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B1: K2 and algebraic cycles
B2: Irvine Lecture Notes
B3: Algebraic cycles and higher K-theory
BS (with Srinivas): Remarks on correspondences and algebraic cycles
B4: The moving lemma for higher Chow groups
BL (with Lichtenbaum): A spectral sequence for motivic cohomology
BE (with Esnault): An additive version of higher Chow groups
BK (with Kriz): Mixed Tate motives
BEL (with Esnault and Levine): Decomposition of the diagonal . . .
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LS (with Srinivas): 0-cycles on certain singular elliptic surfaces
L1: Bloch’s formula for singular surfaces
L2: The indecomposable K3 of fields
L3: Relative Milnor K-theory
L4: Bloch’s higher Chow groups revisited
EL (with Esnault): Surjectivity of cycle maps
ELV (with Esnault and Viehweg): small degree
L5: Mixed motives
GL (with Geisser): The K-theory of fields in char p
L6: Techniques of localization
L7: Chow’s moving lemma
L8: Homotopy coniveau
LS (with Serpé): spectral sequence for G-equivarient K-theory
EL2 (with Esnault): Motivic π1 and Tate motives
KL (with Krishna): Additive higher Chow groups of schemes
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Outline

• Homotopy theory and motivic homotopy theory

• Postnikov towers

• The homotopy coniveau tower

• Computations and examples

• The Postnikov tower for motives
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Homotopy theory

and
motivic homotopy theory
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Homotopy theory in 60 seconds

SH is the stable homotopy category: The localization of the

category Spt of spectra with respect to stable weak equivalence.

A spectrum is a sequence of pointed spaces E = (E0, E1, . . .)

plus bonding maps ΣEn → En+1. A map f : E → F is a sta-

ble weak equivalence if f induces an isomorphism on the stable

homotopy groups:

πs
n(E) := lim

N
πn+N(EN).
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A spectrum E gives a generalized cohomology theory by

En(X) := HomSH(Σ∞X+,ΣnE)

with X a space (simplicial set),

Σ∞X+ := (X+,ΣX+, . . . ,ΣnX+, . . .)

and

Σn(E0, E1, . . .) := (En, En+1, . . .)

We go from spaces to spectra by taking Σ∞. Conversely, sending

a spectrum E = (E0, E1, . . .) to its 0th-space

Ω∞E := lim
n

ΩnEn

gives a right adjoint to the infinite suspension functor Σ∞.
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SH and D(Ab)

For us, a space is a simplicial set, Spc is the category of spaces.

Replacing simplicial sets with simplicial abelian groups and re-

peating the above construction, we get the unbounded derived

category D(Ab) together with a (non-full!) embedding

D(Ab) → SH.

This allows one to think of stable homotopy theory as an exten-

sion of homological algebra.

8



For example, the object of SH corresponding to the complex A[n]

is the Eilenberg-Maclane spectrum EM(A[n]), characterized by

πs
m(EM(A[n])) =

0 for m 6= n

A for m = n

The cohomology theory represented by EM(A) is singular coho-

mology:

Hn(X, A) ∼= HomSH(Σ∞X+, EM(A[n])).
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Summary

Spc
+ //Spc∗

PWVUST
Σ

��

STQR
Ω

PW ??
Σ∞

//Spt

PWVUST
Σ

��

STQR
Ω

PW ??Ω∞oo

invert weak equivalences
��

H
+ //H∗

PWVUST
Σ

��

STQR
Ω

PW ??
Σ∞

//
SH

PWVUST
Σ

��

STQR
Ω

PW ??Ω∞oo ⊃ D(Ab)

Ω = Σ−1 on SH. SH is a triangulated category with distinguished

triangles the homotopy (co)fiber sequences.
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Motivic stable homotopy theory

The motivic version of stable homotopy theory follows the same

pattern, with changes:

Spc Spc(k): presheaves of spaces on Sm/k.

There are two basic functors: the constant presheaf functor

c : Spc → Spc(k) and the representable presheaf functor Sm/k →
Spc(k).

