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It was twenty years before this talk

10th Canadian Symposium on Theoretical Chemistry, Banff 1989



Ivan L’Heureux, Rm 402, Lash Miller circa 1987



Stu taught me about self-avoiding walk ...

MATH/CHEM/COMP 1991 - June 24-29, Dubrovnik Self-avoiding polygon



CPTG always stays in style, and never fails to raise a smile ...
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THANKS RAY, STU AND THE CHEMICAL PHYSICS THEORY GROUP



We’re Stu’s Self-Avoiding Walk Club Band

THANKS STU!



Introduction to Random Copolymers

Polymer: Large molecule made of repeated molecular units called monomers; if there is more
than one type of monomer Copolymer
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homopolymer - polyethylene copolymer - RNA

Random Copolymer: the sequence of monomers making up the polymer is determined by a
random process




Random Copolymer Phase Transitions

Adsorption OOOO‘O%FO%O%OOOGOS

Low T - Adsorbed High T - Desorbed

water water

Localization

Low T - Localized High T - Delocalized



Ingredients for Modelling a Random Copolymer System

A Model for the Polymer’s Conformational Freedom:

Assume the polymer's conformation is represented by a self-avoiding walk on a lattice (e.g. ZS); dilute
solution (hence polymer-polymer interactions can be ignored); assume at equilibrium and
conformations of size n (number of monomers) with same energy are equally likely

A Model for the Comonomer Distribution:

Simplest Case: Two types of monomers A and B and the comonomer sequence is determined by a random

“colouring” X = X1, X2» X3+ -» Xn a sequence of i.i.d. r.v.’s such that
with prob. p Xi = 1 indicating ith vertex monomer type A
with prob. 1 — p xi =0 indicating ¢th vertex monomer type B

Prob(x) = n(x) = pzi Xi(1 — p)”—Zi X

System State: (x,w)
w - n-step self-avoiding walk ;  x - a particular colouring.



Putting the Ingredients Together
Quenched Randomness: The sequence of monomers is determined by a random
process but, once determined, it is then fixed.

Monomer sequence determined in or by the polymerization process; sequence can't then

change without some chemical reaction occurring.

—BE(w|x)
_ € . _ —-BE(w|x) . _
p?(w,x) = 7(x . Zn(Blx) =) e ., B=1/kpT
(@) = 700555 CREDS /
Quenched average free energy: Kn (0 n ot g w(x)log Zn(6|x)

Phase Transition: Corresponds to a point of non—analyt|C|ty of the limiting quenched average
free energy R(B) = limy oo Rn (3).
Annealed Randomness: The sequence of monomers is not fixed for a particular

polymer molecular but rather changes randomly along with the polymer's
conformation.

Not usually applicable to random copolymers but useful for approximations.
—BE(w|x
r(x)e

p(w,x) = > () Zn (Blx)

Annealed average free energy: kq(8) = —nt IOgZW Zn(B|x)> En(B)




Properties of Self-avoiding Walks (SAWSs)

Cp: the number of n-step SAWSs starting at the origin

Square Lattice (d =2): ¢c1 =4, ca =12, ¢3 = 36, c4 = 3cs — 8 = 100

c71 = 4190893020903935054619120005916 ~ 4 x 1039 (d = 2)

Jensen www.ms.unimelb.edu.au/"iwan/saw/series/sqsaw.ser

c30 = 270569905525454674614 ~ 2 x 102%° (d = 3)

Clisby et al www.math.ubc.ca/~slade/se.pdf



Properties of Self-avoiding Walks (SAWs) Cont’d
d" < cn, <2d(2d — 1)1

Standard Subadditivity Argument

o . .

e —
¢ 2 .
.

=

limy, oo™ logc, = log i = Ky

(Hammersley Proc.Camb.Phil.Soc. 53 (1957), 642-5)

d<pu<2d-—1

p = 2.63815853031(3) (d = 2)

(Jensen JPA 36 (2003) 5731-45)

1 = 4.684043(12) (d = 3)

(Clisby et al (2007) )




Homopolymer Adsorption of SAWs

Cn(?))i number of n-edge saws in 74 starting at origin and with v returns to the surface

Z\ () = Yo _gCn(v)e™
Hammersley, Torrie and Whittington (1982) JPA 15 539

lim,,— oo n~! log Zn(oz) = /4:(04) exists for all a and

max{kq, ki—1 + o} < k(a) < max{kq, kg + o}

= adsorption phase transition exists and 0 < a. < kKg — Kd—1

K(a)




A Self-Avoiding Walk Model for Random Copolymer Localization

Cn (UA, UB, w|x): given x, number of SAWs starting at origin with

va A'sinz >0, wvp B'sinz <0, w vertices in z = 0.

