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RANDOM KNOTTING

e Proof of the Frisch-Wasserman-Delbruck
conjecture--the longer a random circle, the more
likely 1t 1s to be knotted

e DNA knotting in viral capsids
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TOPOLOGAL ENTANGLEMENT

IN POLYMERS

PROBLEM: FIND SIZE-DEPENDENT
STATISTICAL MEASURES OF ENTANGLEMENT
COMPLEXITY
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WRITHING KNOTTING




WHY STUDY RANDOM ENTANGLEMENT?

e Polymer chemistry and physics: microscopic
entanglement related to macroscopic chemical
and physical characteristics--flow of polymer
fluid, stress-strain curve, phase changes (gel

formation)

Biopolymers: entanglement encodes information
about biological processes--random entanglement
1s experimental noise and needs to be subtracted
out to get a signal




BIOCHEMICAL MOTIVATION

Predict the yield from a random cyclization experiment in a
dilute solution of linear polymers




MATHEMATICAL PROBLEM

e If L 1s the length of linear polymers 1n dilute
solution, what 1s the yield (the spectrum of
topological products) from a random cyclization
reaction?

e L 1s the # of repeating units in the chain--# of
monomers, or # of Kuhn lengths (equivalent
statistical lengths)--for polyethylene, Kuhn length
1s about 3.5 monomers. For duplex DNA, Kuhn
length 1s about 300-500 base pairs




FRISCH-WASSERMAN-
DELBRUCK CONJECTURE

e [ =# edges in random polygon
e P(L) = knot probability

lim P(L) = 1
L — oo

Frisch & Wasserman, JACS 83(1961), 3789
Delbruck, Proc. Symp. Appl. Math. 14 (1962), 55




ENTER STU WHITTINGTON!

e CIC Symposium on Computational and
Mathematical Chemistry, Saskatoon, June 1986.

 Nail: FWD Conjecture
e Hammer: Kesten Pattern Theorem




PROOF OF FWD CONJECTURE

THEOREM:

P(L) ~ 1-exp(-AL) A>0

Sumners & Whittington, J. Phys. A: Math. Gen. 23
(1988), 1689

Pippenger, Disc Appl. Math. 25 (1989), 273




KESTEN PATTERNS

KESTEN PATTERN:

NOT A KESTEN PATTERN:

Kesten, J. Math. Phys. 4(1963), 960




TIGHT KNOTS

THEOREM:

T ANY KESTEN PATTERN; 3 ¢ >0 SUCH THAT
T APPEARS AT LEAST oL TIMES IN ALL BUT

EXPONENTIALLY FEW SAW (SAP) OF
LENGTH L.

IDEA OF PROOF:

PRODUCE A KESTEN PATTERN T SUCH THAT
IF T APPEARS AT LEAST ONCE IN A SAW,
THEN THE SAW IS KNOTTED.

T = TIGHT KNCT !
D\@))%







TIGHT KNOT ON 75




RANDOM KNOT QUESTIONS

For fixed length n, what 1s the distribution of knot
types”?

How does this distribution change with n?

What is the asymptotic behavior of knot
complexity--growth laws ~pn® ?

How to quantize entanglement of random arcs?




KNOTS IN BROWNIAN FLIGHT

e All knots at all scales

Kendall, J. Lon. Math. Soc. 19 (1979), 378




ALL KNOTS APPEAR

Every knot type has a tight Kesten pattern representative on
73
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MEASURING KNOT COMPLEXITY

X = THE SET OF KNOT TYPES

F: % — [0,°°) IS A

GOOD MEASURE OF KNOT COMPLEXITY

IF
(i) F(UNKNOT) =0

(ii) 3 Ke X SUCH THAT

F(nK#L) > nE(K) > O

for all Ls 95.




LONG RANDOM KNOTS ARE
VERY COMPLEX

TE

FOREM: All good measures of knot complexity

diverge to + oo at least linearly with the length--the longer
the random polygon, the more entangled it 1s.

Examples of good measures of knot complexity:

crossover number, unknotting number, genus, bridge
number, braid number, span of your favorite knot
polynomial, total curvature, etc.




DNA Replication




Topological Enzymology

Mathematics: Deduce enzyme
binding and mechanism from
observed products




TOPOLOGICAL ENZYMOLOGY

React circular DNA plasmids in vitro (in vivo)
with purified enzyme

Gel electrophoresis to separate products (DNA
knots & links)

Electron microscopy of RecA coated products

Use topology and geometry to build predictive
models




GEL ELECTROPHORESIS

INT Knot Complexity
Increases in Steps of 2

No of INT T4 w Lk
nodes knots knots ladder




RecA Coated DNA
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GEL VELOCITY IDENTIFIES
KNOT COMPLEXITY
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electrophoretic separation from unknotted circle (cm)

Vologodskii et al, JMB 278 (1988), 1




CHIRALITY




CROSSING SIGN CONVENTION




WRITHE & AVERAGE
CROSSING NUMBER

Writhe --average the sum of signed
crossings over all projections (average
number of crossings over all
projections)




VIRUS LIFE CYCLE
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VIRUS ATTACKS!




VIRUS ATTACKS!







VIRUS ATTACK




T4 ATTACK




HOW IS THE DNA PACKED?