Spc(k) inherits the operations in Spc by performing them point-

wise: e.g. pushouts. The pointed category Spc∗(k) has e.g.

wedge products.
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Spt SptT (k): T -spectra. Let T = P1 ∼= S1∧Gm. A T -spectrum
E is

E = (E0, E1, . . .) + bonding maps ΣTEn → En+1

ΣTE := E ∧ P1.

We have adjoint functors Σ∞
T : Spc∗(k) ↔ SptT (k) : Ω∞

T .

One localizes with respect to

1. the Nisnevich topology
2. A1-homotopy equivalence

For Spc∗(k), this localization is the unstable motivic homotopy
category H(k). For SptT (k), this localization is the stable mo-
tivic homotopy category SH(k).
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T -spectra and cohomology theories

Cohomology represented by a T -spectrum is

1. Bigraded. Since ΣT
∼= ΣGm

◦ ΣS1, we have two indepen-

dent, invertible suspension operators on SH(k). So, generalized

motivic cohomology is bi-graded (X ∈ Sm/k):

En,m(X) := HomSH(k)(Σ
∞X+,Σm

Gm
Σn−m

S1 E).

2. Satisfies Nisnevich Mayer-Vietoris

3. Is A1-homotopy invariant

The localization performed imposes Nisnevich Mayer-Vietoris and

A1-homotopy on E∗,∗.
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Motives

In motivic stable homotopy theory, the triangulated category of

motives DM(k), plays the role that D(Ab) does in the classical

theory.

There is a motivic Eilenberg-Maclane functor

EM : DM(k) → SH(k)

The T -spectrum HZ := EM(Z) represents motivic cohomology:

HZp,q(X) = Hp(X, Z(q)).
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S1-spectra Rather than inverting ΣT on Spc∗(k), one can just
invert ΣS1.

Definition SptS1(k) is the category of presheaves of spectra on
Sm/k: objects are sequences X = (X0, X1, . . .) in Spc∗(k) plus
bonding maps εn : ΣXn → Xn+1.

Localizing SptS1(k) to impose Nisnevich Mayer-Vietoris and A1-
homotopy invariance gives the homotopy category of S1 spectra
over k, SHs(k). This is a triangulated category with shift induced
by the usual suspension of spectra.

By forming T -spectra in SptS1(k), one constructs the category
of S1-T bi-spectra, Spts,t(k), with homotopy category equivalent
to SH(k). So, we can freely pass between T spectra and S1-T
bi-spectra.
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Effective motives

Just as SH(k) contains the category of motives DM(k), SHs(k)

contains the category of effective motives DMeff(k).

Note: Voevodsky’s cancellation theorem says that the canonical

functor

DMeff(k) → DMeff(k)

is faithful. It is not known if SHs(k) → SH(k) is faithful.
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Summary
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Postnikov towers
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The classical Postnikov tower

Let E be a spectrum, n an integer. The n-1-connected cover

E<n> → E of E is a map of spectra such that

1. πs
m(E<n>) = 0 for m ≤ n− 1 and

2. πs
m(E<n>) → πs

m(E) is an isomorphism for m ≥ n.

One can construct E<n> → E by killing all the homotopy groups

of E in degrees ≥ n, E → E(n) (successively coning off each

element) and then take the homotopy fiber.
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There is a structural approach as well: Let SHeff ⊂ SH be the

full subcategory of -1 connected spectra; this is the same as the

smallest subcategory containing all suspension spectra Σ∞X and

closed under colimits.

Let in : ΣnSHeff → SH be the inclusion of the nth suspension

of SHeff. The Brown representability theorem shows that the

functor on ΣnSHeff

A 7→ HomSH(in(A), E)

is representable in ΣnSHeff; the representing object is the n-1-

connected cover E<n> → E.
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Forming the tower of subcategories

. . . ⊂ Σn+1SHeff ⊂ ΣnSHeff ⊂ . . . ⊂ SH

we have for each E the corresponding Postnikov tower of n-1

connected covers

. . . E<n + 1> → E<n> → . . . → E

natural in E.
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The layers

Form the cofiber E<n + 1> → E<n> → E<n/n + 1>. Clearly

πs
m(E<n/n + 1>) =

0 for m 6= n

πs
n(E) for m = n.