Energy at Fixed x: | —[1/(kT)|E(w|x) = ava + Bvp + yw

an A interacts

with energya
o-solvent 7
y-interface z=0 A & B interact with energy
o
B—solvent
s a B interacts
with energyf3

w =4, va =3 (green=A=1), vg = 4 (red=B=0)
x =0,0,1,0,1,1,1,1,0,0,0,1,0,0,1



Partition Function at Fixed y:
Zn(a,67’7|X) — Z Cn(rUA,’UB,’LU|X)6a,UA+ﬁUB+wa

VA, VB,W

Annealed average free energy:

ko, B,7) =n” logZW (o, B,7[x)

Intensive free energy at Fixed x
fin(a, B,7]x) = n” " log Zn(a, 8,7[x)

Quenched average free energy:

(kn (0, B,7]X)) ZW )1og Zn(av, B,7|x)< K5 (e, 3,7)

m(x) = p=iXi(1 — p)r-2ixi
Limiting Quenched average free enerqy:

Fa, B,7) = lim (kn (e, B,7]x))

Phase Transition: Corresponds to a point of non-analyticity of the limiting quenched average
free energy R(a, 3,7).



Some Rigorous Results for the SAW Model

The Limiting Quenched average free energy R(«a, 3, 7) exists and is convex, continuous, and
non—decreasing (Martin et al JPA 33 (2000) 7903-18) and (Madras/Whittington JPA 36 (2003) 923-38).

Zn(a7/877|X) — Z Cn(’UA7’UB’w|X)€aUA+,8’UB+’7w
VAVB,W

= %(0,0,0) =lim, oo n 'logc, = kg

Expected Phase Diagram for fixed v < 0

K(a,By)=ky+ B(1-p) K(OLB.Y)> K 4+
' ( §E | maqap. B@-p)
K(oLBY)> K 4+ - QF 1 K(a,By)=K4+ ap
max{ap, B (1-p)} D%Q

)

p = 1/2 (Martin et al JPA 33 (2000) 7903-18)



Further Results for fixed ~

delocalized ]
delocalized

localized

delocalized
delocalized

localized! localized

¥=0 ¥>71 20 Y > V3 =2 V2

p = 1/2 (Madras/Whittington JPA 36 (2003) 923-38)

~1 = adsorption critical point (homopolymer adsorption at a penetrable surface)
- conjectured that v; = 0

Exact Enumeration Analysis (d = 3, p = 1/2) supports 0 < 1 < 0.075, 0.25 < 9 < 0.3,
1 < 3 < 1.1 (James et al JPA 36 (2003) 11575-84 )
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Figure : Phase diagrams in («, §)-plane from all states (w,x) up to n = 20 for d = 3
and p =1/2.



Annealed Average Free Energy for Localization

The Annealed Average Free Energy for Localization.

: Y v oS AT (W) AT (W) (1 —~ s A (w
&Z(a,ﬁ,v) = n_llogzszi Xi(1 — p)" 220 Xi o 20 AT (@)X T8 Ay (W) (T=x4)+7 25 Ay (w)
X @ w

'

n 1
(Zn(a, B,710) = ST 20 [ 32 p¥i(1 — p)t X @it AT ()0 x0)

= ST <(1 Cp)ePAT ) 4 o <w)>

w 1=1

= > et ) 1 —ptpe) (1= p)e + )"

'U,’U+,'U_

+ +

where ¢, (v, v, v ) is the number of walks which have v returns to z = 0, v vertices in z > 0 and

v~ vertices in z < 0

Homopolymer Partition Function



The Morita Approximation (Constrained Annealing) for Localization

Recall: Quenched Average Free Energy

Fn(o, B,7) =n"" Y m(x)log Zn(a, B, vlx) =n""(log Zn(a,B,7]X))x
X

Mazo (1963), Morita (1964), and Kuhn (1996) = K, («, 3,7) can be obtained as a solution to a
variational problem involving a constrained annealed average free energy, i.e. the quenched average free
energy can be obtained by

Minimizing: n~ " log Z*(c, 8,7, A) = n~ ' log(Z, (o, S, 'Y|X)€A(>\|X)>7r (% * %)

with respect to lagrange multipliers A = {Ac,0 # C C {1,2,...,n} = [n]}, where the lagrange term

A= D xe [P =TT xi

CC[n] ieC

The minimization ensures that for each subset C' of vertices of the walk all the colouring constraints:

Prob(all the walk vertices in C' are coloured A) = < H Xi> = p|C|
1eC pd
are satisfied, and hence all the correlations between walk vertex colourings have the correct distribution.

The Approximation: (Relax some constraints and minimize)

Solving (* * %) with Ao = 0 for some choices of C' gives an UPPER BOUND on &, («, 3, 7).