SPOOLING MODEL

Model proposed by :
Richards et al. J. Mol. Biol. 78 (1973) 255-259
Earnshaw et al. Nature 268 (1977) 598-602
Sewer J. Mol. Biol. 190 (1986) 509-512
Cerritelli et al. Cell 91 (1997) 271-280

Properties:
DNA is a locally parallel array
Uniform structure, continuously wound around an axis
Interhelix distance 29A
B form
Viruses:
P22, Lambda, T7

Structure




FOLD MODEL

Model proposed by:
Richards et al. J. Mol. Biol. 78 (1973) 255-259
Black et al. Proc. Natl. Acad. Sci. USA 82 (1985) 7960-7964

Properties:
DNA is a locally parallel array
First DNA packed is in the center of the capsid
Interhelix distance in local domains 25 A
Regions ordered parallel to the capsid axis 160-300 bp long
Kinks 3 bp long
B form
Viruses:
T4

Structure




RANDOM PACKING




P4 DNA has cohesive ends that form
closed circular molecules

GGCGAGGCGGGAAAGCAC

/1

- CCGCTCCGCCCTTTCGTG

! 1

GGCGAGGCGGGAAAGCAC
CCGCTCCGCCCTTTCGTG




VIRAL KNOTS REVEAL
PACKING

e Compare observed DNA knot spectrum to simulation of knots in
confined volumes




Experimental Data: Tailless vs
Mature Phage Knot Probability

Liu et al. Nucleic Acids Research 9, 16 (1981)
Liu et al. Proc. Natl. Acad. Sci. USA 78 (1981)

When extracting DNA molecules from mature bacteriophages P2 and P4 linear, circular not
knotted and knotted stuctures are found.

DNA length Linear Unknotted Knotted

P2virl 33Kb - - 0%

P2vir22lts37 31.5Kp 69%
P2virlam12 - 69%
P4virl 11.5Kb 20%
P4virldel10 10.5Kb

95%

The origin of these knotted structures is not well understood, nevertheless the knot spectrum is
a marker for DNA packing in the viral capsid.




EFFECTS OF CONFINEMENT
ON DNA KNOTTING

e No confinement--3% knots, mostly trefoils

e Viral knots--95% knots, very high complexity--
average crossover number 27!




MATURE vs TAILLESS PHAGE
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Mutants--48% of knots formed inside capsid

Arsuaga et al, PNAS 99 (2002), 5373




P4 KNOT SPECTRUM

97% of DNA knots had crossing number > 10/
Arsuaga et al, PNAS 99 (2002), 5373







2D GEL RESOLVES SMALL

7
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- -
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Individual K.not populations
0.36 %
0. 02 %
Unknotted 2 9 sty

< notted a5 %

i0.08 2
7' D.03 7%
g 0.10 2%

0.09 9%

Arsuaga et al, PNAS 102 (2005), 9165

: 0.39 %




2D GEL RESOLVES SMALL

Twist Knots Fhage Knots

Arsuaga et al, PNAS 102 (2005), 9165




PIVOT ALGORITHM

e Ergodic--no volume exclusion in our simulation
e A(-1), A(-2), A(—3) as knot detector

e Space filling polymers in confined volumes--very
difficult to simulate




VOLUME EFFECTS ON KNOT
SIMULATIO

T 1 1 T 1

0 20 40 60 680 100 120 140 160 180 200

Chain length Chain length

* On average, 75% of crossings are extraneous

Arsuaga et al, PNAS 99 (2002), 5373




SIMULATION vs EXPERIMENT

Ls

44 51 5z

Experimental

Arsuaga et al, PNAS 102 (2005), 9165




EFFECT OF WRITHE-BIASED
SAMPLING

0 3.0 61 7.8 9.7

Arsuaga et al, PNAS 102 (2005), 9165




Consistent with a high writhe of the packed DNA:

- Low amount of knot 41 and of composite 31# 41
- Predominance of torus knots (elevated writhe)




CONCLUSIONS

Viral DNA not randomly embedded (4,and 5, deficit, 5,
and 7, excess 1in observed knot spectrum)

Viral DNA has a chiral packing mechanism--writhe-
biased simulation close to observed spectrum

Torus knot excess favors toroidal or spool-like packing
conformation of capsid DNA

Next step--EM (AFM) of 3- and 5- crossing knots to see
if they all have same chirality




UNKNOWN P4 KNOT
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NEW SIMULATION

Parallel tempering scheme

Smooth configuration to remove extraneous
Crossings

Use KnotFind to identify the knot--ID’s prime
and composite knots of up to 16 crossings

Problem--some knots cannot be ID’d--might be
complicated unknots!




UNCONSTRAINED KNOTTING
PROBABILITIES




CONSTRAINED UNKNOTTING
PROBABILITY




CONSTRAINED UNKOTTING
PROBABILITY




CONSTRAINED TREFOIL
KNOT PROBABILITIES




CONSTRAINED TREFOIL
PROBABILITY




4 vs S CROSSING PHASE
DIAGRAM




CONFINED WRITHE

1'B=0.118
1/R=0.235
1/R=0.352

1/R=0.085
1/R=0.189
1/R=0.284

W] e

1/R=0.05&
1/R=0.112
1/R=0.1568
1/R=0.224




GROWTH OF CONFINED

—= y=-1590+ 074 x
m /R =0226

® 1/R=0

— y=-0.953 + 0,498 x
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