Obstruction theory gives an isomorphism of E<n/n+1> with the

Eilenberg-Maclane spectrum Σn(EM(πs
n(E))) = EM(πs

n(E)[n]).

Roughly speaking, the Postnikov tower shows how a spectrum

is built out of Eilenberg-Maclane spectra.
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From the point of view of the cohomology theory represented

by E, the Postnikov tower yields the Atiyah-Hirzebruch spectral

sequence

E
p,q
2 := Hp(X, πs

−q(E)) =⇒ Ep+q(X)

(there are convergence problems in general).

This is constructed just like the the spectral sequence for a

filtered complex, by linking all the long exact sequences com-

ing from applying HomSH(Σ∞X+,−) to the cofiber sequence

E<n + 1> → E<n> → E<n/n + 1>.
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The sketal filtration

For a CW complex X, one can recover the A-H spectral sequence

by applying E to the skeletal filtration of X:

∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X

Applying E to the cofiber sequences Xp−1 → Xp → Xp/Xp−1 →
ΣXp−1 gives the long exact sequence

. . . → Ep+q−1(Xp−1) → Ep+q(Xp/Xp−1)

→ Ep+q(Xp) → Ep+q(Xp−1) → . . .

which link together to give a spectral sequence.

The universal property of the E<n> identifies the skeletal spec-

tral sequence with the A-H spectral sequence.
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The motivic Postnikov tower

Voevodsky has defined the Tate analog of the Postnikov tower:

Let SHeff(k) be the smallest full triangulated subcategory of

SH(k) containing all the T -suspension spectra Σ∞
t A, A ∈ Spc∗(k),

and closed under colim.

Taking T -suspensions gives the tower of full triangulated local-

izing subcategories

. . . ⊂ Σn+1
t SHeff(k) ⊂ Σn

t SHeff(k) ⊂ . . . ⊂ SH(k)

n ∈ Z.
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Lemma The inclusion functor in : Σn
t SHeff(k) → SH(k) admits

an exact right adjoint rn : SH(k) → Σn
t SHeff(k).

This follows by Neeman’s “Brown representability” theorem ap-

plied to the functor on Σn
t SHeff(k)

F 7→ HomSH(k)(in(F ), E)

for each E ∈ SH(k).

26



Define fn := inrn : SH(k) → SH(k), giving the motivic Postnikov

tower

. . . → fn+1E → fnE → . . . → E.

The layers

snE := cofib(fn+1E → fnE)

are Voevodsky’s slices.
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The Postnikov tower in SHs(k)

Just as one can form an unstable Postnikov tower in H∗, we have
the “semi-stable” motivic Postnikov tower in SHs(k).

Take the tower of full triangulated subcategories

. . . ⊂ Σn+1
t SHs(k) ⊂ Σn

t SHs(k) ⊂ . . . ⊂ ΣtSHs(k) ⊂ SHs(k)

The inclusions in,s : Σn
t SHs(k) → SHs(k) have a right adjoint

rn,s : SHs(k) → Σn
t SHs(k), giving us the truncation functors

fn,s : SHs(k) → SHs(k),

and for E ∈ SHs(k), the S1-motivic Postnikov tower

. . . → fn+1,sE → fn,sE → . . . → f1,sE → E.

Let sn,sE be the cofiber of fn+1,sE → fn,sE.

28



The homotopy coniveau tower

This construction, based on the Bloch-Lichtenbaum construc-

tion of the spectral sequence for K-theory, gives an algebraic

version of the (co)skeletal filtration of a CW complex.
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Notation:

∆n := Spec k[t0, . . . , tn]/
∑

i ti − 1

A face F of ∆n is a closed subscheme defined by

ti1 = . . . = tir = 0.

n 7→ ∆n extends to the cosimplicial scheme

∆∗ : Ord → Sm/k.

For E ∈ Spt(k), X ∈ Sm/k, W ⊂ X closed, set

EW (X) := fib(E(X) → E(X \W )).
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• For X ∈ Sm/k:

S
(p)
X (n) := {W ⊂ X ×∆n, closed, codimX×FW ∩ (X × F ) ≥ p}.

• For E ∈ Spt(k):

E(p)(X, n) := hocolim
W∈S

(p)
X (n)

EW (X ×∆n).

