KNOTTED LATTICE POLYGONS

E.J. Janse van Rensburg Fields Institute, June 2007

THE LATTICES AND TRAJECTORIES OF STU AND RAY

RING POLYMERS

- Ring polymer in a good solvent.
- Monomer activity t and Knot type K.
- Lattice models.

LATTICE MODEL OF A RING POLYMER

- Polygon in the (hyper)cubic lattice.
- Count polygons modulo translations:

 $p_n = \#$ of polygons of length n steps

THE GROWTH CONSTANT

- $\bullet \ p_n p_m \le (d-1) p_{n+m}$
- $\log \mu = \lim_{n \to \infty} \frac{1}{n} \log p_n$. (GROWTH CONSTANT)

•
$$p_n \le (d-1)\mu^n$$
 $p_n = \mu^{n+o(n)}$

(Hammersley 1961)

ASYMPTOTIC GROWTH

In three dimensions:

$$\mu = 4.684043 \pm 0.000012$$
 (Clisby etal 2007)

asymptotic behaviour of p_n ...

$$p_n = A n^{\alpha - 3} \mu^n \left(1 + B n^{-\Delta} + C n^{-1} + \ldots \right)$$

where

$$lpha = 0.237 \pm 0.005$$
 $\Delta = 0.56 \pm 0.03$ (Li, Madras, Sokal 1995)

KNOTTED POLYGONS

- $p_n(K)$ = number of polygons of length n, knottype K
- $\log \mu_K = \limsup_{n \to \infty} \frac{1}{n} \log p_n(K)$. (GROWTH CONSTANT)
- $p_n(K) \approx A_K n^{\alpha_K 3} \mu_K^n$ where $\alpha_K = \alpha_\emptyset + N_K$. (Orlandini et.al. 1996)

GROWTH CONSTANTS OF KNOTTED POLYGONS

- THEOREM: $\mu_\emptyset \le \mu_K < \mu$ (Sumners and Whittington 1988, Pippenger 1989, Soteros et.al 1992)
- Numerically (JvR + Whittington 1990+2000)

$$\log \mu - \log \mu_{\emptyset} = (4.15 \pm 0.32) \times 10^{-6}$$

In other words

$$\mu = 4.6838ab\dots$$

$$\mu_{\emptyset} = 4.6838ac\dots$$

 Current computer technology may now be good enough to explicitly extend series in three dimensions and to verify these MC estimates?

A RING POLYMER IN A CONFINED SPACE

- Monomer activity t, and knot type K.
- What is the equilibrium length?
- Are there forces on the confining planes?

LATTICE POLYGONS IN A SLAB

- A lattice polygon in a slab in \mathbb{Z}^3 .
- This is the embedding of a circle the knot type is defined.
- Questions:
 - Growth Constant and Free Energy?
 - Equilibrium length?
 - Metric Properties?

POLYGONS IN A SLAB L_w

- $p_n(w) =$ (number of polygons in slab of length n) $\approx C_w n^{\alpha_w 3} \mu_w^n$
- $\log \mu_w = \lim_{n \to \infty} \frac{1}{n} \log p_n(w)$. (GROWTH CONSTANT)

(Soteros and Whittington 1991,1992)

CONCATENATING POLYGONS IN A SLAB

Concatenate:

$$p_n(w)p_m(w) \le p_{n+m+2(w+1)}(w)$$

(2 dimensions, harder in higher dimensions).

- Thus $\lim_{n\to\infty}[p_n(w)]^{1/n}=\mu_w$
- In three and more dimensions, μ_w is the same as for walks in a slab.

SCALING AND FREE ENERGY

• Two Length Scales: R and w.

$$\mathcal{F}_w = n^{-1}F(R/w) = w^{-1/\nu}F_1(n^{\nu}/w)$$

• Since $\mathcal{F}_w = \log \mu_w$:

$$\mu_w \approx \mu e^{-Cw^{-1/\nu}} \approx \mu (1 - Cw^{-1/\nu}).$$

GROWTH CONSTANTS IN A SLAB L_w

- THEOREM: $\lim_{w\to\infty}\mu_w=\mu$ and $\mu_w\approx\mu\,(1-Cw^{-1/\nu}).$ (JvR, Orlandini, Whittington 2006).
- Generating function:

$$g_w(t) = \sum_{n \ge 0} p_n(w)t^n \sim |\log(\mu_w t)|^{2-\alpha_w}$$

• This gives the rate $g_w(t) \to g_\infty(t)$ as $w \to \infty$:

$$g_w(t) \approx g_\infty(t) \left(1 - C|\log(\mu_w t)|^{2 - \alpha_w}\right)$$

EXPECTED LENGTH OF POLYGONS

• At $t = 1/\mu$:

$$\langle n \rangle_w = t \frac{d}{dt} \log g_w(t) \big|_{t=1/\mu} \approx C_1 + \frac{C(2-\alpha_w) |\log(\mu_w/\mu)|^{1-\alpha_w}}{1-C|\log(\mu_w/\mu)|^{2-\alpha_w}}$$

• Noting that $\mu_w/\mu \approx (1 - Cw^{-1/\nu})$ gives:

$$\langle n \rangle_w \approx C_1 + C_2 w^{-(1-\alpha_w)/\nu} + \dots$$

to leading order.