Directed Walk Models

A
B VR

Dyck path: a walk in two dimensions which starts at the origin and ends on the line y = 0, has no
vertices with negative y-coordinate, and has steps only in the directions (1,1) and (1, —1).

Motzkin path: like Dyck path but has three kinds of steps, (1,1), (1, —1) and (1,0).
Bilateral Dyck path: like Dyck path but with vertices with negative y-coordinate allowed.
Bilateral Motzkin path: like Motzkin path but with vertices with negative y-coordinate allowed.

d,: the number of n-step Dyck paths starting at the origin

D(z) =2 >0 d2n 2" = D(z) =1+ Z2D(z)2 = 1-V/1-422

222




A Bilateral Dyck Path Model for Random Copolymer
Localization

Cn (UA, UB, w|x): given X, number of n-edge Dyck paths starting at origin with

va A'sinz >0, wvp B'sinz <0, w vertices in z = 0.

Energy at Fixed x: | —[1/(kT)|E(w|x) = ava + Bvp + yw

an A interacts

with energya
o-solvent 7
y-interface z=0 A & B interact with energy
B—solvent

a B |nteracts
with energyf3

w =4, va =3 (green=A=1), vp = 4 (red=B=0)
¥ =0,01,01,1,1,1,0,0,0,1,0,0,1



Morita Approximations for Bilateral Dyck Path Models of Localization

Annealed: n~ ' log Z2 (e, Byy) = n~ ! log Z szz' Xi (1 — p)n_Zi Xi v A+BvE+yw
X @ w

n~ 1 log Z%(a, B,7) > (kn(c, B,7]x)) (Quenched Average Free Energy)

p = 1/2 lliev et al JPA 38 (2005) 1209-1223

logh & log b &

loga
th
logh & log b s
______.../
< i o < o
by (en)




The First Moment Morita Approximation:

Constrain (Z Xi) = np
i=1
Minimize: n~! log Zfll)(a, Byv, A) = n ! log(Zn (o, 3, 7|X)e>‘(2?=1 ><z'—"np)>7r

logh 3 Jrcn;h‘f5

D'I'I aler L ,
Dh arer /\ /""—'—_
________,....--" /-
=% = e
loga
E— L
1351

For p = 1/2, on the left v+ < 0 and on the right v+ > 0. @ = loga and 8 = logb. The delocalized
phase boundary formula is independent of v beyond the solid circle for v > 0.

If higher order moment constraints are introduced can the “mixture’” phase be
eliminated?



Higher Order Morita Approximations:

Order o Approximation: include only constraints involving non-overlapping correlations between
neighbouring colours at most o — 1 apart.

2(1, X2 -0 Xo;- c+ Xo(i—1)4+13 Xo(i—1)+25 -5 Xoi + + - Xo(n—1)+1s Xo(k—1)+25 -+ Xok

'

Ve

x (1) (3 < (F)

Given even o > 2, consider randomly coloured bilateral Dyck paths of length n = ko (kK > 1) and
impose for each non-empty subset C C {1,2,..., 0} = [o] the following set of constraints:

k
ST xoi—1)+5) = kp'“!

i=1 jeC
so that
k
o C
A(A( )|X) = Z Ac kpl - Z H Xo(i—1)+j
cClo] i=1jeC
Minimize:

o o - (o)
Flio-) (OC,,B, Y )\( )) — (kO’) 1 10g<Zko. (Oz, /87 ’7|X)€A(>\ |X)>ﬂ_



Higher Order Morita Approximations Continued:

Recall we want to Minimize:

o o - (o)
Frd (e, 8,7, A7) = (ko) "  log(Zig (a0, 8, 71)e™ ) -

For the limiting Morita free energy we want

M (a, 8,7) = kli_{r;o(kd)_l irg;r; log<Zka(a,ﬁ,7|x)eA“(g)'X)>

Define the grand canonical partition function (a.k.a. generating function)

o ko (o)
Golz,0, 8,7, A7) = >~ 25 (Zpo (o, B, 4Ix)e™ 1Y)
k=0

with radius of convergence rg.

Define

' - (o)
APINCY (o, B,7) = —logrg = klgréo(ka) Y og(Zro (a, B, y|x) e 1y,

U . M

KR (Ot, ﬁa ’7) — Hglar; K’o A (o) (Oé, /87 ’7) > Ko (Ot, ﬁa ’7)
A ?

G, can be written in terms of a homopolymer generating function B, for bilateral Dyck paths which

keeps track of the number of segments w of the path that have the same sequence

s(w) = (A5, 1 (w),Agi(w),i=1,...,1).



Factorization can be used to solve for B, and obtain

rB = min{|21|, |22|, “eey |ZG—|-2|}

where z1 and zo are square root singularities of B, corresponding to the delocalized above and
delocalized below phases respectively. z;'s are available for o0 = 2, 4, otherwise involves solving a
polynomial of degree greater than 5.

