Directed walk models of polymers stretched by a force.

G. Iliev, A. Rechnitzer, M.C. Tesi Stu Whittington.

Mechanical desorption of a polymer adsorbed onto a plane.

1. A polymer in dilute solution can adsorb at an impenetrable surface.

2. In the thermodynamic limit there is a phase transition from an adsorbed phase to a desorbed phase at some critical temperature Tc.

3. In the adsorbed phase the polymer can be desorbed by application of a force.

Which model?

Different models can be used in order to study the configurational properties of a linear polymer.

Off-lattice models: Freely jointed chain, Gaussian chain, worm like chains etc.

On-lattice models: random walks, self-avoiding walks.

Self-avoiding walks

No clue how to determine rigorously the force-temperature phase diagram.

Exact solutions can be obtained Stretched walks wouldn't be so different from being directed.

Dyck Path

A Dyck path of length n is a lattice path in the plane from the origin (0,0) to (n,0) consisting of up steps (1,1) and down steps (1,-1) that never run below the x-axis.

Examples

Motzkin Path

A Motzkin path of length n is a lattice path in the plane from the origin (0,0) to (n,0) consisting of up steps (1,1), down steps (1,-1) and horizontal steps (1,0) that never run below the x-axis.

Examples

Dyck Excursion

A Dyck excursion of length n is a Dyck path Where y(i) > 0 for all i except i=1,n

Counting Dyck paths keeping track of vertices in the surface

Define the generating function

Singularity structure of D(x,z)

$$D(x,z) = 1 + x z^2 D(1,z) D(x,z)$$

$$D(x,z) = \frac{2}{2 - x(1 - \sqrt{1 - 4z^2})}$$

$$D(x,z) = \frac{2}{2 - x(1 - \sqrt{1 - 4z^2})}$$

D(x,z) has a square root singularity at $z = z_1 = 1/2$ which dominates for x < 2 and a pole at $z = z_2(x)$ which dominates for x > 2.

Adsorption point

$$x_c = 2$$

Now let us apply a lifting force acting on the last vertex of the walk......

New generating function

$$F(x, y, z) = \sum_{v,h,n} d_n(v,h) x^v y^h z^n$$

$$y \leftarrow \rightarrow exp(f/k_B T)$$

N.B. One pole depends on x and the other on y

$$F(x, y, z) = \frac{4z}{(2 - x + x\sqrt{1 - 4z^2})(2z - y + y\sqrt{1 - 4z^2})}$$

Square root singularity $z = \frac{1}{2}$ control the desorbed phase

$$z_c^{(1)} = \frac{\sqrt{x-1}}{x}$$

$$z_c^{(2)} = \frac{y}{y^2 + 1}$$

Two poles: $\begin{cases} z_c^{(1)} = \frac{\sqrt{x-1}}{x} & \text{Phase boundary for } z^{(1)}_c = z^{(2)}_c \\ z_c^{(2)} = \frac{y}{y^2+1} & y_c(x) = \sqrt{x-1} \end{cases}$

$$y_c(x) = \sqrt{x-1}$$

$$y \leftarrow \rightarrow exp(f/k_B T)$$

Changing to
$$y \longleftrightarrow exp(f/k_B T)$$
 physical variables $x \longleftrightarrow exp(1/k_B T)$

$$f_c(T) = \frac{k_B T}{2} \log(e^{1/k_B T} - 1)$$
 Force-Temperature relation

$$f_c(T) = \frac{k_B T}{2} \log(e^{1/k_B T} - 1)$$

Similar phase diagram for Motzkin paths: $f_c(0) = 1$

Adsorption on a plane: partially directed walks in three dimensions.

- \rightarrow A *n* steps partially directed walk in three dimensions confined into the half plane $z \ge 0$ is a walk that
 - 1) starts at the origin
 - 2) with no steps in the negative x and negative y
 - 3) never run below the z-axis.

$$G(x,z) = (1 + 2xz + 4x^2z^2 + \dots + 2^p x^p z^p + \dots)$$

$$\times [1 + xz^2 (G(1,z) - 1) + 2x^2 z^3 (G(1,z) - 1)G(x,z)]$$

Partially directed walks in three dimensions

The force goes through a maximum as T varies.

Re-entrant transition.

Why a re-entrant transition at low T for partially directed walks (and SAWs) and not for Dyck or Motzkin paths?

Entropic contribution (extensive in n) of the adsorbed configurations.

