A Survey of Higher Lie Theory

Alissa S. Crans

Joint work with:

John Baez
Urs Schreiber \& Danny Stevenson

Fields Institute
 January 12, 2007

Higher Gauge Theory

It is natural to assign a group element to each path:

since composition of paths then corresponds to multiplication:

while reversing the direction of a path corresponds to taking inverses:

and the associative law makes this composite unambiguous:

Internalization

Often a useful first step in the categorification process involves using a technique developed by Ehresmann called 'internalization.'

How do we do this?

- Given some concept, express its definition completely in terms of commutative diagrams.
- Now interpret these diagrams in some ambient category K.

We will consider the notion of a 'category in K^{\prime} ' for various categories K.

A strict 2-group is a category in Grp, the category of groups.

Categorified Lie Theory, strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the category of Lie algebras.

We can also define strict homomorphisms between each of these and strict 2-homomorphisms between them, in the obvious way. Thus, we have two strict 2categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2 -functor
$d:$ SLie2Grp \rightarrow SLie2Alg

Examples of Strict Lie 2-Groups

Let G be a Lie group and \mathfrak{g} its Lie algebra.

- Automorphism 2-Group

$$
\begin{aligned}
\text { Objects: } & =\operatorname{Aut}(G) \\
\text { Morphisms: } & =G \rtimes \operatorname{Aut}(G)
\end{aligned}
$$

- Shifted $U(1)$

$$
\begin{aligned}
\text { Objects: } & =* \\
\text { Morphisms: } & =U(1)
\end{aligned}
$$

- Tangent 2-Group

$$
\begin{aligned}
\text { Objects : } & =G \\
\text { Morphisms : } & =\mathfrak{g} \rtimes G \cong T G
\end{aligned}
$$

- Poincaré 2-Group

$$
\begin{aligned}
\text { Objects : } & =S O(n, 1) \\
\text { Morphisms : } & =\mathbb{R}^{n} \rtimes S O(n, 1) \cong \operatorname{ISO}(n, 1)
\end{aligned}
$$

Coherent 2-Groups

A coherent 2-group is a weak monoidal category in which every morphism is invertible and every object is equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak monoidal functor. A 2-homomorphism is a monoidal natural transformation. The coherent 2 -groups X and X^{\prime} are equivalent if there are homomorphisms

$$
f: X \rightarrow X^{\prime} \quad \bar{f}: X^{\prime} \rightarrow X
$$

that are inverses up to 2-isomorphism:

$$
f \bar{f} \cong 1, \quad \bar{f} f \cong 1 .
$$

Theorem. Coherent 2-groups are classified up to equivalence by quadruples consisting of:

- a group G,
- an abelian group H,
- an action α of G as automorphisms of H,
- an element $[a] \in H^{3}(G, H)$.

Categorified vector spaces

Kapranov and Voevodsky defined a finite-dimensional 2vector space to be a category of the form Vect ${ }^{n}$.

Instead, we define a 2 -vector space to be a category in Vect, the category of vector spaces.

Thus, a 2 -vector space is a category where everything in sight is linear!

A 2-vector space, V, consists of:

- a vector space of objects, $O b(V)$
- a vector space of morphisms, $\operatorname{Mor}(V)$
together with:
- linear source and target maps

$$
s, t: \operatorname{Mor}(V) \rightarrow O b(V)
$$

- a linear identity-assigning map

$$
i: \operatorname{Ob}(V) \rightarrow \operatorname{Mor}(V)
$$

- a linear composition map

$$
\circ: \operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \rightarrow \operatorname{Mor}(V)
$$

such that the following diagrams commute, expressing the usual category laws:

- laws specifying the source and target of identity morphisms:

- laws specifying the source and target of composite morphisms:

$$
\begin{aligned}
& \operatorname{Mor}(V) \times O b(V) \\
& p_{1} \mid \operatorname{Mor}(V) \xrightarrow{\circ} \operatorname{Mor}(V) \\
& \operatorname{Mor}(V) \xrightarrow{s} \stackrel{\rightharpoonup}{r}(V)
\end{aligned}
$$

$\operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \xrightarrow{\circ} \operatorname{Mor}(V)$

