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Higher Gauge Theory

It is natural to assign a group element to each path:

g

N
{ {

since composition of paths then corresponds to multipli-
cation:

while reversing the direction of a path corresponds to tak-
INg 1NVerses:

ous:



Internalization

Often a useful first step in the categorification process
involves using a technique developed by Ehresmann called
‘Internalization.’

How do we do this?

e (Given some concept, express its definition completely
in terms of commutative diagrams.

e Now interpret these diagrams in some ambient cate-
gory K.

We will consider the notion of a ‘category in K’ for various
categories K .

A strict 2-group is a category in Grp, the category of
groups.



Categorified Lie Theory,
strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the
category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the
category of Lie algebras.

We can also define strict homomorphisms between
each of these and strict 2-homomorphisms between

them, in the obvious way. Thus, we have two strict 2-
categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have
Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

d: SLie2Grp — SLie2Alg



Examples of Strict Lie 2-Groups

Let G be a Lie group and g its Lie algebra.

e Automorphism 2-Group

Objects : = Aut(G)
Morphisms : = G x Aut(G)

e Shifted U(1)

Objects : =
Morphisms : = U(1)

e Tangent 2-Group

Objects: = G
Morphisms: = gx G=TG

e Poincaré 2-Group

Objects : = SO(n, 1)
Morphisms : = R" x SO(n,1) = 150(n,1)



Coherent 2-Groups

A coherent 2-group is a weak monoidal category in
which every morphism is invertible and every object is
equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak
monoidal functor. A 2-homomorphism is a monoidal
natural transformation. The coherent 2-groups X and
X' are equivalent if there are homomorphisms

f: X —-X f X' —-X
that are inverses up to 2-isomorphism:

fre1, ffeEL

Theorem. Coherent 2-groups are classified up to equiv-
alence by quadruples consisting of:

e a group G,
e an abelian group H,

e an action « of G as automorphisms of H,
e an clement [a] € H*(G, H).



Categorified vector spaces

Kapranov and Voevodsky defined a finite-dimensional 2-
vector space to be a category of the form Vect".

Instead, we define a 2-vector space to be a category in
Vect, the category of vector spaces.

Thus, a 2-vector space is a category where everything in
sight is linear!



A 2-vector space, V', consists of:

e a vector space of objects, Ob(V)

e a vector space of morphisms, Mor(V)
together with:

e linear source and target maps
s,t: Mor(V) — Ob(V),
e a linear identity-assigning map
i: Ob(V) — Mor(V),
e a linear composition map

o: Mor(V') xopy Mor(V) — Mor(V)



such that the following diagrams commute, expressing the
usual category laws:

e laws specifying the source and target of identity mor-
phisms:

Ob(V)—-Mor(V)  Ob(V)—~Mor(V)

106\4 Is 1(% it

Y ob(v) " ob(V)

e laws specifying the source and target of composite
morphisms:

Mor(V') xopvy Mor(V)—2——Mor(V)

P1 S

Mor(V) 8 Ob(V)

Mor(V) X Ob(V) Mor(V)—°>—Mor(V)

p2 t

Mor(V) L Ob(V)




e the associative law for composition of morphisms:

oXop(vy 1
Mor(V') xopvy Mor(V') xopvy Mor(V) O Mor(V) X op(vy Mor(V')

leb(V)o o

Mor(V) X Ob(V) Mor(V) ° Mor(V)

e the left and right unit laws for composition of
morphisms:

Ob(V') X opry Mor(V) 2L Mor(V) x opvy Mor(V) << Mor (V') x opry Ob(V')

Mor(V)



2-Vector Spaces

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way:.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

e 2-term chain complexes C} 4, Co,
e chain maps between these,

e chain homotopies between these.



