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Higher Gauge Theory

It is natural to assign a group element to each path:

•
g

''•
since composition of paths then corresponds to multipli-
cation:

•
g

''•
g′

''•
while reversing the direction of a path corresponds to tak-
ing inverses:

• •
g−1

ww

and the associative law makes this composite unambigu-
ous:

•
g

''•
g′

''•
g′′

''•



Internalization

Often a useful first step in the categorification process
involves using a technique developed by Ehresmann called
‘internalization.’

How do we do this?

• Given some concept, express its definition completely
in terms of commutative diagrams.

• Now interpret these diagrams in some ambient cate-
gory K.

We will consider the notion of a ‘category in K’ for various
categories K.

A strict 2-group is a category in Grp, the category of
groups.



Categorified Lie Theory,
strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the
category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the
category of Lie algebras.

We can also define strict homomorphisms between
each of these and strict 2-homomorphisms between
them, in the obvious way. Thus, we have two strict 2-
categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have
Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

d : SLie2Grp → SLie2Alg



Examples of Strict Lie 2-Groups

Let G be a Lie group and g its Lie algebra.

•Automorphism 2-Group

Objects : = Aut(G)

Morphisms : = Go Aut(G)

• Shifted U(1)

Objects : = ∗
Morphisms : = U(1)

• Tangent 2-Group

Objects : = G

Morphisms : = goG ∼= TG

• Poincaré 2-Group

Objects : = SO(n, 1)

Morphisms : = Rn o SO(n, 1) ∼= ISO(n, 1)



Coherent 2-Groups

A coherent 2-group is a weak monoidal category in
which every morphism is invertible and every object is
equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak
monoidal functor. A 2-homomorphism is a monoidal
natural transformation. The coherent 2-groups X and
X ′ are equivalent if there are homomorphisms

f : X → X ′ f̄ : X ′ → X

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. Coherent 2-groups are classified up to equiv-
alence by quadruples consisting of:

• a group G,

• an abelian group H ,

• an action α of G as automorphisms of H ,

• an element [a] ∈ H3(G,H).



Categorified vector spaces

Kapranov and Voevodsky defined a finite-dimensional 2-
vector space to be a category of the form Vectn.

Instead, we define a 2-vector space to be a category in
Vect, the category of vector spaces.

Thus, a 2-vector space is a category where everything in
sight is linear!



A 2-vector space, V , consists of:

• a vector space of objects, Ob(V )

• a vector space of morphisms, Mor(V )

together with:

• linear source and target maps

s, t : Mor(V ) → Ob(V ),

• a linear identity-assigning map

i : Ob(V ) → Mor(V ),

• a linear composition map

◦ : Mor(V )×Ob(V ) Mor(V ) → Mor(V )



such that the following diagrams commute, expressing the
usual category laws:

• laws specifying the source and target of identity mor-
phisms:

Ob(V ) i //

1Ob(V ) &&NNNNNNNNNNN
Mor(V )

s
²²

Ob(V )

Ob(V ) i //

1Ob(V ) &&NNNNNNNNNNN
Mor(V )

t
²²

Ob(V )

• laws specifying the source and target of composite
morphisms:

Mor(V )×Ob(V ) Mor(V ) ◦ //

p1

²²

Mor(V )

s

²²

Mor(V ) s // Ob(V )

Mor(V )×Ob(V ) Mor(V ) ◦ //

p2

²²

Mor(V )

t

²²

Mor(V ) t // Ob(V )



• the associative law for composition of morphisms:

Mor(V )×Ob(V ) Mor(V )×Ob(V ) Mor(V )
◦×Ob(V )1 //

1×Ob(V )◦

²²

Mor(V )×Ob(V ) Mor(V )

◦

²²
Mor(V )×Ob(V ) Mor(V ) ◦ // Mor(V )

• the left and right unit laws for composition of
morphisms:

Ob(V )×Ob(V ) Mor(V ) i×1 //

p2

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ
Mor(V )×Ob(V ) Mor(V )

◦

²²

Mor(V )×Ob(V ) Ob(V )1×ioo

p1

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Mor(V )



2-Vector Spaces

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

• 2-term chain complexes C1
d−→C0,

• chain maps between these,

• chain homotopies between these.