Low Targument

For T close to zero one can assume:

$$F_n = -f(n-m) - m \varepsilon - m T \log \mu$$

 $log \mu$: conformational entropy per monomer in the adsorbed state

The minimum of F_n is given for the critical force

$$f_c(T) = \varepsilon + T \log \mu$$

$$f_c(T) = \varepsilon + T \log \mu$$

Dyck paths

 $\varepsilon = \frac{1}{2}$: only half of the monomers can sit on the line

 $\mu = 1$: only one completely adsorbed configuration

N.B. For SAWs in 2D μ = μ_{1D} = 1

$$f_c(T) = \varepsilon + T \log \mu$$

Partially directed walks in 3D

figurations on the plane)

$$f_c(0)=1$$
 (T)/dT $|_{T=0}=\log 2$

N.B. For 3D SAWs adsorbing on a plane (μ = μ_{2D} = 2.6381...) the re-entrant phase diagram was found by Monte Carlo simulations (J. Krawczyk et al J. Stat. Mech 2004)

Directed walks and 1D random walks

Mapping between a directed walk and a 1D random walk:

Dyck path --à random walk with p=1 and q=0

Motzkin path --à random walk with p=2/3 and q=1/3

Number of visits: --à number of times the random walk is at the origin.

For a general (p,q) 1D random walk the reentrance takes place for p < 2/3

(Giacomin and Toninelli 2006)

$$f_c(T) = \varepsilon + T \log \mu$$
 $\mu = 2q/p$

Motzkin path --à (2/3,1/3) random walk à $\mu = 1$

Partially directed walk μ = 2 --à (1/2,1/2) random walk

Extension to random copolymers

(Iliev et al 2004)

Motzkin paths with two kind of vertices: A ● and B ●

Colour variable χ_i : $\chi_i = 1$ if mon = A and $\chi_i = 0$ if mon = B

Colour configuration: $\{\chi\}_{i=1,n} = \{\chi_1, \chi_2, \chi_3, \dots, \chi_n\}$

$$H(\boldsymbol{\omega}, f|\boldsymbol{\chi}) = \sum_{i=1}^{n} \varepsilon \Delta_{i}(\boldsymbol{\omega}) \chi_{i} - f h$$

$$H(\omega, f|\chi) = \sum_{i=1}^{n} \varepsilon \Delta_{i}(\omega) \chi_{i} - f h \qquad Z(T, f|\chi) = \sum_{\{\omega\}} \exp((\Delta_{i}(\omega) \chi_{i} + f h) / T)$$

$$\Delta_i(\omega) = 1$$
 if $z_i = 0$ $\Delta_i(\omega) = 0$ otherwise

Random copolymers

The χ_i 's are iid random variables prob(χ_i =1) = p , prob(χ_i =0)=1-p

$$Z_{n}(T, f|\chi) = \sum_{\{\omega\}} \exp((\Delta_{i}(\omega)\chi_{i} + f h)/T)$$
 Function of random variables
$$\frac{Q_{n}}{dt^{2}} = \frac{Q_{n}}{dt^{2}} = \frac{Q$$

$$\langle O(\chi) \rangle_{\chi} = \sum_{\{\chi\}} p^{|A(\chi)|} (1-p)^{n-|A(\chi)|} O(\chi)$$

First order Morita approximation

$$F^{1st}(T, f|p) = \lim_{n \to \infty} n^{-1} \log \left\langle Z_n^{1st}(T, f|\chi) \right\rangle_{\chi}$$

$$Z_n^{1st}(T, f, \lambda | \chi) = \sum_{\{\omega\}} \exp((\Delta_i(\omega) \chi_i + f h) / T) \exp(\lambda (\sum_i \chi_i - p n))$$

$$\lambda$$
 chosen such that $\left\langle \sum_{i=1}^{n} \chi_i \right\rangle = pn$

The generating function needs to keep track also of the number of vertices in the bulk.

$$f_c^{q}(T) \le f_c^{1st}(T)$$

$$f_c(T) = \frac{k_B T}{2} \log(e^{1/k_B T} - 1)$$

Similar phase diagram for Motzkin path: at T=0 f=1

Singularity structure of D(x,z)

$$D(x,z) = 1 + xz^{2} D(1,z) D(x,z)$$

$$D(x,z) = \frac{2}{2 - x(1 - \sqrt{1 - 4z^2})}$$

where

$$D(1,z) \equiv D(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z^2} = \sum_{n \ge 0} C_n x^n$$

$$Catalan nu$$

$$C_n = \frac{1}{(n+1)}$$

Catalan numbers

$$C_n = \frac{1}{(n+1)} \binom{2n}{n}$$

For x=1 we get the generating function of unweighted Dyck paths

Mechanical denaturation of DNA

E.O. et al 2001, D. Marenduzzo et al 2002

N.B. The directed DNA model can be mapped onto a Bicoloured Motzkin path (Janse van Rensburg 2000, Iliev et al. 2006)