- the associative law for composition of morphisms:

$$
\begin{aligned}
& \operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \xrightarrow{0^{\circ b(V)} 1} \operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \\
& 1 \times o b(V)^{\circ} \\
& \operatorname{Mor}(V) \times_{O b(V)} \operatorname{Mor}(V) \longrightarrow \operatorname{Mor}(V)
\end{aligned}
$$

- the left and right unit laws for composition of morphisms:

$$
O b(V) \times \times_{O b(V)} \operatorname{Mor}(V) \stackrel{i \times 1}{\longrightarrow} \operatorname{Mor}(V) \times \times_{O b(V)} \operatorname{Mor}(V) \stackrel{1 \times i}{\stackrel{1 \times i}{ } \operatorname{Mor}(V) \times} \times{ }_{O b(V)} O b(V)
$$

2-Vector Spaces

We can also define linear functors between 2-vector spaces, and linear natural transformations between these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear functors and linear natural transformations is equivalent to the 2-category of:

- 2-term chain complexes $C_{1} \xrightarrow{d} C_{0}$,
- chain maps between these,
- chain homotopies between these.

2-Vector Spaces

Proposition. Given 2-vector spaces V and V^{\prime} there is a 2-vector space $V \oplus V^{\prime}$ having:

- $\mathrm{Ob}(V) \oplus \mathrm{Ob}\left(V^{\prime}\right)$ as its vector space of objects,
- $\operatorname{Mor}(V) \oplus \operatorname{Mor}\left(V^{\prime}\right)$ as its vector space of morphisms,

Proposition. Given 2-vector spaces V and V^{\prime} there is a 2-vector space $V \otimes V^{\prime}$ having:

- $\mathrm{Ob}(V) \otimes \mathrm{Ob}\left(V^{\prime}\right)$ as its vector space of objects,
- $\operatorname{Mor}(V) \otimes \operatorname{Mor}\left(V^{\prime}\right)$ as its vector space of morphisms,

Moreover, we have an 'identity object', K, for the tensor product of 2 -vector spaces, just as the ground field k acts as the identity for the tensor product of usual vector spaces:

Proposition. There exists a unique 2 -vector space K, the categorified ground field, with

$$
\begin{gathered}
\operatorname{Ob}(K)=\operatorname{Mor}(K)=k \text { and } \\
s, t, i=1_{k} .
\end{gathered}
$$

Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:

- a 2-vector space L
equipped with:
- a functor called the bracket:

$$
[\cdot, \cdot]: L \times L \rightarrow L
$$

bilinear and skew-symmetric as a function of objects and morphisms,

- a natural isomorphism called the Jacobiator:

$$
J_{x, y, z}:[[x, y], z] \rightarrow[x,[y, z]]+[[x, z], y],
$$

trilinear and antisymmetric as a function of the objects x, y, z,
such that:

- the Jacobiator identity holds, meaning the following diagram commutes:

Given a vector space V and an isomorphism

$$
B: V \otimes V \rightarrow V \otimes V
$$

we say B is a Yang-Baxter operator if it satisfies the Yang-Baxter equation, which says that:
$(B \otimes 1)(1 \otimes B)(B \otimes 1)=(1 \otimes B)(B \otimes 1)(1 \otimes B)$, or in other words, that this diagram commutes:

If we draw $B: V \otimes V \rightarrow V \otimes V$ as a braiding:

the Yang-Baxter equation says that:

Proposition: Let L be a vector space over k equipped with a skew-symmetric bilinear operation

$$
[\cdot, \cdot]: L \times L \rightarrow L
$$

Let $L^{\prime}=k \oplus L$ and define the isomorphism

$$
\begin{gathered}
B: L^{\prime} \otimes L^{\prime} \rightarrow L^{\prime} \otimes L^{\prime} \text { by } \\
B((a, x) \otimes(b, y))=(b, y) \otimes(a, x)+(1,0) \otimes(0,[x, y])
\end{gathered}
$$

Then B is a solution of the Yang-Baxter equation if and only if $[\cdot, \cdot]$ satisfies the Jacobi identity.