• This gives the simplicial spectrum E(p)(X): n 7→ E(p)(X, n),

and the homotopy coniveau tower

. . . → E(p+1)(X) → E(p)(X) → . . . → E(0)(X) = E(−1)(X) = . . .

Remark: X 7→ E(p)(X) is functorial in X for flat maps.
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Properties of the HC tower

Fix an E ∈ Spt(k). We will assume 2 basic properties hold for

E:

1. homotopy invariance: For all X ∈ Sm/k, E(X) → E(X × A1)

is a stable weak equivalence.

2. Nisnevic excision: Let f : Y → X be an étale map in Sm/k.

Suppose W ⊂ X is a closed subset such that f : f−1(W ) → W

is an isomorphism. Then f∗ : EW (X) → Ef−1(W )(Y ) is a

stable weak equivalence.

We also assume that k is an infinite perfect field.
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Theorem Let E be in Spt(k) satisfying properties 1 and 2.
Then

(1) X 7→ E(p)(X) extends (up to weak equivalence) to a functor
E(p) : Sm/kop → Spt.

(2) Localization. Let i : W → X be a closed codimension d

closed embedding in Sm/k, with trivialized normal bundle, and
open complement j : U → X. There is a natural homotopy fiber
sequence in SH

(Ωd
t E)(p−d)(W ) → E(p)(X)

j∗−→ E(p)(U)

(3) Delooping. There is a natural weak equivalence

(Ωm
t E)(n) ∼−→ Ωm

t (E(n+m))
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(1) Functoriality: this is proven using Chow’s moving lemma,

just as for Bloch’s cycle complexes.

(2) Localization: this is proven using Bloch’s moving lemma

(blowing up) just as for Bloch’s cycle complexes.

(3) Delooping follows from the localization sequence:

(ΩtE)(n)(X × 0) → E(n+1)(X × P1) → E(n+1)(X × A1)

and the natural weak equivalence

fib(F (X × P1) → F (X × A1)) ∼= (ΩtF )(X).
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For q ≥ p, set E(p/q)(X) := cofib(E(q)(X) → E(p)(X)).

Corollary (Birationality) Take E ∈ Spt(k), X ∈ Sm/k, Then

E(0/1)(X) ∼= E(0/1)(k(X)).

Proof: Take W ⊂ X smooth with trivial normal bundle, codim

d > 0. Let F = Ωd
t E, U = X \W . Localization =⇒ we have a

fiber sequence

F (0−d/1−d)(W ) → E(0/1)(X) → E(0/1)(U)

But 1 − d ≤ 0, so F (−d)(W ) = F (1−d)(W ) = F (W ) and thus

F (0−d/1−d)(W ) ∼ ∗.

For general W , the same follows by stratifying.
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The comparison theorem

Theorem (1) For E satisfying (1) and (2), E(n) is in Σn
TSHs(k).

(2) The map E(n) → fn,sE induced by E(n) → E is an isomor-

phism

The motivic Postnikov tower is just a homotopy invariant

version of the coniveau filtration.
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The delooping identity Ωt(E(n+1)) ∼= (ΩtE)(n) gives

Corollary Ωt ◦ fn+1,s
∼= fn,s ◦Ωt.

This yields the motivic Freudenthal suspension theorem:

Theorem E ∈ Σn
t SHs(k) =⇒ ΩtΣtE ∈ Σn

t SHs(k)

This allows one to use the semi-stable Postnikov tower to com-

pute the stable one via

Corollary E ∈ Σn
t SHs(k) =⇒ Ω∞

t Σ∞
t E ∈ Σn

t SHs(k)
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The stable homotopy coniveau tower

Let

E := (E0, E1, . . . , En, . . .)

εn : En → ΩTEn+1

be an (s, t)-spectrum over k. We assume that the εn are weak
equivalences.