2-Vector Spaces

Proposition. Given 2-vector spaces V and V ′ there is
a 2-vector space V ⊕ V ′ having:

• Ob(V )⊕ Ob(V ′) as its vector space of objects,

•Mor(V )⊕Mor(V ′) as its vector space of morphisms,

Proposition. Given 2-vector spaces V and V ′ there is
a 2-vector space V ⊗ V ′ having:

• Ob(V )⊗ Ob(V ′) as its vector space of objects,

•Mor(V )⊗Mor(V ′) as its vector space of morphisms,

Moreover, we have an ‘identity object’, K, for the
tensor product of 2-vector spaces, just as the ground field
k acts as the identity for the tensor product of usual vector
spaces:

Proposition. There exists a unique 2-vector space K,
the categorified ground field, with

Ob(K) = Mor(K) = k and

s, t, i = 1k.



Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the bracket:

[·, ·] : L× L → L

bilinear and skew-symmetric as a function of objects
and morphisms,

• a natural isomorphism called the Jacobiator:

Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y],

trilinear and antisymmetric as a function of the objects
x, y, z,

such that:
• the Jacobiator identity holds, meaning the follow-

ing diagram commutes:
[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],y],z]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,x],z],y]+[[w,x],[y,z]]

[[[w,z],y],x]+[[w,[y,z]],x]
+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]
+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

Jw,[x,z],y
+J[w,z],x,y+Jw,x,[y,z]

[Jw,x,y,z]

uukkkkkkkkkkkkkkkk
1

))SSSSSSSSSSSSSSSS

J[w,y],x,z+Jw,[x,y],z

²²

[Jw,y,z,x]
²²

J[w,x],y,z

²²

[Jw,x,z,y]

²²

[w,Jx,y,z] ))RRRRRRRRRRRRRRRRR

uulllllllllllllllll



Given a vector space V and an isomorphism

B : V ⊗ V → V ⊗ V,

we say B is a Yang–Baxter operator if it
satisfies the Yang–Baxter equation, which
says that:

(B⊗1)(1⊗B)(B⊗1) = (1⊗B)(B⊗1)(1⊗B),

or in other words, that this diagram commutes:

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

B⊗1

**UUUUUUUUUUUUUUUUUUUUUU
1⊗B

uujjjjjjjjjjjjjjjjjjjj

B⊗1

²²

1⊗B ))TTTTTTTTTTTTTTTTTTTT

B⊗1ttiiiiiiiiiiiiiiiiiiiiii

1⊗B

²²



If we draw B : V ⊗ V → V ⊗ V as a braiding:

V V

B =

V V

the Yang–Baxter equation says that:

VVV

VVV
%%
%%
%%
%%
%%
%

=

VVV

VVV



Proposition: Let L be a vector space over k
equipped with a skew-symmetric bilinear
operation

[·, ·] : L× L → L.

Let L′ = k ⊕ L and define the isomorphism

B : L′ ⊗ L′→ L′ ⊗ L′ by

B((a, x)⊗(b, y)) = (b, y)⊗(a, x)+(1, 0)⊗(0, [x, y]).

Then B is a solution of the Yang–Baxter
equation if and only if [·, ·] satisfies the Jacobi
identity.



Zamolodchikov tetrahedron equation

Given a 2-vector space V and an invertible linear
functor B : V ⊗V → V ⊗V , a linear natural isomorphism

Y : (B ⊗ 1)(1⊗B)(B ⊗ 1) ⇒ (1⊗B)(B ⊗ 1)(1⊗B)

satisfies the Zamolodchikov tetrahedron equation
if:

[Y ◦(1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1)][(1⊗B⊗1)(B⊗1⊗1)◦Y ◦(B⊗1⊗1)]

[(1⊗B⊗1)(1⊗1⊗B)◦Y ◦(1⊗1⊗B)][Y ◦(B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B)]

=

[(B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B)◦Y ][(B⊗1⊗1)◦Y ◦(B⊗1⊗1)(1⊗B⊗1)]

[(1⊗1⊗B)◦Y ◦(1⊗1⊗B)(1⊗B⊗1)][(1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1)◦Y ]

We should think of Y as the surface in 4-space traced
out by the process of performing the third Reidemeister
move:



Y :

%%
%%
%%
%%
%%
%

⇒



Left side of Zamolodchikov tetrahedron
equation:
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Right side of Zamolodchikov tetrahedron
equation:

HHHH

BBBB

LLL

77777
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In short, the Zamolodchikov tetrahedron
equation is a formalization of this commutative
octagon:

HHHH

BBBB

77
77

7

;;
;;

LLL

LLL

77777

;;;;

CCC
C

BB
BB

77
7

;;
;;
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Theorem: Let L be a 2-vector space, let [·, ·] : L×L → L be a skew-

symmetric bilinear functor, and let J be a completely antisymmetric

trilinear natural transformation with

Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y].

