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THE LATTICES AND TRAJECTORIES OF STU AND RAY



RING POLYMERS

e Ring polymer in a good solvent.
e Monomer activity ¢ and Knot type K.

e Lattice models.



LATTICE MODEL OF A RING POLYMER

e Polygon in the (hyper)cubic lattice.

e Count polygons modulo translations:

pn, = # Of polygons of length n steps



THE GROWTH CONSTANT

pn, Choices pm/(d — 1) choices at most p,, 4

L.

® Dupm < (d—1)Pnim
1
e logu= lim —logp,. (GROWTH CONSTANT)
n—oo N

o pp < (d—1)u™  p, = p"Tom

(Hammersley 1961)




ASYMPTOTIC GROWTH

In three dimensions:

1= 4.684043 + 0.000012 (Clisby etal 2007)

asymptotic behaviour of p,, ...

P = An> 3" (1+Bn_A+Cn_1+...)

where

0.237 £ 0.005
A = 0.56+0.03 (Li, Madras, Sokal 1995)

Q
|



KNOTTED POLYGONS

e p,(K) = number of polygons of length n, knottype K

1
e logux = limsup —logp,(K). (GROWTH CONSTANT)

n—oo

¢ p,(K) ~ Agn®s 3% where ax = ay + Nk.
(Orlandini et.al. 1996)



GROWTH CONSTANTS OF KNOTTED POLYGONS

e THEOREM: pp < px < p

(Sumners and Whittington 1988, Pippenger 1989, Soteros et.al
1992)

e Numerically (JvR + Whittington 1990+2000)

log 1t — log pig = (4.154+0.32) x 107°

e In other words

o = 4.6838ab...
g = 4.6838ac. ..

e Current computer technology may now be good enough to ex-
plicitly extend series in three dimensions and to verify these MC
estimates?



A RING POLYMER IN A CONFINED SPACE

e Monomer activity ¢, and knot type K.
e What is the equilibrium length?

e Are there forces on the confining planes?



LATTICE POLYGONS IN A SLAB
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e A lattice polygon in a slab in Z3.

e This is the embedding of a circle - the knot type is defined.
e Questions:

— Growth Constant and Free Energy?
— Equilibrium length?
— Metric Properties?



POLYGONS IN A SLAB L,

Polygons in L.,

—Top bounding plane

S

Schematic:

. Bottom bounding plane

e p,(w) = (number of polygons in slab of length n) ~ C,,n** 2 u"

w

1
e logu, = lim —logp,(w). (GROWTH CONSTANT)
n—oo N,

(Soteros and Whittington 1991,1992)



CONCATENATING POLYGONS IN A SLAB

Pn (w) Pm (w)
| y
l_l w

e Concatenate:

Pn (w)pm (w) < Prn4+m+2(w+1) (w)
(2 dimensions, harder in higher dimensions).
o Thus limy,_ o0 [pn (W)™ = jiy

e In three and more dimensions, u,, IS the same as for walks in a
slab.



SCALING AND FREE ENERGY

e Two Length Scales: R and w.
Fuw =n"1F(R/w) = w VY F(n” Jw)
e Since F,, = log t:

pw & e~ & (1 = Cw= ),



GROWTH CONSTANTS IN A SLAB L,

o THEOREM: lim iy = g and puy, =~ u (1 — Cw=1/7).

w—00

(JvR, Orlandini, Whittington 2006).

e Generating function:

gu(t) =Y pu(w)t" ~ [log(put)* =
n>0

e This gives the rate g,,(t) — goo(t) @S w — oc:

Guw (1) & goo (1) (1 — (] log(uwt)|2_o‘w)



EXPECTED LENGTH OF POLYGONS

o Attt =1/u:
d C(2 — ow)| log(paw /)|~
= —1 w . ~
() = g 10890l > Gt = — Cllog(pw/m)[?=

e Noting that p., /1 ~ (1 — Cw=/*) gives:

Ny ~ C1 + Cow= =)V

to leading order.

e This gives the dependence of the mean length of a polygon con-
fined to the slab L,, on w.

e Knotted Polygons: assume that

QK ,w = Qg+ Nk



EXPECTED LENGTH OF KNOTTED POLYGONS

e One expects that
g = 1/2, v~ 0.58

so that oy ,, /v =~ 0.85.

e Substituting these values show

C1 + O(w==2.w)/Vy = C; + O(w=%8%) for unknots
(N kw =14 Cy+ O(w*0w/") = Cy + O(w"8) for prime knots
Cs + O(w'/") = C3 + O(w*™) for compound knots

att=1/p.

Can this be tested?



SIMULATING KNOTTED POLYGONS INA SLAB

The BFACF algorithm: This Monte Carlo algorithm samples along a
Markov Chain in the state space of polygons using elementary moves:




THE BFACF ALGORITHM |

The transition probability matrix in a Metropolis style implementation is
given by

i / 1, if lw| > |w'];
— r1g—1 .
M(w— ') I~ min{1,#2}, otherwise,

jwla=t

where ¢ Is a parameter of the algorithm.

e Choose an edge.
e Move the edge perpendicular in one of 2(d — 1) directions.
e Determine if this is a move of type | or type Il

e Accept/Reject this proposed move with probability Pr.



THE BFACF ALGORITHM I

The stationary distribution is

() = |25 )
In an ergodicity class L.

THEOREM: The ergodicity classes of the BFACF algorithm, when ap-
plied to unrooted lattice polygons in the cubic lattice, are the knot types
of the polygons. (JvR + Whittington 1991)

IMPLEMENTATION: Start at a polygon of knot type K, and sample
along a Markov Chain in the state space of polygons of knot type K by
Implementing the elementary moves.