For each n, m we have the weak equivalence ε<m>
n :

E
(n+m)
n

(εn)(n+m)

−−−−−−−→ (ΩTEn+1)
(n+m) deloop−−−−−→ ΩT (E(n+m+1)

n+1 )

Set:

E<m> := (E(m)
0 , E

(m+1)
1 , . . . , E

(m+n)
n , . . .)

with bonding maps ε<m>
n .
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The homotopy coniveau towers

. . . → E
(m+n+1)
n → E

(m+n)
n → . . .

fit together to form the T -stable homotopy coniveau tower

. . . → E<m + 1> → E<m> → . . . → E<0> → E<−1> → . . . → E.

in SH(k).
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The stable comparison theorem

Theorem (1) For E ∈ SH(k), E<n> is in Σn
t SHeff(k).

(2) For each E ∈ SH(k), the canonical map h : E<n> → fnE is an

isomorphism.

These results follow easily from the S1 results.
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Some results

1. s0(Sk) = HZ (a theorem of Voevodsky), Sk := Σ∞
t Spec k+.

2. sn(K) = Σn
t (HZ). This yields the Atiyah-Hirzebruch spectral

sequence for K-theory:

E
p,q
2 := Hp−q(X, Z(−q)) =⇒ K−p−q(X)

This is the same one as constructed by Bloch-Lichtenbaum (for

fields) and extended to arbitrary X by Friedlander-Suslin.
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3. The layers snE are all motives: There is an equivalence of
categories (Østvær-Röndigs)

EM : DM(k) → HZ-Mod

Since each E ∈ SH(k) is an Sk-modules, snE is thus an s0(Sk) =
HZ-module.

In fact, there is a canonical birational motive π
µ
n(E) in DM(k)

with

Σn
t EM(πµ

n(E)) = EM(πµ
n(E)(n)[2n]) = snE.

A birational motive M (following Kahn-Sujatha) is one that is
locally constant in the Zariski topology on Sm/k: the restriction
map from X to an open subscheme U induces an isomorphism

HomDM(k)(Mgm(X), M [i]) → HomDM(k)(Mgm(U), M [i])

We can think of π
µ
n(E) as the nth homotopy motive of E.
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4. The slice tower yields the motivic Atiyah-Hirzebruch spectral

sequence

E
p,q
2 := Hp−q(X, π

µ
−q(E)(−q)) =⇒ Ep+q(X)

Here

Hp(X, π
µ
−q(E)(−q)) := HomDM(k)(M(X), πµ

−q(E)(−q)[p− q]).

The change in cohomological index comes from the shift [−2q]

rather than [−q] in the topological version.
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Computations and examples
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The birational homotopy motives

For presheaf of spectra E, we have the birational motive π
µ
n(E)

and the identity

sn(E) = EM(πµ
n(E)(n)[2n]).

This allows us to decribed sn(E) as a “generalized cycle com-

plex”.
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Let X(n)(m) be the set of points w ∈ X ×∆m with closure w̄ in
good position.

Theorem Take E ∈ SptS1(k) satisfying properties 1 and 2 and
take X ∈ Sm/k. Then

1. π
µ
n(E)(X) = s0(Ω

n
t E)(X) ∼= (Ωn

t E)(0/1)(k(X))

2. There is a simplicial spectrum E
(n)
s.l. (X), with

E
(n)
s.l. (X)(m) ∼= ⊕

w∈X(n)(m)
s0(Ω

n
t E)(w)

and with snE(X) is isomorphic in SH to E
(n)
s.l. (X).

The homotopy groups πm(snE(X)) of snE(X) are the higher
Chow groups of X with coefficients π

µ
n(E).
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The semi-local ∆

For a field F , let ∆n
F,0 = Spec (O∆n

F ,v), the “semi-local” n sim-

plex.

It follows directly from the comparison theorem that the coeffi-

cient motive π
µ
n(E) is given by

πµ
n(E)(X) ∼= (Ωn

t E)(0/1)(k(X)) = (Ωn
t E)(∆∗

k(X),0)

The nth homotopy motive of E is Ωn
t E made k(t)-homotopy

invariant.
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Some examples

(1) One can calculate snK(X) directly using these results. It is

not hard to see that

(Ωn
t K)(0/1)(w) = K(0/1)(w) = EM(K0(k(w))) = EM(Z),

so we get K
(n)
s.l. (X) = zn(X, ∗). In terms of the homotopy mo-

tives, this gives

πµ
n(K) = Z

just like for topological K-theory.
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(2) The coefficient spectrum s0(Ω
n
t E) has been computed explic-

itly for some other E, for example E = KA, KA(X) := K(X;A),

for A a c.s.a. over k (w. Bruno Kahn). We get

(Ωn
t KA)(0/1)(w) = K

(0/1)
A (w) = EM(K0(k(w)⊗k A)).