Let L′ = K ⊕ L, where K is the categorified ground field.

Let B : L′ ⊗ L′ → L′ ⊗ L′ be defined as follows:

B((a, x)⊗ (b, y)) = (b, y)⊗ (a, x) + (1, 0)⊗ (0, [x, y])

whenever (a, x) and (b, y) are both either objects or morphisms in

L′. Finally, let

Y : (B ⊗ 1)(1⊗B)(B ⊗ 1) ⇒ (1⊗B)(B ⊗ 1)(1⊗B)

be defined as follows:

L′ ⊗ L′ ⊗ L′

L′ ⊗ L′ ⊗ L′

L⊗ L⊗ L

L

Y =

a

(1,0)⊗(1,0)⊗(0,a)

[[x,y],z] [x,[y,z]]+[[x,z],y]

(x,y,z)

p⊗p⊗p

²²

_�

j

²²

zz$$

J +3

where a is either an object or morphism of L. Then Y is a solution

of the Zamolodchikov tetrahedron equation if and only if J satisfies

the Jacobiator identity.



Hierarchy of Higher Commutativity

Topology Algebra
Crossing Commutator

Crossing of crossings Jacobi identity
Crossing of crossing Jacobiator

of crossings identity
... ...



We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Given Lie 2-algebras L and L′, a homomorphism
F : L → L′ consists of:

• a functor F from the underlying 2-vector space of L
to that of L′, linear on objects and morphisms,

• a natural isomorphism

F2(x, y) : [F (x), F (y)] → F [x, y],

bilinear and skew-symmetric as a function of the
objects x, y ∈ L,

such that:

• the following diagram commutes for all objects
x, y, z ∈ L:

[F (x), [F (y), F (z)]]
JF (x),F (y),F (z) //

[1,F2]

²²

[[F (x), F (y)], F (z)] + [F (y), [F (x), F (z)]]

[F2,1]+[1,F2]

²²

[F (x), F [y, z]]

F2

²²

[F [x, y], F (z)] + [F (y), F [x, z]]

F2+F2

²²

F [x, [y, z]]
F (Jx,y,z) // F [[x, y], z] + F [y, [x, z]]



Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

• 2-term L∞-algebras,

• L∞-homomorphisms between these,

• L∞-2-homomorphisms between these.

The Lie 2-algebras L and L′ are equivalent if there are
homomorphisms

f : L → L′ f̄ : L′ → L

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

• a Lie algebra g,

• an abelian Lie algebra (= vector space) h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).



The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

• a vector space h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Assume without loss of generality that ρ is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g, h) 6= 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H3(g,R) = R
with a nontrivial 3-cocycle given by:

ν(x, y, z) = 〈[x, y], z〉.

The Lie algebra g together with the trivial representation
of g on R and k times the above 3-cocycle give the Lie
2-algebra gk.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, gk, which reduces
to g when k = 0!

Puzzle: Does gk come from a Lie 2-group?



Suppose we try to copy the construction of gk for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

H3(G, U(1))
ι

↪→Z ↪→ R ∼= H3(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group Gk for k ∈ Z:

• G as its group of objects,

• U(1) as the group of automorphisms of any object,

• the trivial action of G on U(1),

• [a] ∈ H3(G, U(1)) given by k ι[ν], which is nontrivial
when k 6= 0.

Question: Can Gk be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k = 0, there is no
way to give the 2-group Gk the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k ∈ Z, there is
a Fréchet Lie 2-group PkG whose Lie 2-algebra Pkg is
equivalent to gk.

An object of PkG is a smooth path f : [0, 2π] → G start-
ing at the identity. A morphism from f1 to f2 is an equiv-
alence class of pairs (D, α) consisting of a disk D going
from f1 to f2 together with α ∈ U(1):

G

1

f1 f2D
+3

For any two such pairs (D1, α1) and (D2, α2) there is a
3-ball B whose boundary is D1 ∪ D2, and the pairs are
equivalent when

exp

(
2πik

∫

B

ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉
and 〈·, ·〉 is the smallest invariant inner product on g such
that ν gives an integral cohomology class.