2-Vector Spaces

Proposition. Given 2-vector spaces V and V' there is
a 2-vector space V & V' having:

e Ob(V) @& Ob(V') as its vector space of objects,
e Mor(V') @& Mor(V") as its vector space of morphisms,

Proposition. Given 2-vector spaces V and V" there is
a 2-vector space V' ® V' having;

e Ob(V) ® Ob(V') as its vector space of objects,
e Mor(V') ® Mor(V") as its vector space of morphisms,

Moreover, we have an ‘identity object’, K, for the
tensor product of 2-vector spaces, just as the ground field
k acts as the identity for the tensor product of usual vector
spaces:

Proposition. There exists a unique 2-vector space K,
the categorified ground field, with

Ob(K) = Mor(K) = k and
S,t,’i — 1k



Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:
e a 2-vector space L
equipped with:
e a functor called the bracket:
)] Lx L — L
bilinear and skew-symmetric as a function of objects
and morphisms,

e a natural isomorphism called the Jacobiator:

‘]95;3/72: HCE, y]? Z] — [.CE, [yv ZH + HZC, Z]a y];
trilinear and antisymmetric as a function of the objects
L, Y, <,
such that:

e the Jacobiator identity holds, meaning the follow-
ing diagram commutes:

([[w,2].y],2]

o2 \
([[w,yl,2), 2]+ [[w,[2,y]],2] [[[w,],y],2]
Jw ezt w2y, Jiw,aly.z
[[[w,yl,2],2] +[[w,y],[2,2]] ([[w,],2],y]+[[w,],[y,2]]
+w,[[z,y],2]]+[[w,2],[z,y]]
[Jw7y7z’x] [Jw,x,z;y]
([[w,2]y],2]+[[w,[y,2]] 2] [[w,[z,2]],y]
H[w,yl [z, 2]+ [w,[[z,y],2]]+[[w,z2],[2,y]] Hw,z], [y, +[[[w,z],2],y]

w,[z,z],y
[’LU’\JWV\ +J[w,z],z,y+¢]w,:r,[y,z]

[[[w.z] .y} +{[w,2], [2,]] +[[wy],[x,2]]
+w,[[z.2] yll+H[w [y, 2] 2]+ w2, [y,2]]



Given a vector space V' and an isomorphism
B:VV-=VQYV,

we say B is a Yang—Baxter operator if it
satisfies the Yang—Baxter equation, which
says that:

(B®1)(1®B)(BR1)=(1B)(B®1)(1®B),
or in other words, that this diagram commutes:

1®B v “ v “ V B®1
V®V®§//// \\\\?®V®V
B®1 1®B
VeVeV VeVeV

m %

VeveV



[fwedraw B: V®V — V&V as a braiding:




Proposition: Let L be a vector space over k
equipped with a skew-symmetric bilinear
operation

)]s Lx L — L.
Let L' = k @ L and define the isomorphism
B:I'e9Ll - L &L by
B((a,z)®(b,y)) = (b, y)®(a, 2)+(1,0)®(0, [z, y]).
Then B is a solution of the Yang—Baxter

equation if and only if |-, -] satisfies the Jacobi
identity:.



Zamolodchikov tetrahedron equation

Given a 2-vector space V' and an invertible linear
functor B: V®V — V&V, alinear natural isomorphism

Y:(Bel)(1®B)Bo1l)= (10 B)(B21)(1® B)

satisfies the Zamolodchikov tetrahedron equation

if:

Yo(191®B)(19B®1)(Be11)][(19B®1)(BR1®1)oY o( BR1®1)]
(10B®1)(1010B)oY o(191@B)][Y o( B®1®1) (19 B®1)(191Q B)]

(BR1®1)(189B®1)(1®1®B)oY|[(BR1®1)oY o( B®1®1)(19 BR1)]
(IR1®B)oY o(11®B)(1 BR1)][(191®B)(19 BR1)(BR1®1)oY]

We should think of Y as the surface in 4-space traced
out by the process of performing the third Reidemeister
move:






Left side of Zamolodchikov tetrahedron

equation:




Right side of Zamolodchikov tetrahedron
equation:
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In short, the Zamolodchikov tetrahedron
equation is a formalization of this commutative
octagon:

/'\

3, \ /\/
/////\ \)\>\
S s 57

R



Theorem: Let L be a 2-vector space, let |-, -] Lx L — L be a skew-
symmetric bilinear functor, and let J be a completely antisymmetric
trilinear natural transformation with

Jil?,y,Z: HQE, y}v Z] — [:I?, [ya ZH + H'% Z]: y]
Let L' = K & L, where K is the categorified ground field.
Let B: LI’ ® L' — L’ ® L' be defined as follows:
B((a,z) @ (b,y)) = (b,y) ® (a,2) + (1,0) ® (0, [z, y])

whenever (a,x) and (b,y) are both either objects or morphisms in
L'. Finally, let

Y:(B1)(1®B)(B®R1)= (1 B)(B®1)(1® B)
be defined as follows:
L' L L
PRPRP

L®L®L

(z,y,2)

L/ ® L/ ® L/

(1,0)®(1,0)®(0,a)
where a is either an object or morphism of L. Then Y is a solution
of the Zamolodchikov tetrahedron equation if and only if J satisfies

the Jacobiator identity.



Hierarchy of Higher Commutativity

Topology Algebra
Crossing Commutator
Crossing of crossings | Jacobi identity
Crossing of crossing | Jacobiator
of crossings identity




We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Given Lie 2-algebras L and L', a homomorphism
F: L — L' consists of:

e a functor F' from the underlying 2-vector space of L
to that of L, linear on objects and morphisms,

e a natural isomorphism

Fy(z,y): [F(x), Fy)] — Flz,yl,

bilinear and skew-symmetric as a function of the
objects x,y € L,

such that:

e the following diagram commutes for all objects
x,Yy,z € L:

[F(2), [F(y), F(2)]] —— 295050 (1B (@), F(y)], F(2)] + [F(y), [F(z), F(2)]
[1,F5] [F2,1]+[1,F3]
[F(z), Fly, 2] [Fle,y), F(2)] + [F(y), Flz, ]
Flz, [y, 2] M) Fllz,y], 2] + Fly, [z, ]




Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

e 2-term L.-algebras,
e L..-homomorphisms between these,

e [ -2-homomorphisms between these.

The Lie 2-algebras L and L’ are equivalent if there are
homomorphisms

f:L— L f. L' - L

that are inverses up to 2-isomorphism:

fre1, ffeEL

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

e a Lie algebra g,

e an abelian Lie algebra (= vector space) b,

e a representation p of g on b,

e an clement [j] € H3(g, h).



The Lie 2-Algebra g;

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

e a vector space b,
e a representation p of g on b,

e an clement [j] € H(g, b).

Assume without loss of generality that p is irreducible.

To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g,h) # 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H’(g,R) =R
with a nontrivial 3-cocycle given by:

v(r,y,z) = (|r,y],2).

The Lie algebra g together with the trivial representation
of g on R and k times the above 3-cocycle give the Lie
2-algebra gy.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, g;, which reduces
to g when k =0/

Puzzle: Does g; come from a Lie 2-group?



Suppose we try to copy the construction of g; for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

H3(G,U(1) > Z — R = H3(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group Gy, for k € Z:

e (5 as its group of objects,
e U(1) as the group of automorphisms of any object,
e the trivial action of G on U(1),

e [a] € H3(G,U(1)) given by k¢[v], which is nontrivial
when k # 0.

Question: Can G be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k = 0, there is no
way to give the 2-group G the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology:.



(Good News) Theorem. For any k € Z, there is
a Fréchet Lie 2-group PrG whose Lie 2-algebra Prg is
equivalent to g;.

An object of PpG is a smooth path f: [0, 27] — G start-
ing at the identity. A morphism from f; to fo is an equiv-
alence class of pairs (D, a) consisting of a disk D going
from f1 to fo together with o € U(1):

For any two such pairs (D1, 1) and (Ds, as) there is a
3-ball B whose boundary is Dy U Dy, and the pairs are
equivalent when

exp (27Ti]€/ V) = ay/a
B

where v is the left-invariant closed 3-form on G with

v(r,y,2) = ([z,y], 2)

and (-, -) is the smallest invariant inner product on g such
that v gives an integral cohomology class.



