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A material is classified as hydrophobic (or hydrophilic) if its
contact angle with a bubble of water is < (or >) 90 degrees.
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cosine of the angle An mdependent method for
measuring vy is to simulate a slab of water and

evaluate y from the pressure tensor.
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Wher he solid/water ntial come from? We integr
the site-site potential over the solid slab

Approximate the solid as a continuum with number density o = N /V
that occupies the semi-infinite region z < 0
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Spherical shell of radius r below z = 0. cosa=z/r

do rosino pu(r) 27Z',0JZ ru(r)[r—zldr

Jacoblan

Density of carbon atoms in graphite:
p=0113 A7

(1.42 in-plane bond length and 3.4
inter-layer spacing)




BRI 15w do we curve the solid info a sphere?
U(z)= zyzpr ru(r)[r— z]dr Yields arelationship that allows us to

invert the slab potential U(r) back to the
site-site potential u(r) by taking two derivatives:

_U"©)
u(g) = DE

Then we can integrate the site-site
potential u(r) over a spherical solid as:

U(d,R) = jOR dr joz”de jo” do pr*sin @ u([r* +(d + R)> —2rcos ¢(d + R)]"?)

4aec’ R’ | 35d* +140Rd> + 252R*d* + 224R*d +80R*  8beo®R’

U(daR): 6 6 3 3
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Ut b This potential energy function looks like

(for € = 250, hydrophilic):
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The well depth converges to the flat geometry (slab) potential.
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Change variables from U(d,R) to U(r,R).

Then + B_U gives the usual MD force on the water

dr molecule and on the nanoparticle.

What about _B_U ? This is the force on
OR  the sphere radius,
which we don’t use since it is fixed. c .

However, if we keep track of it during the
MD simulation we obtain a powerful
quantity to use to calculate free energy.



Simulations of a fixed radius sphere in water:
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measure the force on the sphere radius.

— unadjusted radius

— radius including van der Waals contact distance ;/

— "hard wall" potential
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solvation free energy (K)
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Integrate to obtain the solvation

free energy of a sphere of radius R.
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+—e unadjusted radius
+— radius including van der Waals contact distance




— 5 A radius sphere

— 15 A radius sphere

— 20 A radius sphere

— 5 A radius sphere (hydrophobic)
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— 5 A radius sphere

— 15 A radius sphere

— 20 A radius sphere

— 5 A radius sphere (hydrophobic)
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