Zamolodchikov tetrahedron equation

Given a 2 -vector space V and an invertible linear functor $B: V \otimes V \rightarrow V \otimes V$, a linear natural isomorphism

$$
Y:(B \otimes 1)(1 \otimes B)(B \otimes 1) \Rightarrow(1 \otimes B)(B \otimes 1)(1 \otimes B)
$$

satisfies the Zamolodchikov tetrahedron equation if:

$$
\begin{gathered}
{[Y \circ(1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1)][(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1) \circ Y \circ(B \otimes 1 \otimes 1)]} \\
{[(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B) \circ Y \circ(1 \otimes 1 \otimes B)][Y \circ(B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B)]} \\
= \\
{[(B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B) \circ Y][(B \otimes 1 \otimes 1) \circ Y \circ(B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)]} \\
{[(1 \otimes 1 \otimes B) \circ Y \circ(1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)][(1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1) \circ Y]}
\end{gathered}
$$

We should think of Y as the surface in 4 -space traced out by the process of performing the third Reidemeister move:

Left side of Zamolodchikov tetrahedron equation:

Right side of Zamolodchikov tetrahedron equation:

In short, the Zamolodchikov tetrahedron equation is a formalization of this commutative octagon:

Theorem: Let L be a 2 -vector space, let $[\cdot, \cdot]: L \times L \rightarrow L$ be a skewsymmetric bilinear functor, and let J be a completely antisymmetric trilinear natural transformation with

$$
J_{x, y, z}:[[x, y], z] \rightarrow[x,[y, z]]+[[x, z], y] .
$$

Let $L^{\prime}=K \oplus L$, where K is the categorified ground field.
Let $B: L^{\prime} \otimes L^{\prime} \rightarrow L^{\prime} \otimes L^{\prime}$ be defined as follows:

$$
B((a, x) \otimes(b, y))=(b, y) \otimes(a, x)+(1,0) \otimes(0,[x, y])
$$

whenever (a, x) and (b, y) are both either objects or morphisms in L^{\prime}. Finally, let

$$
Y:(B \otimes 1)(1 \otimes B)(B \otimes 1) \Rightarrow(1 \otimes B)(B \otimes 1)(1 \otimes B)
$$

be defined as follows:

where a is either an object or morphism of L. Then Y is a solution of the Zamolodchikov tetrahedron equation if and only if J satisfies the Jacobiator identity.

Hierarchy of Higher Commutativity

Topology	Algebra
Crossing	Commutator
Crossing of crossings	Jacobi identity
Crossing of crossing of crossings \vdots	Jacobiator
identity	
\vdots	

We can define homomorphisms between Lie 2-algebras, and $\mathbf{2}$-homomorphisms between these.

Given Lie 2-algebras L and L^{\prime}, a homomorphism $F: L \rightarrow L^{\prime}$ consists of:

- a functor F from the underlying 2 -vector space of L to that of L^{\prime}, linear on objects and morphisms,
- a natural isomorphism

$$
F_{2}(x, y):[F(x), F(y)] \rightarrow F[x, y]
$$

bilinear and skew-symmetric as a function of the objects $x, y \in L$,
such that:

- the following diagram commutes for all objects $x, y, z \in L$:

Theorem. The 2-category of Lie 2-algebras, homomorphisms and 2 -homomorphisms is equivalent to the 2-category of:

- 2-term L_{∞}-algebras,
- L_{∞}-homomorphisms between these,
- L_{∞}-2-homomorphisms between these.

The Lie 2-algebras L and L^{\prime} are equivalent if there are homomorphisms

$$
f: L \rightarrow L^{\prime} \quad \bar{f}: L^{\prime} \rightarrow L
$$

that are inverses up to 2-isomorphism:

$$
f \bar{f} \cong 1, \quad \bar{f} f \cong 1 .
$$

Theorem. Lie 2-algebras are classified up to equivalence by quadruples consisting of:

- a Lie algebra \mathfrak{g},
- an abelian Lie algebra (= vector space) \mathfrak{h},
- a representation ρ of \mathfrak{g} on \mathfrak{h},
- an element $[j] \in H^{3}(\mathfrak{g}, \mathfrak{h})$.