PkG and Loop Groups

We can also describe the 2-group PkG as follows:

• An object of PkG is a smooth path in G starting at
the identity.

• Given objects f1, f2 ∈ PkG, a morphism

̂̀: f1 → f2

is an element ̂̀∈ Ω̂kG with

p(̂̀) = f2/f1

where Ω̂kG is the level-k Kac–Moody central
extension of the loop group ΩG:

1−→U(1)−→ Ω̂kG
p−→ΩG−→ 1

Remark: p(̂̀) is a loop in G. We can get such a loop with

p(̂̀) = f2/f1

from a disk D like this:

G

1

f1 f2D
+3



The Lie 2-Group PkG

Thus, PkG is described by the following where p ∈ P0G

and γ̂ ∈ Ω̂kG:

• A Fréchet Lie group of objects:

Ob(PkG) = P0G

• A Fréchet Lie group of morphisms:

Mor(PkG) = P0Gn Ω̂kG

• source map: s(p, γ̂) = p

• target map: t(p, γ̂) = p∂(γ̂) where ∂ is defined as
the composite

Ω̂kG
p−→ΩG

i
↪→P0G

• composition: (p1, γ̂1) ◦ (p2, γ̂2) = (p1, γ̂1γ̂2) when
t(p1, γ̂1) = s(p2, γ̂2), or p2 = p1∂(γ̂1)

• identities: i(p) = (p, 1)



The Lie 2-Algebra Pkg

PkG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L∞-algebra V corresponding to the Lie
2-algebra Pkg is given by:

• V0 = P0g

• V1 = Ω̂kg ∼= Ωg⊕ R,

• d : V1 → V0 equal to the composite

Ω̂kg → Ωg ↪→ P0g ,

• l2 : V0 × V0 → V0 given by the bracket in P0g:

l2(p1, p2) = [p1, p2],

and l2 : V0 × V1 → V1 given by the action dα of P0g
on Ω̂kg, or explicitly:

l2(p, (`, c)) =
(
[p, `], 2k

∫ 2π

0

〈p(θ), `′(θ)〉 dθ
)

for all p ∈ P0g, ` ∈ ΩG and c ∈ R,



• l3 : V0 × V0 × V0 → V1 equal to zero.



The 2-term L∞-algebra V corresponding to the Lie
2-algebra gk is given by:

• V0 = the Lie algebra g,

• V1 = R,

• d : V1 → V0 is the zero map,

• l2 : V0 × V0 → V0 given by the bracket in g:

l2(x, y) = [x, y],

and l2 : V0 × V1 → V1 given by the trivial
representation ρ of g on R,

• l3 : V0 × V0 × V0 → V1 given by:

l3(x, y, z) = k〈[x, y], z〉
for all x, y, z ∈ g.



The Equivalence Pkg ' gk

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L∞-algebra homomorphisms:

• φ : Pkg → gk has:

φ0(p) = p(2π)
φ1(`, c) = c

where p ∈ P0g, ` ∈ Ωg, and c ∈ R.

• ψ : gk → Pkg has:

ψ0(x) = xf
ψ1(c) = (0, c)

where x ∈ g, c ∈ R, and f : [0, 2π] → R is a smooth
function with f (0) = 0 and f (2π) = 1.

Theorem. With the above definitions we have:

• φ ◦ ψ is the identity Lie 2-algebra homomorphism on
gk, and

• ψ◦φ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on Pkg.



Topology of PkG

The nerve of any topological 2-group is a simplicial
topological group and therefore when we take the geo-
metric realization we obtain a topological group:

Theorem. For any k ∈ Z, the geometric realization of
the nerve of PkG is a topological group |PkG|. We have

π3(|PkG|) ∼= Z/kZ

When k = ±1,
|PkG| ' Ĝ,

which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), Ĝ is called String(n). When

k = ±1, |PkG| ' Ĝ.



The Lie 2-Algebra Pkg

PkG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.
Moreover,

Theorem. Pkg ' gk



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

• Classify their representations

• Find their corresponding Lie n-groups

• Understand their relation to higher braid theory

Moreover, many other questions remain:

•Weak n-categories in Vect?

•Weakening laws governing addition and scalar multi-
plication?

•Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

•What’s a free Lie 2-algebra on a 2-vector space?

• Lie 2-algebra cohomology? L∞-algebra cohomology?

• Deformations of Lie 2-algebras?