In terms of motives, this gives

πµ
n(KA) = ZA

where ZA is the birational homotopy invariant presheaf with value

K0(k(X)⊗k A) on X.
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(3) (with C.Serpé) Let a finite group G act on a (smooth) k-

scheme X. Consider the presheaf KG,X

KG,X(Y ) := K(G, X × Y )

the K-theory of the category of G-bundles over the G× id action

on X × Y . Then (for W ⊂ X × Y )

(Ωn
t KG;X)(0/1)(w) = K

(0/1)
G;X (w) = EM(K0(k(w)tw[G])),

with k(w)tw[G] the twisted group ring. We denote this motive

by RG;X. This gives

πµ
nKG,X = RG,X
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All three examples give strongly convergent A-H spectral se-

quences.

We concentrate on the example KA:

E
p,q
2 = Hp−q(X, ZA(−q)) =⇒ K−p−q(X, A).

So: K0(A) = H0(k, ZA), K1(A) = H1(k, ZA(1)).

For X = Spec k, and degA = p prime, Hn(k, ZA(1)) = 0 for

n 6= 1, so

K2(A) = H2(k, ZA(2)),

and we have an exact sequence

0 → H1(k, ZsA(2) → K3(A) → H3(k, ZA(3)) → 0.
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The inclusion ZA → Z induces the reduced norm

Hp(k, ZA(q)) → Hp(k, Z(q))

which is the usual reduced norm on K-theory for

(p, q) = (0,0), (1,1), (2,2).
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Oriented higher Chow groups?

One can apply this machinery to hermitian K-theory/Grothendieck-

Witt theory. It’s not clear what one gets.

Questions: What is the “coefficient spectrum” (Ωt
pGW )(∆∗

k(X),0)?

Is it an Eilenberg-Maclane spectrum? Is

C̃H
p
(X) = H2p(X, πµ

p (GW )(p))?

For a field F , is

Jp(F ) = Hp(F, πµ
p (GW )(p))?
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The Postnikov tower for motives
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One defines the motivic Postnikov tower inside DM(k) or DMeff(k)

directly by using

. . . ⊂ DMeff(k)(n+1) ⊂ DMeff(k)(n) ⊂ . . . ⊂ DMeff(k) ⊂ . . . ⊂ DM(k)

The cancellation theorem gives a simple formula for fn = fn,s

(for E ∈ DMeff(k)):

fnM = Hom
DMeff(Z(n), M)(n)

(Kahn).

The homotopy coniveau approach also works.
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The slices for M(X)

Since DMeff(k) is a category of complexes of sheaves on Sm/k,

we have the cohomology sheaves Hm of a motive. Recall:

πµ
n(M) := sn(M)(−n)[−2n]

= cofib[Hom
DMeff(Z(n + 1)[2n], M)(1)

ev−→ Hom
DMeff(Z(n)[2n], M)]

For X projective over k, we have the birational sheaf CHr(X)

CHr(X)(Y ) := CHr(Xk(Y )).
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Proposition (Huber-Kahn-Sujatha) Let X be smooth projec-

tive over k.

1. For 0 ≤ n ≤ dimX, Hm(πµ
n(M(X))) = 0 for m > 0 and

H0(πµ
n(M(X))) = CHn(X).

2. For n > dimX, fn(M(X)) = 0.

Note: In general, Hm(πµ
n(M(X))) 6= 0 for m < 0. But

πµ
n(M(PN)) = Z

for 0 ≤ n ≤ N .
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Theorem (Kahn-L.) Let X = SB(A), deg(A) = p. Then

πµ
n(M(X)) = ZA⊗d−n = CHn(X)

0 ≤ n ≤ d = p− 1.

