g > 1: There is no group law for points on the curve.
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From a Curve to a Group in 3 easy slides

Function Fields

Category Theorist

Fq(C ) = HomFq(C ,P1
Fq

)

Everybody Else

These are just rational maps (i.e. rational functions in two
variables) defined over Fq from the curve to Fq

Example

Let H be our hyperelliptic curve defined by y2 + hy = f .
Fq(H) ∼= Fq(x)[y ]/〈y2 + hy − f 〉

Curves are really classified by their function fields, not how we
write them down.
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From a Curve to a Group in 3 easy slides

Divisor Group of a Curve

The free abelian group generated by points on the curve.

Divisor - A finite formal sum of points, e.g.

D =
∑

P∈C(Fq)

mPP, mp ∈ Z, mP = 0 for almost all P.

Div(C ) denotes the set/group of all such divisors.

Divisors defined over Fq - A divisor that is invariant under the
natural action of Gal(Fq/Fq).

DivFq(C ) denotes the set of all such divisors.

This group is too large in two respects.
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From a Curve to a Group in 3 easy slides

Two subgroups of DivFq(C ).

Degree - we can define the degree of the divisor D to be

deg D =
∑

P∈C(Fq)

mP .

Div0
Fq

(C ) = {D ∈ DivFq(C )|deg D = 0}
principal divisor - for f ∈ Fq(C )∗ we define the divisor

(f ) =
∑
P∈C

vP(f )P

where vP(f ) is the order of vanishing or pole of f at P.

PrinFq(C ) = {(f ) ∈ DivFq(C )|f ∈ Fq(C )∗}
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From a Curve to a Group in 4 slides

Exercise

For f ∈ Fq(C )∗, deg (f ) = 0.

Corollary

PrinFq(C ) ⊆ Div0
Fq

(C )

The quotient group is the object we are integerested in

Pic0
Fq

(C ) = Div0
Fq

(C )/PrinFq(C ).

Warning

This group is often referred to as the Jacobian, just don’t let an
algebraic geometer hear you say that.
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Complexity Notation

Before we talk about complexity of the DLP, we need some
notation.

LN [α, β] = O
(
exp((β + o(1))(log N)α(log log N)1−α)

)
Exponential: α = 1, LN [1, β] = O

(
Nβ+o(1)

)
Polynomial: α = 0, LN [0, β] = O

(
(log N)β

)
Subexponential: 0 < α < 1.

Square Root Algorithms

Generic algorithms can be used to solve any DLP.
Complexity is L|G |[1, 1/2] = O(

√
|G |) (exponential).
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Complexity of DLP for curves

Take a curve of genus g defined over Fq. #Pic0
Fq

(C ) ≈ qg .

Elliptic Curves - generic algorithms Lq[1, 1/2] = O(
√

q).

Hyperelliptic curves -
index-calculus algorithms Lqg [1/2, β], g > log q.

Adleman-DeMarrais-Huang (1994)

Müller-Stein-Thiel (1999)

Enge-Gaudry (2002)

Other curves -
index-calculus algorithms Lqg [1/3, β], g > (log q)2

Diem - Smooth projective planar curves

Enge-Gaudry - “Cn,d” curves.
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Maps between curves/function fields

Consider a map ψ : C → H and f ∈ Fq(H).

C

f ◦ψ

$$I
I

I
I

I
I

I
I

I
I

I
ψ // H

f

��
P1

This gives f ◦ ψ ∈ Fq(C ).
We have an induced map on function fields:

ψ∗ : Fq(H) −→ Fq(C )
f 7→ ψ∗(f ) = f ◦ ψ
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Co-Norm Map

For a point P ∈ H Define the divisor ψ∗(P) ∈ Div0
Fq

(C ) by:

ψ∗(P) =
∑

Q∈ψ−1(P) eQQ,

eQ is the order of multiplicity of ψ at Q.

Extend by linearity to get a homomorphism of the divisor groups.

ψ∗ : Div0
Fq

(H) −→ Div0
Fq

(C )

D =
∑

P∈H mpP 7→ ψ∗(D) =
∑

P∈H mPψ
∗(P)

We can extend this to a map on principal divisors:

ψ∗ : PrinFq(H) −→ PrinFq(C )
(f ) 7→ (ψ∗(f ))

The resulting map ψ∗ : Pic0
Fq

(H) → Pic0
Fq

(C ) is called the
Co-Norm Map.
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Coverings of Elliptic Curves (simplified)

Consider 2 6= char Fq 6 | n.

Hn : y2 = x3n + Ax2n + Bxn + C E : y2 = x3 + Ax2 + Bx + C

ψ : Hn −→ E
(α, β) 7→ (αn, β)

We can assume C 6= 0, so

ψ is surjective (over Fq).