Note: Ky(aaﬁaﬂ S ﬁg(aaﬁa’ﬂ — min>\ KG,A(OC,ﬁ,’Y) S ’{'G,A(aaﬁa’ya >\)

Ds_o_3;
= ro =0 — 27 i (k—7r—1)c
w® ¢ le) (D) € Qtj’l(7T ) n.,. of the w(® € Qgﬂ)

|

Figure : Schematic representation of factorization.



Mixture Phase

Delocalized Above: Morita free energy = Quenched average free energy = log 2 + ap
minimum is achieved at A = A\(Y) = (—a|C/|, C C [0])

Delocalized Below: Morita free energy = Quenched average free energy = log 2 + (1 — p)
minimum is achieved at A = A(B) = (—3(c — |C]), C C [0])

and the delocalized (above) phase boundary can be determined from

B2 (a,7) = sup{Blr_ , (a) (e, B,7) = log 2 + ap}

By Caravenna & Giacomin (2005), this phase boundary will be the same as for the first moment Morita
approximation (o = 1).

For a given set of A\’s the mixture arises when the square root singularities are equal in magnitude, and
they dominate any other singularities so that

1 g — « g —
ko a (o, B,7v) =log2 + . (— E Aep' €1 = p)7 719 4 log E (pe™)!“(1 — p) Clekc)
C C

= 1og2+§ (‘chpC'u - p)7 1t 10g > p9N(1 —p)ef’f—'ce“f) . (D)
@) C

Note that the first right-hand side is the limiting average free energy associated with the set of Dyck paths
which have all but their first and last vertex above the interface, and the second right-hand side is the
limiting average free energy associated with the set of Dyck paths which have all but their first and last
vertex below the interface.



One solution can be found: the constrained limiting average mixture free enerqgy

| B l o o m . o—m am . ,B(O'—m)
Kmia,o (o, B) = log2 + — > (m)p (1—p) log(ge™ ™ + (1 — q)e ) (2)

m=0

where g € [0, 1] is the first solution in [0, 1] to:

o am

o e
1= ( ) (1 —p)° " . 3
Given any v < vgj) = —log(1 — p) and any a, 8 > 0, our goal is to find a choice of o such that

kY (a, B,7) > Kmix,o(c, 3). To investigate this we consider a lower bound on x7 («, 8, 7) and
determine o such that the lower bound is greater than Km iz, o (a, B).

LOWER BOUND: We bound the Morita approximation below by a lower bound on the limiting quenched
average free energy based on the fact that:

Zio (@, B,71X) > (Zo (@, B, v]X))"

so that

k2 (o0, B,7) > o~ H{log Zg (a, B, v]X))

For a = (3 sufficiently large and ¢ > 12 =

0'_1(10g Zo(a, B,7|%)) > Emiz,o(a, B)



Free energy comparisan
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Figure : At v = log(1.5) and a = (3, bounds on the limiting quenched average free energy for various

choices of o. Dotted curves correspond to bounds obtained from the mixture; solid curves correspond to
bounds obtained using a pole.
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Fake boundary comparizon for y=log{0.6) o= ﬁ
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Figure : For v = log(0.6), the phase boundary in the («, 3)—plane between the truly localized phase and
the mixture phase is shown for various choices of o.



Fake boundary comparison for y=log(0.8)

—0.35¢
—0.4} =
—0.45¢
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Figure : For v = log(0.8), the phase boundary in the (a, 3)—plane between the truly localized phase and
the mixture phase is shown for various choices of o.



Fake boundary comparison for y=log(1.5)

Figure : For v = log(1.5), the phase boundary in the (a, 3)—plane between the truly localized phase and
the mixture phase is shown for c = 1,2,4,6,8,12.



Localized. Fake boundary comparison for y = log(1.85)

Figure : For v = log(1.85), the phase boundary in the («, 3)—plane between the truly localized phase
and the mixture phase is shown for c = 1,2,4,6,8,12.



Localized. Fake boundary comparison for c=8 and different values of y

5 —
4+
3 -
L y= Iog(16) .
y=log(1.5) ~_ | y=log(1.7)
l -
y =log(1.3) ?
N _>% * y=log(1.4) v = log(1.8) y=log(1.9)
y=log(1.1) v = log(1.2)
-1 1 1 1 1 1 J
-1 0 1 2 3 4 5
a

Figure : For o = 8, the phase boundary in the («, 8)—plane between the truly localized phase and the
mixture phase is shown for v = log(1.1+4(0.1)),72 = 0, ..., 8. Blue lineis 8 = log(1l —e™ % /2) + log 2.