The Lie 2-Algebra \mathfrak{g}_{k}

Suppose \mathfrak{g} is a finite-dimensional simple Lie algebra over \mathbb{R}. To get a Lie 2-algebra having \mathfrak{g} as objects we need:

- a vector space \mathfrak{h},
- a representation ρ of \mathfrak{g} on \mathfrak{h},
- an element $[j] \in H^{3}(\mathfrak{g}, \mathfrak{h})$.

Assume without loss of generality that ρ is irreducible. To get Lie 2-algebras with nontrivial Jacobiator, we need $H^{3}(\mathfrak{g}, \mathfrak{h}) \neq 0$. By Whitehead's lemma, this only happens when $\mathfrak{h}=\mathbb{R}$ is the trivial representation. Then we have

$$
H^{3}(\mathfrak{g}, \mathbb{R})=\mathbb{R}
$$

with a nontrivial 3 -cocycle given by:

$$
\nu(x, y, z)=\langle[x, y], z\rangle .
$$

The Lie algebra \mathfrak{g} together with the trivial representation of \mathfrak{g} on \mathbb{R} and k times the above 3-cocycle give the Lie 2-algebra \mathfrak{g}_{k}.

In summary: every simple Lie algebra \mathfrak{g} gives a oneparameter family of Lie 2-algebras, \mathfrak{g}_{k}, which reduces to \mathfrak{g} when $k=0$!

Puzzle: Does \mathfrak{g}_{k} come from a Lie 2-group?

Suppose we try to copy the construction of \mathfrak{g}_{k} for a particularly nice kind of Lie group. Let G be a simplyconnected compact simple Lie group whose Lie algebra is \mathfrak{g}. We have

$$
H^{3}(G, \mathrm{U}(1)) \stackrel{\iota}{\hookrightarrow} \mathbb{Z} \hookrightarrow \mathbb{R} \cong H^{3}(\mathfrak{g}, \mathbb{R})
$$

Using the classification of 2-groups, we can build a skeletal 2-group G_{k} for $k \in \mathbb{Z}$:

- G as its group of objects,
- $\mathrm{U}(1)$ as the group of automorphisms of any object,
- the trivial action of G on $\mathrm{U}(1)$,
- $[a] \in H^{3}(G, \mathrm{U}(1))$ given by $k \iota[\nu]$, which is nontrivial when $k \neq 0$.

Question: Can G_{k} be made into a Lie 2-group?

Here's the bad news:
(Bad News) Theorem. Unless $k=0$, there is no way to give the 2-group G_{k} the structure of a Lie 2-group for which the group G of objects and the group $\mathrm{U}(1)$ of endomorphisms of any object are given their usual topology.
(Good News) Theorem. For any $k \in \mathbb{Z}$, there is a Fréchet Lie 2-group $\mathcal{P}_{k} G$ whose Lie 2-algebra $\mathcal{P}_{k} \mathfrak{g}$ is equivalent to \mathfrak{g}_{k}.

An object of $\mathcal{P}_{k} G$ is a smooth path $f:[0,2 \pi] \rightarrow G$ starting at the identity. A morphism from f_{1} to f_{2} is an equivalence class of pairs (D, α) consisting of a disk D going from f_{1} to f_{2} together with $\alpha \in \mathrm{U}(1)$:

$$
G \quad f_{1} \vec{D} f_{2}
$$

For any two such pairs $\left(D_{1}, \alpha_{1}\right)$ and $\left(D_{2}, \alpha_{2}\right)$ there is a 3 -ball B whose boundary is $D_{1} \cup D_{2}$, and the pairs are equivalent when

$$
\exp \left(2 \pi i k \int_{B} \nu\right)=\alpha_{2} / \alpha_{1}
$$

where ν is the left-invariant closed 3 -form on G with

$$
\nu(x, y, z)=\langle[x, y], z\rangle
$$

and $\langle\cdot, \cdot\rangle$ is the smallest invariant inner product on \mathfrak{g} such that ν gives an integral cohomology class.