Hn has genus b3n−1
2 c.

Oh No!

We’ve excluded elliptic curves over F3!
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Induced maps

ψ∗ : Pic0
Fq

(E ) −→ Pic0
Fq

(Hn)

(α, β)− (∞) 7→
(∑n

i=1(ζ
i
nα

′, β)
)
− n(∞)

where:

α′ ∈ Fq satisfies (α′)n = α,

ζn ∈ Fq is a primitive nth root of unity.

Claim

ψ∗ is injective.

Step 1. Prove each ψ∗((α, β)− (∞)) is a distinct divisor.
This is obvious.
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Reduced Divisors

Step 2. Prove each ψ∗((α, β)− (∞)) is a reduced divisor.
For n odd, every divisor class is represented by a unique divisor.(

n∑
i=1

(ζ i
nα

′, β)

)
− n(∞)

Reduced divisors:

1
∑

P∈H\{∞} mP ≤ g ;

2 mP ≥ 0 ∀P ∈ H\{∞};
3 If P 6= Pσ, then

mP > 0 ⇒ mPσ = 0;

4 If P 6= Pσ, then mP ≤ 1.

Our divisor:

1
∑n

i=1 1 = n ≤ b 3n
2 c = g ;

2 mP ≥ 0 ∀P ∈ H\{∞};
3 β 6= 0, then (ζ i

nα
′, β)σ 6= (ζ j

nα
′, β);

4 β = 0, then α 6= 0
(ζ i

nα
′, β)σ 6= (ζ j

nα
′, β) for i 6= j .
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Using Hyperelliptic covers to solve the ECDLP

Consider ψ : Hn → E with g = b3n
2 c ≈ log q.

Since g ≈ log q is large enough, we use our subexponential method
to solve the DLP:

Lqg [1/2, β] = O
(
exp

(
(β + o(1))(log q)(2)1/2(2 log log q)1/2

))
>>

O
(
exp

(
(β′ + o(1))(log q)1

))
= Lq[1, β

′], ∀β′ > 0

We’ve just created an algorithm that is worse than
BRUTE FORCE!!
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More Coverings of Elliptic Curves (simplified)

What do we do generically? i.e. consider
Consider 2 6= char Fq 6 | n,m.

Cm,n : y2m = x3n + Ax2n + Bxn + C E : y2 = x3 + Ax2 + Bx + C

ψ : Cm,n −→ E
(α, β) 7→ (αn, βm)

Take m, n such that 2m = 3n or 2m + 1 = 3n and C 6= 0.

ψ is surjective (over Fq).

Cm,n is smooth (both affine and projective).

Cm,n has genus
(3n−1

2

)
.

Oh No!

Still missing those elliptic curves over F3!
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Induced Maps

Again, we will get

ψ∗ : Pic0
Fq

(E ) −→ Pic0
Fq

(Cm,n)

(α, β)− (∞) 7→
(∑n

i=1

∑m
j=1(ζ

i
nα

′, ζ j
mβ

′)
)
− ψ−1(∞)

where:

α′, β′ ∈ Fq satisfy (α′)n = α and (β′)m = β.

ζn, ζm ∈ Fq are primitive nth and mth roots of unity.

Question

Is ψ∗ injective?

We have no notion of reduced divisors for these curves.

“Sometimes you have to roll a 6 the hard way”
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The better half - Norm map

So far, we’ve only used the contravariance of the Hom functor.

ψ∗ : Div0
Fq

(Cm,n) −→ Div0
Fq

(E )

D =
∑

P∈Cm,n
mpP 7→ ψ∗(D) =

∑
P∈Cm,n

mPψ(P)

We can extend this to a map on principal divisors:

ψ∗ : PrinFq(Cm,n) −→ PrinFq(E )
(f ) 7→ (NFq(Cm,n)/ψ∗(Fq(E))(f ))

The resulting map is called the norm map:

ψ∗ : Pic0
Fq

(Cm,n) → Pic0
Fq

(E )
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Composing the Norm and co-Norm maps

Pic0
Fq

(E )

ψ∗◦ψ∗
11

ψ∗ --
Pic0

Fq
(Cm,n)

ψ∗
--
Pic0

Fq
(E )

P
� ψ∗ //

∑
Q∈ψ−1(P) eQQ � ψ∗ //

(∑
Q∈ψ−1(P) eQ

)
P

Note:
∑

Q∈ψ−1(P) eQ = deg ψ = [Fq(Cm,n) : Fq(E )] = mn.

Hence, ψ∗ ◦ ψ∗ = [deg ψ] on Pic0
Fq

(E ).