- This gives the dependence of the mean length of a polygon confined to the slab L_w on w.
- Knotted Polygons: assume that

$$\alpha_{K,w} = \alpha_{\emptyset,w} + N_K$$

EXPECTED LENGTH OF KNOTTED POLYGONS

One expects that

$$\alpha_{\emptyset,w} \approx 1/2, \qquad \nu \approx 0.58$$

so that $\alpha_{\emptyset,w}/\nu \approx 0.85$.

Substituting these values show

$$\langle n \rangle_{K,w} = \begin{cases} C_1 + O(w^{-(1-\alpha_{\emptyset,w})/\nu}) = C_1 + O(w^{-0.85}) & \text{for unknots} \\ C_2 + O(w^{\alpha_{\emptyset,w}/\nu}) = C_2 + O(w^{0.85}) & \text{for prime knots} \\ C_3 + O(w^{1/\nu}) = C_3 + O(w^{1.70}) & \text{for compound knots} \end{cases}$$

at
$$t=1/\mu$$
.

Can this be tested?

SIMULATING KNOTTED POLYGONS IN A SLAB

The BFACF algorithm: This Monte Carlo algorithm samples along a Markov Chain in the state space of polygons using elementary moves:

THE BFACF ALGORITHM I

The transition probability matrix in a Metropolis style implementation is given by

$$\Pr(\omega \to \omega') = \begin{cases} 1, & \text{if } |\omega| \ge |\omega'|; \\ \frac{|\omega'|^{q-1}}{|\omega|^{q-1}} \min\{1, t^2\}, & \text{otherwise,} \end{cases}$$

where q is a parameter of the algorithm.

- Choose an edge.
- Move the edge perpendicular in one of 2(d-1) directions.
- Determine if this is a move of type I or type II
- Accept/Reject this proposed move with probability Pr.

THE BFACF ALGORITHM II

The stationary distribution is

$$\Pi_L(\omega) = \left\lceil \frac{|\omega|^q t^{|\omega|}}{\Phi} \right\rceil \chi_L(\omega)$$

in an ergodicity class L.

THEOREM: The ergodicity classes of the BFACF algorithm, when applied to unrooted lattice polygons in the cubic lattice, are the knot types of the polygons. (JvR + Whittington 1991)

IMPLEMENTATION: Start at a polygon of knot type K, and sample along a Markov Chain in the state space of polygons of knot type K by implementing the elementary moves.

ENTROPIC EXPONENTS FOR KNOTS

- The Number of lattice knots: $p_n(K) \approx A_K n^{\alpha_K 3} \mu_K^n$
- BFACF can be used to estimate A_K , α_K and μ_K .

$$\mu(\emptyset) = 4.6852$$
 $\mu(3_1) = 4.6832$
 $\mu(3_1 \# 3_1) = 4.6800$

• Test α_K by computing

$$\rho(K_1, K_2) = \frac{\alpha_{K_1} + 1}{\alpha_{K_2} + 1}$$

- $\rho(K_1, K_2) = 1$ consistent with $\alpha_{K_1} = \alpha_{K_2}$.
- $\rho(K_1,\emptyset) = 1.75$ consistent with $\alpha_{K_1} = \alpha_{\emptyset} + 1$.
- $\rho(K_1, 3_1) = 1.44$ consistent with $\alpha_{K_1} = \alpha_{3_1} + 1$.

THE ENTROPIC EXPONENT

The BFACF algorithm gives

$$\begin{array}{l} \rho(3_1,\emptyset) = 1.69 \pm 0.11 \\ \rho(4_1,\emptyset) = 1.67 \pm 0.11 \\ \rho(6_2,\emptyset) = 1.75 \pm 0.05 \end{array} \qquad \text{consistent with } \alpha(K) = \alpha(\emptyset) + 1.$$

Other examples

$$\begin{array}{l} \rho(3_1,4_1)=1.01\pm 0.11\\ \rho(3_1\#3_1,3_1\#4_1)=0.93\pm 0.07\\ \rho(3_1\#3_1,3_1)=1.25\pm 0.16 \end{array} \qquad \text{consistent with } \alpha(K)=\alpha_\emptyset+N_K.$$

These data strongly support the notion that

$$\alpha_K = \alpha_\emptyset + N_K$$

where N_K is the number of prime components in the knot.

• The Amplitude A_K is also independent of the knot type (Orlandini, Tesi, JvR, Whittington 1996).