PG and Loop Groups

We can also describe the 2-group PG as follows:

e An object of PrG is a smooth path in G starting at
the identity.

e Given objects f1, fo € PrG, a morphism
z Ji— fo

is an clement ¢ € @ with

AN

p(f) = fa/ fr

where @ is the level-k Kac-Moody central
extension of the loop group QG:

1—>U<1)—>®LQG—>1

Remark: p(z) is a loop in G. We can get such a loop with

AN

p(f) = f2/ fi
from a disk D like this:



The Lie 2-Group PG

Thus, PG is described by the following where p € PyG
and vy € (.G

e A Fréchet Lie group of objects:
Ob(P,G) = PG

e A Fréchet Lie group of morphisms:

Mor(PG) = RiG x 4G
e source map: S<p7 W) =D

e target map: t(p,7y) = pd(y) where 0 is defined as
the composite

0.G 065 PG

e composition: (p1,71) o (p2,72) = (P1,7172) when
t<p17 371) — S<p27 f>72)7 oI P2 = pl(?(f}?l)

e identities: i(p) = (p,1)



The Lie 2-Algebra P.g

PG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L.-algebra V' corresponding to the Lie
2-algebra Pprg is given by:

oy = Fug
V=g = QgaR,

e d: Vi — Vjequal to the composite
Qg — Qg — Pg,

o [y: V) x Vi — Vj given by the bracket in Fyg:
l2(p1, p2) = [p1, D2,

and l: Vo x Vi — Vi given by the action da of Fyg
on (g, or explicitly:

2
la(p, (6, ¢)) = (]p, 4], 2k / (p(6),£(0)) do )
0
for all p € Pyg, £ € QG and c € R,



o /5: Vo x V) x Vi — Vi equal to zero.



The 2-term L.-algebra V' corresponding to the Lie
2-algebra g; is given by:

e |y = the Lie algebra g,

o1 =R,

o d: Vi — V| is the zero map,

o [y: V) x Vi — Vj given by the bracket in g:
lo(x, y) = |2, y],

and ly: V) x Vi — Vj given by the trivial
representation p of g on R,

o /3: V) x Vo x Vy — Vj given by:

l3($7y72> — k<[fE,y],Z>
for all z,y, z € g.



The Equivalence Prg ~ g,

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L-algebra homomorphisms:

e ¢: Prg — g; has:
do(p) = (27T)
¢1<€7 C) -
where p € Fyg, ¢ € ()g, and ¢ € R.

e : gr — Prg has:
Yo(x) = xf
i) = (0,
0,2

where x € g, ¢ € R, and f:
function with f(0) =0 and f(2

R 1S a smooth

| |

)
)

Theorem. With the above definitions we have:

e ¢ o 1 is the identity Lie 2-algebra homomorphism on
gk, and

® )o@ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on P.g.



Topology of P.G

The nerve of any topological 2-group is a simplicial
topological group and therefore when we take the geo-
metric realization we obtain a topological group:

Theorem. For any k € Z, the geometric realization of
the nerve of PrG is a topological group |PrG|. We have

When k£ = +1, R

‘PkG | ~ G,
which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), G is called String(n). When
k=+1, |P.G| ~G.



The Lie 2-Algebra P.g

PG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.
Moreover,

Theorem. Prg >~ g;



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

e Classify their representations
e ['ind their corresponding Lie n-groups

e Understand their relation to higher braid theory

Moreover, many other questions remain:

e Weak n-categories in Vect?

e Weakening laws governing addition and scalar multi-
plication?

e Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

e What's a free Lie 2-algebra on a 2-vector space?
e Lie 2-algebra cohomology? L.-algebra cohomology?

e Deformations of Lie 2-algebras?