Condition for ψ∗

Assume our DLP is in a subgroup of prime order l .

If gcd(mn, l) = 1, then the DLP is preserved.
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Using L[1/3] Algorithms to solve ECDLP

This time we use ψ : Cm,n → E with g =
(3n−1

2

)
≈ (log q)2:

Since mn ≈ g ≈ (log q)2, gcd(mn, l) = 1 and we can use Diem’s
algorithm:

Lqg [1/3, β] = O
(
exp

(
(β + o(1))(log q)(3)1/3(3 log log q)2/3

))
>>

O
(
exp

(
(β′ + o(1))(log q)1

))
= Lq[1, β

′], ∀β′ > 0

Same thing as before!!

Comments:

We can do the same for Cn,d curves and then use
Enge-Gaudry.

We can use these same tricks to map between other curves.
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Dividing Lines

New subexponential algorithm for solving DLP’s

Run-time Lqg [α, β].

g ≥ (log q)δ ⇒ log qg ≥ (log q)1+δ.

Again, find some embedding of our ECDLP into the new curve.

Exponential:

Lqg [α, β] = O
(
exp

(
(β + o(1))(log q)(1+δ)α((1 + δ) log log q)1−α

))
>>

O
(
exp

(
(β′ + o(1))(log q)(1+δ)α(log log q)1−(1+δ)α

))
= Lq[(1 + δ)α, β′]

(1 + δ)α ≥ 1 ⇒ δ ≥ 1− α

α
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Dividing Lines

New subexponential algorithm for solving DLP’s

Run-time Lqg [α, β].

g ≥ (log q)δ ⇒ log qg ≥ (log q)1+δ.

Again, find some embedding of our ECDLP into the new curve.

Subxponential:

Lqg [α, β] = O
(
exp

(
(β + o(1))(log q)(1+δ)α((1 + δ) log log q)1−α

))
<<

O
(
exp

(
o(1)(log q)(1+δ)α+ε(log log q)1−(1+δ)α−ε

))
= Lq[(1 + δ)α+ ε, 0]

(1 + δ)α < 1 ⇒ δ <
1− α

α
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Review of Index-Calculus Algorithms

Index-calculus

The computational mathematician’s answer to the fundamental
decomposition of finitely generated abelian groups.

Three basic steps.

1 Construct a factor base;
2 Collect relations;
3 Linear algebra.

For a factor base B, we basically compute the kernel of

φ : Z|B| → G

And explicitly compute

Z|B|/ker φ ∼= G
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Factor Bases

Typical Factor Base

All (or positive proportion) of points defined over Fqk for all k < B.

Probability of finding relation with factor base:

Probability of finding smooth polynomial of bounded degree
with smoothness bound B.

Smaller factor base:

Let θ be the proportion of Fq-points in factor base;

Probability that n random Fq-points are in factor base is θn.

Requires (1/θ)n such divisors to find one with desired property.

Question

What is one fundamental requirement on the size of the factor
base to achieve a subexponential algorithm?
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Subexponential factor bases

Fundamental requirement for subexponential index calculus
method for ECDLP:

Size of factor base has to be subexponential in q.

Take factor base of size Lq[α, β] with α < 1.

What is the probability that a point over Fq is in factor base?

# points in factor base
total # of points

=
Lq[α, β]

Lq[1, 1]
.

How many tries to find one such point? Lq[1, 1]/Lq[α, β].

Problem

Lq[1, 1]/Lq[α, β] dominates Lq[α
′, β′] for any α′ < 1.

NOT subexponential. Answer: Toast.

Mark Bauer Relating the ECDLP to Other Curves



Subexponential factor bases

Fundamental requirement for subexponential index calculus
method for ECDLP:

Size of factor base has to be subexponential in q.

Take factor base of size Lq[α, β] with α < 1.

What is the probability that a point over Fq is in factor base?

# points in factor base
total # of points

=
Lq[α, β]

Lq[1, 1]
.

How many tries to find one such point? Lq[1, 1]/Lq[α, β].

Problem

Lq[1, 1]/Lq[α, β] dominates Lq[α
′, β′] for any α′ < 1.

NOT subexponential. Answer: Toast.

Mark Bauer Relating the ECDLP to Other Curves



Conclussions

1 Find all classes of curves that admit a subexponential
algorithm satisfying δ ≥ 1−α

α and:

Run-time Lqg [α, β];

g ≥ (log q)δ.

2 Develop an analogous result for Number Fields? (well, this is
easy, but is it worth anything)

3 Can we prove that these maps are injective (enough) when we
don’t know the group orders involved?

4 Build a better mouse trap - i.e. a fundamentally different
index calculus algorithm
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