THE BFACF ALGORITHM IN A SLAB

THEOREM: The ergodicity classes of the BFACF algorithms, when applied to unrooted lattice polygons confined to the slab L_w with w > 1, are the knot types of the polygons. (JvR 2006)

OUTLINE OF PROOF I

Lattice regular projection of a lattice knot:

THEOREM: By applying elementary moves in the BFACF algorithm, a lattice knot can be transformed into a lattice knot with a regular lattice projection in the bottom bounding plane of L_w .

OUTLINE OF PROOF II

THEOREM: By applying elementary moves from the BFACF algorithm to a lattice knot in L_w with a regular lattice knot projection, Reidemeister moves can be performed on the knot projection, provided that w > 1.

OUTLINE OF PROOF III

- Two lattice knots with equivalent lattice knot projection in the bottom bounding plane of L_w can be made identical by application of elementary moves from the BFACF algorithm.
- The BFACF algorithm can now be used to sample polygons of knot types K in slabs L_w ($2 \le w \le 22$).
- Expectations for $\langle n \rangle_w$:
 - Approach a constant if $K = \emptyset$;
 - Divergent and Concave of w if K is prime;
 - Divergent and Convex of w if K is compound.

UNKNOTTED POLYGONS

The Mean Length of Unknotted Polygons

$$\langle n \rangle_{0_1} \approx C_1 + C_2 w^{-0.85} + \dots$$
 [$C_1 = 7.248 \pm 0.007$].

TREFOILS

The Average Length of Polygons with Knots Type 3₁

$$\langle n \rangle_{3_1} \approx C_1 + C_2 w^{0.85} + \dots$$
 [$C_1 = -11.45 \pm 0.04$].

COMPOUNDED TREFOILS

Average Lengths of Compounded Trefoils

$$\langle n \rangle_{3_1} = C_1 + C_2 w^{0.85} + \dots$$
 for trefoils

$$\langle n \rangle_K = C_1 + C_2 w^{1.70} + \dots$$
 when K is compound

OTHER PRIME KNOTS

Average Lengths of Polygons of Non-Trivial Knot Types

$$\langle n \rangle_K \approx C_1 + C_2 w^{0.85} + \dots$$

METRIC PROPERTIES

Metric properties in this ensemble: $p_n(r^2, w)$ is the number of polygons of length n in L_w with square radius of gyration r^2 .

$$\langle r^2 \rangle_w = \frac{\sum_{n,r^2} r^2 p_n(r^2, w) t^n}{\sum_{n,r^2} p_n(r^2, w) t^n}$$

The mean square radius of gyration increases with w at $t = 1/\mu$.

MEAN SQUARE RADIUS OF GYRATION

AMPLITUDE RATIO

Define $\langle S_{xy} \rangle_w$ to be the mean span in the XY-plane.

• The Amplitude Ratio $A_{K,w}$ is the dimensionless quantity

$$A_{K,w} = \frac{\langle S_{xy} \rangle_w^2}{\langle r^2 \rangle_w}$$

- ullet For small w the polygon is spread out in the XY-plane.
- For large w the polygon will not interact with the slab.
- A knotted polygon is "swollen" for small w, thus a larger amplitude ratio.

AMPLITUDE RATIOS FOR TREFOILS

AMPLITUDE RATIOS FOR OTHER KNOTS

AMPLITUDE RATIOS

Three phases:

1) Small w: Declining $A_{K,w}$.

Very strong interaction between knot and the slab.

2) Intermediate w: Constant $A_{K,w}$.

Strong interaction between knot and the slab.

3) Large w: Slowly declining $A_{K,w}$.

Weak interaction between the knot and the slab.

AVERAGE AMPLITUDES

Knot	$A_{K,4}$	$A_{K,10}$	$\langle A_{K,w} \rangle$
0_1	4.952(21)	4.834(19)	4.90
3_1	18.499(69)	18.343(138)	18.38
4_1	20.599(85)	20.438(141)	20.51
5_1	21.781(71)	21.519(155)	21.61
5_2	22.156(106)	21.872(161)	21.97
6_1	23.342(119)	23.003(171)	23.15
6_2	23.446(122)	23.209(176)	23.30
6_3	23.589(128)	23.352(164)	23.45
$3_1^+ # 3_1^+$	22.588(156)	23.377(230)	22.50
$3_1^+ # 3_1^-$	22.565(149)	22.368(232)	22.50
$3_1^+ # 3_1^+ # 3_1^+$	24.645(429)	24.619(223)	24.68

- Averages for $w \in [4, 10]$ (constant regime).
- Increasing with Crossing Number the knot is more swollen.

CONCLUSIONS

- Scaling arguments can predict the mean length of a knotted polygon in a slab at activity $t=1/\mu_{\emptyset}$.
- The BFACF algorithm can be used to sample polygons of fixed knot type in a slab.
- The Unknot does not interact with the slab as $w \to \infty$.
- Knotted polygons do interact with the slab as $w \to \infty$.
- Prime knots interact differently with the slab, compared to compound knots.
- Knots are swollen in the XY-plane in narrow slabs.