$\mathcal{P}_{k} G$ and Loop Groups

We can also describe the 2-group $\mathcal{P}_{k} G$ as follows:

- An object of $\mathcal{P}_{k} G$ is a smooth path in G starting at the identity.
- Given objects $f_{1}, f_{2} \in \mathcal{P}_{k} G$, a morphism

$$
\widehat{\ell}: f_{1} \rightarrow f_{2}
$$

is an element $\widehat{\ell} \in \widehat{\Omega_{k} G}$ with

$$
p(\widehat{\ell})=f_{2} / f_{1}
$$

where $\widehat{\Omega_{k} G}$ is the level- k Kac-Moody central extension of the loop group ΩG :

$$
1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\Omega_{k} G} \xrightarrow{p} \Omega G \longrightarrow 1
$$

Remark: $p(\widehat{\ell})$ is a loop in G. We can get such a loop with

$$
p(\widehat{\ell})=f_{2} / f_{1}
$$

from a disk D like this:

$$
G \quad f_{1} \vec{D} f_{2}
$$

The Lie 2-Group $\mathcal{P}_{k} G$

Thus, $\mathcal{P}_{k} G$ is described by the following where $p \in P_{0} G$ and $\hat{\gamma} \in \widehat{\Omega_{k} G}$:

- A Fréchet Lie group of objects:

$$
\mathrm{Ob}\left(\mathcal{P}_{k} G\right)=P_{0} G
$$

- A Fréchet Lie group of morphisms:

$$
\operatorname{Mor}\left(\mathcal{P}_{k} G\right)=P_{0} G \ltimes \widehat{\Omega_{k} G}
$$

- source map: $s(p, \hat{\gamma})=p$
- target map: $t(p, \hat{\gamma})=p \partial(\hat{\gamma})$ where ∂ is defined as the composite

$$
\widehat{\Omega_{k} G} \stackrel{p}{\longrightarrow} \Omega G \stackrel{i}{\hookrightarrow} P_{0} G
$$

- composition: $\left(p_{1}, \hat{\gamma}_{1}\right) \circ\left(p_{2}, \hat{\gamma_{2}}\right)=\left(p_{1}, \hat{\gamma_{1}} \hat{\gamma}_{2}\right)$ when $t\left(p_{1}, \hat{\gamma}_{1}\right)=s\left(p_{2}, \hat{\gamma}_{2}\right)$, or $p_{2}=p_{1} \partial\left(\hat{\gamma}_{1}\right)$
- identities: $i(p)=(p, 1)$

The Lie 2-Algebra $\mathcal{P}_{k} \mathfrak{g}$

$\mathcal{P}_{k} G$ is a particularly nice kind of Lie 2-group: a strict one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L_{∞}-algebra V corresponding to the Lie 2 -algebra $\mathcal{P}_{k} \mathfrak{g}$ is given by:

- $V_{0}=P_{0} \mathfrak{g}$
- $V_{1}=\widehat{\Omega_{k} \mathfrak{g}} \cong \Omega \mathfrak{g} \oplus \mathbb{R}$,
- $d: V_{1} \rightarrow V_{0}$ equal to the composite

$$
\widehat{\Omega_{k} \mathfrak{g}} \rightarrow \Omega \mathfrak{g} \hookrightarrow P_{0} \mathfrak{g},
$$

- $l_{2}: V_{0} \times V_{0} \rightarrow V_{0}$ given by the bracket in $P_{0} \mathfrak{g}$:

$$
l_{2}\left(p_{1}, p_{2}\right)=\left[p_{1}, p_{2}\right],
$$

and $l_{2}: V_{0} \times V_{1} \rightarrow V_{1}$ given by the action $d \alpha$ of $P_{0} \mathfrak{g}$ on $\widehat{\Omega_{k} \mathfrak{g}}$, or explicitly:

$$
l_{2}(p,(\ell, c))=\left([p, \ell], 2 k \int_{0}^{2 \pi}\left\langle p(\theta), \ell^{\prime}(\theta)\right\rangle d \theta\right)
$$

for all $p \in P_{0} \mathfrak{g}, \ell \in \Omega G$ and $c \in \mathbb{R}$,

- $l_{3}: V_{0} \times V_{0} \times V_{0} \rightarrow V_{1}$ equal to zero.

