Percolation of a collection of finite random walks

a model for gas permeation through thin polymeric membranes

R.K.P. Zia

Department of Physics, Virginia Tech, Blacksburg, Virginia

B Schmittmann M.Gopalakrishnan Y. Wu

J. Phys. A37, L337 (2004); cond-mat/0404266
J. Phys. C17, S1817 (2005); cond-mat/0501302
JSTAT . P04002 (2007); cond-mat/0703039

. . .

Supported by:
NSF-DMR: Materials Theory

nttp://www.vetrnemlyny.cz/agentura/mesicautorskehocteni/2004/autors/kapral/kapral.html

A Symposium of Mathematical Chemistry

Mathematician

sharp mind

A Symposium of Mathematical Chemistry

Mathematician

sharp mind

Theoretical

Physicist

fuzzy logic

A Symposium of

Mathematical Chemistry

Mathematician

sharp mind

Theoretical
Physicist
fuzzy logic

Chemist

courageous heart

A Symposium of

Mathematical Chemistry

Mathematician

sharp mind

Theoretical

Physicist

fuzzy logic

Chemist

courageous heart

pencil & paper

computer

Lattices and Trajectories

Percolation of *correlated* bonds on a square lattice

- Motivation
- The Model and the Problem
- Results: Simulation & Analytic
- Outlook

B Schmittmann M.Gopalakrishnan Y. Wu

Permeation of gas molecules through thin polymeric membranes

- Saran-wrapped garlic in a fridge!
- Experiments by C.M. Laot and E. Marand
- Effects on gas transport due to
 - cooling rate in membrane preparation
 - physical aging
 - orientation (stretching)

http://scholar.lib.vt.edu/theses/available/etd-12012001-133140/

Percolation Problem in 2-D

- Percolation on square lattice (site and bond) well known
- What happens if the bonds (in this case) are correlated?

Model for gas transport

Start with just 2-D

Trajectories on a square Lattice

Model for gas transport

Percolation Problem in 2-D

- Percolation on square lattice (site and bond) well known
- What happens if the bonds (in this case) are correlated?
- Simplified (and dual) problem:
 - For T = 0, particles cannot cross occupied bonds
 - If occupied bonds (from the ℓ-mers) span system,
 there'd be no particle current!
 - ...percolation of *correlated* bonds

Percolation Problem in 2-D

- $p \equiv \text{density of occupied bonds}$; $p_c = 1/2$ on square lattice
- $\rho \equiv \text{density of (randomly placed)} \ \underline{monomers} \ (= \text{mass density})$
- $\rho \neq p$ due to multiple occupancies: $1-p = (1-A^{-1})^{\rho A} \rightarrow exp(-\rho)$
- What happens if monomers are joined to form ℓ -mers?
- What happens to p- ρ relationship?
 - ...if ℓ -mers are just simple random walks
- Occupied bonds are *correlated*: What's $p_c(\ell)$ or $\rho_c(\ell)$?

- $\ddot{\mathbf{u}}$ p- ρ relationship (even for finite systems)
- ü Probability of spanning for single RW
 - all monomers linked into a single polymer
 - of course, no singularities here: Prob is a smooth function of ρ .
- ü Probability of multiple occupation
 - useful for gas transport model for finite T
 - based on results of Antal, Hilhorst and Zia, *J. Phys.* A35, L337 (2002)
 ...for *multiple* occupation of bonds by a single RW.

- $p_{\rm c}(\ell)$ and $\rho_{\rm c}(\ell)$
- "re-entrant" behavior with increasing ℓ (fixed p)

- $p_{\rm c}(\ell)$ and $\rho_{\rm c}(\ell)$
- "re-entrant" behavior with increasing ℓ ... "postdiction" words w/o understanding

- $p_{\rm c}(\ell)$ and $\rho_{\rm c}(\ell)$
- "re-entrant" behavior with increasing ℓ ... "postdiction" words w/o understanding
- critical behavior in $\ell = 1$ (usual) universality class

•

Outlook

- Relationship between this problem and percolation of random ellipses?
- Fancier RW's: anisotropic (effects of "orientation"), non-Gaussian (e.g., self-avoiding), etc.
- Effects of finite *T* : diffusion, steady current, etc.
- Generalizations to 3-D: (both math and physics puzzles)
- The *real* problems:
 - What happens when polymer dynamics (aging phenomena) is added?
 - How to introduce different cooling rates?

•

sharp minds + courageous hearts sorely needed!!

