UTD

Nanoparticles composed of macroscopically hydrophilic material become hydrophobic on the nanometer length scale

Steven O. Nielsen

Department of Chemistry

 University of Texas at Dallas
UT D

A material is classified as hydrophobic (or hydrophilic) if its contact angle with a bubble of water is < (or >) 90 degrees.

$$
\varepsilon=250
$$

$$
\varepsilon=270
$$

$$
\text { water } / \operatorname{solid}(z)=0.0338 \varepsilon \sigma^{9} z^{-6}-0.118 \varepsilon \sigma^{6} z^{-3}
$$

UT D The surface tension, γ, can be calculated from the cosine of the angle. An independent method for measuring γ is to simulate a slab of water and evaluate γ from the pressure tensor.

water $/ \operatorname{solid}(z)=0.0338 \varepsilon \sigma^{9} z^{-6}-0.118 \varepsilon \sigma^{6} z^{-3}$

UTD
 Where does the solid/water potential come from? We integrate the site-site potential over the solid slab

Approximate the solid as a continuum with number density $\rho=N / V$ that occupies the semi-infinite region $z<0$

Spherical shell of radius r below $z=0 . \quad \cos \alpha=z / r$

$$
\begin{aligned}
& \int_{z}^{\infty} d r \int_{0}^{2 \pi} d \theta \int_{\pi-\cos ^{-1}(z / r)}^{\pi} d \phi \underbrace{r^{2} \sin \phi}_{\text {Jacobian }} \rho u(r)=2 \pi \rho \int_{z}^{\infty} r u(r)[r-z] d r \\
= & \frac{4}{45} \frac{\pi \rho \epsilon \sigma^{12}}{z^{9}}-\frac{2}{3} \frac{\pi \rho \epsilon \sigma^{6}}{z^{3}}=U(z) \\
& \begin{array}{c}
\text { Density of carbon atoms in graphite: } \\
\rho=0.113 \AA \AA^{-3} \\
\text { (1.42 in-plane bond length and } 3.4 \\
\text { inter-layer spacing) }
\end{array}
\end{aligned}
$$

UTD How do we curve the solid into a sphere?

$U(z)=2 \pi \rho \int_{z}^{\infty} r u(r)[r-z] d r$ yields a relationship that allows us to invert the slab potential $\mathrm{U}(\mathrm{r})$ back to the site-site potential $u(r)$ by taking two derivatives:

$$
u(\xi)=\frac{U^{\prime \prime}(\xi)}{2 \pi \rho \xi}
$$

Then we can integrate the site-site potential $u(r)$ over a spherical solid as:

$U(d, R)=\int_{0}^{R} d r \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} d \phi \rho r^{2} \sin \phi u\left(\left[r^{2}+(d+R)^{2}-2 r \cos \phi(d+R)\right]^{1 / 2}\right)$
$U(d, R)=\frac{4 a \varepsilon \sigma^{9} R^{3}}{5 d^{6}} \cdot \frac{35 d^{4}+140 R d^{3}+252 R^{2} d^{2}+224 R^{3} d+80 R^{4}}{(d+R)(d+2 R)^{6}}-\frac{8 b \varepsilon \sigma^{6} R^{3}}{d^{3}(d+2 R)^{3}}$

The well depth converges to the flat geometry (slab) potential.

UTD

Change variables from $U(d, R)$ to $U(r, R)$. Then $\pm \frac{\partial U}{\partial r}$ gives the usual MD force on the water What about $-\frac{\partial U}{\partial R}$? $\begin{aligned} & \text { This is the force on } \\ & \text { the sphere radius, }\end{aligned}$ which we don't use since it is fixed.

However, if we keep track of it during the MD simulation we obtain a powerful quantity to use to calculate free energy.

UT D Simulations of a fixed radius sphere in water: measure the force on the sphere radius.

UT D

Integrate to obtain the solvation free energy of a sphere of radius \mathbf{R}.

Acknowledgements

Collaborators

Wataru Shinoda, AIST (Japan)
Preston B. Moore, USP (Philadelphia)
Chi-cheng Chiu, UTD (my graduate student)

Funding

American Chemical Society Petroleum Research Fund

UTD

UTD

UTD