The 2-term L_{∞}-algebra V corresponding to the Lie 2 -algebra \mathfrak{g}_{k} is given by:

- $V_{0}=$ the Lie algebra \mathfrak{g},
- $V_{1}=\mathbb{R}$,
- $d: V_{1} \rightarrow V_{0}$ is the zero map,
- $l_{2}: V_{0} \times V_{0} \rightarrow V_{0}$ given by the bracket in \mathfrak{g} :

$$
l_{2}(x, y)=[x, y],
$$

and $l_{2}: V_{0} \times V_{1} \rightarrow V_{1}$ given by the trivial representation ρ of \mathfrak{g} on \mathbb{R},

- $l_{3}: V_{0} \times V_{0} \times V_{0} \rightarrow V_{1}$ given by:

$$
l_{3}(x, y, z)=k\langle[x, y], z\rangle
$$

for all $x, y, z \in \mathfrak{g}$.

The Equivalence $\mathcal{P}_{k} \mathfrak{g} \simeq \mathfrak{g}_{k}$

We describe the two Lie 2-algebra homomorphisms forming our equivalence in terms of their corresponding L_{∞}-algebra homomorphisms:

- $\phi: \mathcal{P}_{k} \mathfrak{g} \rightarrow \mathfrak{g}_{k}$ has:

$$
\begin{aligned}
\phi_{0}(p) & =p(2 \pi) \\
\phi_{1}(\ell, c) & =c
\end{aligned}
$$

where $p \in P_{0} \mathfrak{g}, \ell \in \Omega \mathfrak{g}$, and $c \in \mathbb{R}$.

- $\psi: \mathfrak{g}_{k} \rightarrow \mathcal{P}_{k} \mathfrak{g}$ has:

$$
\begin{aligned}
\psi_{0}(x) & =x f \\
\psi_{1}(c) & =(0, c)
\end{aligned}
$$

where $x \in \mathfrak{g}, c \in \mathbb{R}$, and $f:[0,2 \pi] \rightarrow \mathbb{R}$ is a smooth function with $f(0)=0$ and $f(2 \pi)=1$.

Theorem. With the above definitions we have:

- $\phi \circ \psi$ is the identity Lie 2-algebra homomorphism on \mathfrak{g}_{k}, and
- $\psi \circ \phi$ is isomorphic, as a Lie 2-algebra homomorphism, to the identity on $\mathcal{P}_{k} \mathfrak{g}$.

Topology of $\mathcal{P}_{k} G$

The nerve of any topological 2-group is a simplicial topological group and therefore when we take the geometric realization we obtain a topological group:

Theorem. For any $k \in \mathbb{Z}$, the geometric realization of the nerve of $\mathcal{P}_{k} G$ is a topological group $\left|\mathcal{P}_{k} G\right|$. We have

$$
\pi_{3}\left(\left|\mathcal{P}_{k} G\right|\right) \cong \mathbb{Z} / k \mathbb{Z}
$$

When $k= \pm 1$,

$$
\left|\mathcal{P}_{k} G\right| \simeq \widehat{G},
$$

which is the topological group obtained by killing the third homotopy group of G.

When $G=\operatorname{Spin}(n), \widehat{G}$ is called $\operatorname{String}(n)$. When $k= \pm 1,\left|\mathcal{P}_{k} G\right| \simeq \widehat{G}$.

The Lie 2-Algebra $\mathcal{P}_{k} \mathfrak{g}$

$\mathcal{P}_{k} G$ is a particularly nice kind of Lie 2-group: a strict one! Thus, its Lie 2-algebra is easy to compute. Moreover,

Theorem. $\mathcal{P}_{k} \mathfrak{g} \simeq \mathfrak{g}_{k}$

What's Next?

We know how to get Lie n-algebras from Lie algebra cohomology! We should:

- Classify their representations
- Find their corresponding Lie n-groups
- Understand their relation to higher braid theory

Moreover, many other questions remain:

- Weak n-categories in Vect?
- Weakening laws governing addition and scalar multiplication?
- Weakening the antisymmetry of the bracket in the definition of Lie 2-algebra?
- What's a free Lie 2-algebra on a 2 -vector space?
- Lie 2-algebra cohomology? L_{∞}-algebra cohomology?
- Deformations of Lie 2-algebras?