ENTROPIC EXPONENTS FOR KNOTS

e The Number of lattice knots: p,,(K) ~ Agn®s > u"%

e BFACF can be used to estimate Ay, ax and ug.

n(@) = 4.6852
n(31) = 4.6832
M(31#31) = 4.6800
e Test ax by computing
o, +1
K, Ky) = —

e p(K1,Ks5) =1 consistent with ax, = ak,.
e p(Ky,0) =1.75 consistent with ax, = ay + 1.
e p(K1,31) = 1.44 consistent with ax, = a3, + 1.



THE ENTROPIC EXPONENT

The BFACF algorithm gives

p(31,0) =1.694+0.11
p(41,0) = 1.674+0.11 consistent with «(K) = a(0) + 1.
0(62,0) = 1.75 £ 0.05

Other examples

p(31,41) =1.01 £0.11
p(31#31,31#41) = 0.93 £ 0.07 consistent with a(K) = ay + Nk.
,0(31#31, 31) =1.254+0.16

These data strongly support the notion that
ag = ag + Nk
where Nk is the number of prime components in the knot.

The Amplitude Ag is also independent of the knot type (Orlandini,
Tesi, JVR, Whittington 1996).



THE BFACF ALGORITHM IN A SLAB

THEOREM: The ergodicity classes of the BFACF algorithms, when ap-
plied to unrooted lattice polygons confined to the slab L, with w > 1,
are the knot types of the polygons. (JvR 2006)
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OUTLINE OF PROOF |

Lattice regular projection of a lattice knot:
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lattice knot regular lattice projection
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THEOREM: By applying elementary moves in the BFACF algorithm, a
lattice knot can be transformed into a lattice knot with a regular lattice
projection in the bottom bounding plane of L.



OUTLINE OF PROOF II

THEOREM: By applying elementary moves from the BFACF algorithm
to a lattice knot in L., with a regular lattice knot projection, Reidemeister
moves can be performed on the knot projection, provided that w > 1.

Example: Reidemeister lll
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OUTLINE OF PROOF Il

e Two lattice knots with equivalent lattice knot projection in the bot-
tom bounding plane of L,, can be made identical by application of
elementary moves from the BFACF algorithm.

e The BFACF algorithm can now be used to sample polygons of
knot types K inslabs L,, (2 < w < 22).

e Expectations for (n),,:

— Approach a constant if K = ();
— Divergent and Concave of w if K is prime;
— Divergent and Convex of w if K is compound.



UNKNOTTED POLYGONS

The Mean Length of Unknotted Polygons
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TREFOILS

The Average Length of Polygons with Knots Type 3,
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(n)3, =~ C1+ Cow®® + ... [C'7 = —11.45 + 0.04].



COMPOUNDED TREFOILS

Average Lengths of Compounded Trefoils

600

500

(M)at st wst (4 4004
(n)s+us+ (©) 300 -

(g () 200
100 - MM

0 [ R —
4 6 8 1

oPe

N — O

| | | | |
0 12 14 16 18 20 22

w

0
Data fitted by:

(n)3, = C1 + Cow®® + ... for trefoils
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OTHER PRIME KNOTS

Average Lengths of Polygons of Non-Trivial Knot Types
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METRIC PROPERTIES

Metric properties in this ensemble: p,, (r?, w) is the number of polygons
of length n in L,, with square radius of gyration 2.

D i r2pp (12, w)t"

2
T p—
< >w Znﬂa pn(r2, ’UJ)tn

The mean square radius of gyration increases with w att = 1/p.



MEAN SQUARE RADIUS OF GYRATION
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AMPLITUDE RATIO

Define (S,,)., to be the mean span in the XY -plane.

e The Amplitude Ratio Ak ,, is the dimensionless quantity

e For small w the polygon is spread out in the XY -plane.
e For large w the polygon will not interact with the slab.

e A knotted polygon is "swollen” for small w, thus a larger amplitude
ratio.



AMPLITUDE RATIOS FOR TREFOILS
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AMPLITUDE RATIOS FOR OTHER KNOTS
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AMPLITUDE RATIOS

Three phases:
1) Small w: Declining Ag ..

Very strong interaction between knot and the slab.

2) Intermediate w: Constant Ag ,,.

Strong interaction between knot and the slab.

3) Large w: Slowly declining Ax ..

Weak interaction between the knot and the slab.



AVERAGE AMPLITUDES

Knot Ag 4 Ax 10 (Ax w)
01 4.952(21) 4.834(19) 4.90
31 18.499(69) | 18.343(138) | 18.38
4q 20.599(85) | 20.438(141) | 20.51
51 21.781(71) | 21.519(155) | 21.61
55 22.156(106) | 21.872(161) | 21.97
61 23.342(119) | 23.003(171) | 23.15
65 23.446(122) | 23.209(176) | 23.30
63 23.589(128) | 23.352(164) | 23.45

37 #3F 22.588(156) | 23.377(230) | 22.50
3T #3T 22.565(149) | 22.368(232) | 22.50
3TH3TH#3T | 24.645(429) | 24.619(223) | 24.68

e Averages for w € [4,10] (constant regime).

e Increasing with Crossing Number - the knot is more swollen.




CONCLUSIONS

e Scaling arguments can predict the mean length of a knotted poly-
gon in a slab at activity t = 1/puy.

e The BFACF algorithm can be used to sample polygons of fixed
knot type in a slab.

e The Unknot does not interact with the slab as w — oc.
e Knotted polygons do interact with the slab as w — oc.

e Prime knots interact differently with the slab, compared to com-
pound knots.

e Knots are swollen in the XY -plane in narrow slabs.