Sketch of proof: For E a (fibrant) presheaf of spectra, we have
the presheaf RHom(X, E):

RHom(X, E)(Y ) := E(X × Y )

One shows: s0RHom(X, fmE) ∼ ∗ for m > dimX. Applying
s0RHom(X,−) to the Postnikov tower for E

. . . → fm+1E → fmE → . . . → E

gives the finite tower

s0RHom(X, fdE) → . . . → s0RHom(X, E)

with layers s0RHom(X, snE), n = 0, . . . d.
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Evaluating at some Y ∈ Sm/k, we have the strongly convergent

spectral sequence

E1
a,b = πa+bs0RHom(X, saE)(Y ) =⇒ πa+bs0RHom(X, E)(Y ).

(*)

By Quillen’s computation of the K-theory of SB varieties, we

have (for X = SB(A))

RHom(X, K) = ⊕d
i=0KA⊗i.

For E = K, Adams operations act on (*): it degenerates at E1

giving

⊕d
i=0ZA⊗i = s0(⊕d

i=0KA⊗i)

= s0RHom(X, K)

= ⊕d
i=0s0RHom(X, saK)
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By our computations of the slices of K-theory, we have (a ≤ d)

RHom(X, saK) = RHom(X, EM(Z(a)[2a]))

= Hom
DMeff(M(X), Z(a)[2a])

= Hom
DMeff(M(X)(d− a)[2d− 2a], Z(d)[2d])

= Hom
DMeff(Z(d− a)[2d− 2a], M(X))

= fd−a(M(X))(a− d)[2a− 2d]

Taking s0 gives

s0RHom(X, saK) ∼= π
µ
d−a(M(X))

so

⊕d
a=0π

µ
d−a(M(X)) ∼= ⊕d

i=0ZA⊗i

hence

Hm(πµ
d−a(M(X))) = 0 for m 6= 0

The rest is bookkeeping.
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Corollary Let A be a c.s.a over k of prime rank. Then

Nrd : K2(A) → K2(k)

is injective. (Assume BK in weight 3)

Sketch of proof:

K2(A) = H2(k, ZA(2)) = HomDM(Z, ZA(2)[2]).

Let X = SB(A). The Postnikov tower

fdM(X) → . . . → f1M(X) → M(X)

has layers sd−aM(X) = ZA⊗a(a)[2a]. Applying HomDM(Z,−) to

M(X)(3− d)[4− 2d] gives

HomDM(Z, ZA(2)[2]) = HomDM(Z, M(X)(3− d)[4− 2d])
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Using duality, this gives

K2(A) = HomDM(M(X), Z(3)[4]) = H4(X, Z(3)).

By Beilinson-Lichtenbaum, we have

H4(X, Z(3)) = H4
ét(X, Z(3)) = HomDM(M(X)ét, Z(3)ét[4])

But M(X)ét has slices (ZA⊗i(i)[2i])ét = Z(i)ét[2i] and the spec-

tral sequence for the Postnikov tower of M(X)et gives

0 → H4
ét(X, Z(3)) → H2

ét(k, Z(2)) → H5
ét(k, Z(3))

By Beilinson-Lichtenbaum again,

H2
ét(k, Z(2)) = H2(k, Z(2)) = K2(k)

giving

0 → K2(A) → K2(k) → H5
ét(k, Z(3))
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Singular cohomology

Ayoub pointed out that H∗
ét(−, Z/n) has all slices 0 (for k ⊃ µn):

H∗
ét(−, Z/n) = lim

n→∞H∗(−, Z/n(q))

so is effective and equal to its own Tate twist.

The same is not true for H∗
sing(−, Z) (for k = C): using Hodge

theory one can show that the 0th slice is non-zero when evaluated

at e.g. an elliptic curve.

Probably this is also true for H∗
ét(−, Z`) or H∗

ét(−, Q`)?
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Questions:

1. How can one describe the cohomology theories

fnHsing(−, Z), snHsing(−, Z)? Do these have something to do

with cycles mod algebraic equivalence (via Bloch’s formula)?

2. What is the relation with the coniveau filtration on Hsing(−, Z)?

3. What about the generalized Hodge conjecture (cf. work of

Huber)?
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Thank you,

and
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Happy Birthday, Spencer!
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